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We review Lipatov's high-energy effective action and show that it is a useful computational tool
to calculate scattering amplitudes in (quasi-)multi-Regge kinematics. We explain in some detail our
recent work where a novel regularization and subtraction procedure has been proposed that allows
one to extend the use of this effective action beyond tree level. Two examples are calculated at
next-to-leading order: forward jet vertices and the gluon Regge trajectory.
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PACS: 12.40.Nn

INTRODUCTION

A useful description of the high-energy limit of perturbative QCD can be
given in terms of high-energy factorization and the BFKL evolution equation.
In this framework, large logarithms in the center-of-mass energy

√
s at leading

(LL) [1] and next-to-leading logarithmic (NLL) accuracy [2] are resummed. Ap-
plications of this framework to LHC and HERA phenomenology are numerous,
for recent results see [3]. The building block in this formalism is the realization
that QCD scattering amplitudes in the high-energy limit are dominated by the ex-
change of an effective t-channel degree of freedom, the so-called reggeized gluon,
which couples to the external scattering particles through process-dependent ef-
fective vertices. The calculation of higher order corrections to both the effective
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couplings and the reggeized gluon propagators is a difˇcult task. This is espe-
cially true when attempting to go beyond LL accuracy, with the aim to obtain
accurate phenomenological predictions.

A powerful tool to easy these calculations is provided by Lipatov's high-
energy effective action [4], which corresponds to the usual QCD action with the
addition of an induced term containing the new effective degrees of freedom
relevant in this limit. This induced piece is written in terms of gauge-invariant
currents which generate a nontrivial coupling of the gluon to the reggeized gluon
ˇelds. Tree-level amplitudes at high energies have been obtained making use of
this action in [5]. Loop corrections are technically more involved since a new
type of longitudinal divergences, not present in conventional QCD amplitudes,
appear. The treatment of these divergences has been addressed for LL transition
kernels in [6], while the coupling for one to two reggeized gluons with the
associated production of an on-shell gluon has been studied in [7]. Recently, this
high-energy effective action has been used for the ˇrst time for the calculation
of NLL corrections to the forward quark-initiated jet vertex [9] and the quark
contribution to the two-loop gluon trajectory [8], ˇnding exact agreement with
previous results in the literature. In the following we review the key steps to
perform these calculations.

1. HIGH-ENERGY FACTORIZATION AND THE EFFECTIVE ACTION

Following Lipatov's work [4], in this section we motivate the construction of
gauge-invariant high-energy factorization and the effective action from an explicit
study of QCD tree-level amplitudes.

To ˇx our notation, let us use the partonic scattering process pA + pB →
p1 +p2 + . . ., with light-like initial momenta p2

A = p2
B = 0 and squared center-of-

mass energy s = 2pA · pB . Dimensionless light-cone four-vectors n+ and n− are
then deˇned through the following rescaling: n+ = 2pB/

√
s and n− = 2pA/

√
s.

The general Sudakov decomposition of a four-vector kμ can then be written in
the form

kμ =
k+

2
(n−)μ +

k−

2
(n+)μ + kμ, k± = n± · k, n± · k = 0. (1)

We start with the simpler example of a scalar φ3-theory∗. The tree-level diagrams
for a 2 → 2 scattering process are

(2)

∗For the formulation of this model and a comprehensive analysis of its high-energy behavior,
we refer the interested reader to the literature, e.g., [10].
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In this case the high-energy limit s ∼ −u � −t with t = q2, q = pb − p2 and
u = (pa − p2)2 is driven by the ˇrst diagram of the sum in Eq. (2), while the s-
and u-channel diagrams are power-suppressed with energy. In these kinematics
the ®plus¯ (®minus¯) momenta of the upper (lower) particles in the diagram are
conserved, p+

a � p+
1 and p−b � p−2 , which implies that the t-channel momentum

q takes for the ®upper¯ particles with momenta pa and p1 the effective form

q =
q−

2
n+ + q (region a-1), (3)

while for the lower particles with momenta pb and p2 we have

q =
q+

2
n− + q (region b-2). (4)

In QCD a similar process is given by elastic gluonÄquark scattering
(g(pa)q(pb) → g(p1)g(p2)) with the following diagrams:

(5)
Kinematics carries over from the φ3-theory, with the additional feature that for
covariant gauges certain longitudinal components of the gauge ˇelds are enhanced
in comparison to their transverse counterparts∗. In particular, in covariant Feyn-
man gauge, the polarization tensor of the t-channel gluon is to be replaced by its
enhanced longitudinal part gμν → n+

μ n−
ν /2, while the s-channel gluons emitted

directly from the quark line have, up to power suppressed corrections, polariza-
tions proportional to n+

μ .
In contrast to kinematic effects, for which QCD and the scalar theory agree,

the gauge theory nature of QCD no longer allows one to drop the contribution
from the s- and u-channel diagrams. While certain choices such as the V ·n+ = 0
light-cone gauge allow one to cast the entire relevant contributions into the
t-channel diagram, gauge invariance requires to take into account the full set
of diagrams in Eq. (5). Naé	ve high-energy factorization at the level of QCD
Feynman diagrams therefore no longer occurs.

Within the effective action proposed in [4], this problem is solved by intro-
ducing an additional effective scalar degree of freedom which describes the inter-
action between particles with signiˇcantly different rapidity y = 1/2 ln (k+/k−).
Due to its scalar nature, this degree of freedom (which is identiˇed with the

∗A gauge-invariant formulation of this statement is possible at the level of the gluon ˇeld
strength tensor (see, e.g., [11, 12] and references therein).
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reggeized gluon) is invariant under gauge transformations and sets the basis for
gauge-invariant high-energy factorization. Building on the φ3-theory result and
on the observation that the V · n+ = 0 gauge still allows one to describe the
entire process in terms of the t-channel contributions only, the effective action
formalism takes as a starting point the QCD t-channel topologies. As a second
step, these contributions are dressed, making use of new ®induced vertices¯, with
precisely those contributions of the QCD s- and u-channel diagrams which are
needed to restore gauge invariance.

The elastic gluonÄquark scattering amplitude in the high-energy limit is then
described by the following set of diagrams:

(6)

The Feynman rules needed for the construction of these diagrams are shown
in Fig. 1.

Fig. 1. Transition vertex (a), reggeized gluon propagator (b) and induced vertex (c)

The ˇrst element, Fig. 1, a, yields the projection of the QCD gluon on the
high-energy kinematics and polarization. Figure 1, b describes the propagator
of the effective t-channel exchange; it agrees with the high-energy limit of the
t-channel gluon propagator in covariant gauge, with polarization vectors n+

μ n−
ν

being absorbed into the adjacent vertices. Figure 1, c corresponds to the O(g)
induced vertex, which makes the two-gluonÄreggeized gluon amplitude to be
gauge-invariant. With the latter deˇned as

(7)

one explicitly ˇnds that the corresponding SlavnovÄTaylor identities are fulˇlled:

paμM
μν
2gr∗(pa, p1, q)ε(λ)

ν (p1) = 0 = paμM
μν
2gr∗(pa, p1, q)p1ν ,

(8)
ε(λ)
ν (pa)Mμν

2gr∗(pa, p1, q)p1ν = 0.
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This structure can be extended to the case where n-gluons are produced in the
fragmentation region of the initial gluon and the whole cluster is well separated in
rapidity from the ˇnal-state quark, see Fig. 2. To achieve gauge invariance for the
(tree-level) n-gluonÄreggeized gluon amplitude, it is needed to supplement the set
in Fig. 1 for the ith additional external gluon with the corresponding O(gi+1) in-
duced vertex. As a result, one obtains a recursive relation for the O(gn) induced
vertex; the latter can then be expressed as the O(gn) term of a path order exponen-
tial. This fact was ˇrst observed in [4,5] and has been recently rederived in [13].

Fig. 2. a) Quasi-elastic scattering of a gluon on a quark with ˇnal-state gluons produced
in the fragmentation region of the initial gluon, well separated in rapidity from the target
quark. b) The effective action formalism factorizes this process with the fragmentation
process described by a gauge-invariant n-gluonÄreggeized gluon amplitude

Lipatov's effective action generates the above-mentioned set of diagrammatic
rules by adding to the QCD action, SQCD, an additional induced term, Sind, which
describes the coupling of the gluonic ˇeld vμ = −itava

μ(x) to the reggeized gluon
ˇeld A±(x) = −itaAa

±(x). We therefore have

Seff = SQCD + Sind, (9)

where we include the gauge-ˇxing and ghost terms

SQCD =
∫

d4x
[
LQCD(vμ, ψ, ψ̄) + Lfix(vμ) + Lghost(vμ, φ, φ†)

]
. (10)

The reggeized gluon ˇeld obeys the kinematic constraint

∂+A− = 0 = ∂+A+, (11)

in order to fulˇll the kinematic conditions in Eqs. (3) and (4). Although the
reggeized gluon ˇeld is charged under the QCD gauge group SU(Nc), it is
invariant under local gauge transformations, δA± = 0. Its kinetic term and the
gauge-invariant coupling to the QCD gluon ˇeld are included in the induced term

Sind =
∫

d4x tr
[
(W−[v] − A−) ∂2

⊥A+

]
+ tr

[
(W+[v] − A+) ∂2

⊥A−
]
. (12)
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The deˇnition of the nonlocal functionals W±[v] reads

W±[v] = −1
g
∂±U [v±] = v± − gv±

1
∂±

v± + g2v±
1

∂±
v±

1
∂±

v± − . . . , (13)

with

U [v±] = P exp

⎛
⎜⎝−g

2

x±∫
−∞

dz± v±(z±, x⊥)

⎞
⎟⎠ and x⊥ = (x∓,x) (14)

being a path ordered exponential with an integration contour located along the
two light-cone directions and with the boundary condition lim

x±→∞
U [v±] = 1.

While the effective action can be used to generate the necessary set of rules
to construct the high-energy limit of quasi-elastic amplitudes as discussed in
the previous paragraph and depicted in Fig. 2, its range of applicability reaches
further. It allows one to generate a general production amplitude in quasi-multi-
Regge kinematics (QMRK), see Fig. 3. In this case, besides particle production in
the fragmentation region of the initial scattering particles, many arbitrary clusters
of particles can be produced at central rapidities, with these clusters being strongly
ordered in rapidity among themselves.

Fig. 3. Gluon production in quasi-multi-Regge kinematics. In the effective action frame-
work, each of the clusters separated in rapidity is connected through reggeized gluon
exchange

From Eq. (9) we notice that the high-energy effective action does not cor-
respond to an effective ˇeld theory in the conventional Wilsonian sense. Since
we now have an enhanced set of Feynman diagrams, it is needed to device some
cut-off or subtraction procedure to avoid double counting in our calculations. In
the remaining of this review we explain a convenient method to achieve this in
two different calculations.
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2. FORWARD JET VERTEX AT NLO

Let us ˇrst use Lipatov's effective action by applying it to the study of the
high-energy limit of a simple QCD process at NLO: quarkÄquark scattering.

2.1. The Born-Level Result. At Born level the effective action in Eq. (9)
provides two Feynman diagrams for the process pa + pb → p1 + p2, depicted in
Fig. 4. To determine the Born-level cross section in the high-energy limit, we
need to evaluate diagram Fig. 4, a. It contains the coupling of a reggeized gluon
to the on-shell quarks which reads

(15)

Evaluating the differential cross section

dσ̂(0)
qaqb

= h(0)
a (k)h(0)

b (k)dd−2k (16)

in d = 4+2ε dimensions with the MS scheme coupling αs =
g2μ2εΓ(1 − ε)

(4π)1+ε
and

CF =
N2

c − 1
2Nc

, we ˇnd

|M(0)|2qr∗→q =
1

4Nc(N2
c − 1)

∑
λλ′

|M(0)|2qr∗→q =
4g2CF

N2
c − 1

p+2
a , (17)

and the leading order (LO) quark impact factor h
(0)
a (k) in Eq. (16) is given by

h(0)
a (k) =

CF√
N2

c − 1
21+ε

μ2εΓ(1 − ε)
1
k2

, (18)

Fig. 4. QuarkÄquark scattering mediated by reggeized gluon exchange (a) and gluon
exchange (b)
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in agreement with [14]. The same result can be obtained by evaluating the di-
agram in Fig. 4, b in the limit |t|/s → 0. In [4] it was suggested to introduce a
factorization parameter η to associate the high-energy region |t|/s < η with dia-
gram Fig. 4, a, and the low-energy region |t|/s > η with Fig. 4, b. Alternatively,
it is possible to subtract the high-energy cross section from the QCD diagram in
Fig. 4, b. More precisely, if the QCD cross section reads

(19)

where dΦ(2) denotes the 2-particle Lorentz-invariant phase space measure, we
can deˇne a low-energy coefˇcient in the form

dĈ(0)
qaqb

=
(
dσ̂(0)

qaqb

)
QCD

− dσ̂(0)
qaqb

. (20)

The complete effective action result then consists of the sum of the high-energy
cross section in Eq. (16) and the low-energy coefˇcient in Eq. (20) which by
construction agrees with the QCD result. The leading term of the high-energy
expansion of the QCD cross section is then formally obtained by dropping the
low-energy contribution in Eq. (20).

This procedure can be applied in general to any class of effective-action
matrix elements stemming from Eq. (9). From those amplitudes with internal QCD
propagators only, to which the reggeized gluon couples as an external (classical)
ˇeld, one subtracts the corresponding high-energy factorized amplitudes with
reggeized gluon exchange. The subtracted coefˇcient is then local in rapidity.

2.2. Real Corrections. The real corrections to the Born-level process can
be organized into three contributions to the ˇve-point amplitude with central and
quasi-elastic gluon production:

Integrating over the longitudinal phase space of the produced gluon, we will
ˇnd divergences which can be regularized using an explicit cut-off in rapidity.
The central production amplitude, obtained from the sum of the following three
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effective diagrams, yields the unintegrated real part of the forward LO BFKL
kernel:

with the following Sudakov decomposition of the momenta:

k′ =
q+

2
n+ + k′, k =

k−

2
n+ + k, q =

q+

2
n+ +

k−

2
n+ + q, (21)

with

k− =
q2

q+
, k′ = q − k. (22)

Note that the condition k′− = 0 = k+ appears as a direct consequence of the
kinematic constraint in Eq. (11). The squared amplitude, averaged over color
of the incoming reggeized gluons and summed over ˇnal-state color and helici-
ties, reads

|M|2r∗r∗→g =
16g2Nc

N2
c − 1

k′2k2

q2
. (23)

It leads to the following production vertex:

V (q;k,k′) =
N2

c − 1
8(2π)3+2εk2k′2 |M|2r∗r∗→g =

αsNc

μ2επ2+εq2
. (24)

The exclusive differential cross section for central production then reads

dσ̂
(c)
ab = h(0)

a (k′)h(0)
b (k)V(q;k,k′, ηa, ηb) d2+2εk′ d2+2εk dη, (25)

where V(q;k,k′, ηa, ηb) ≡ V (q;k,k′)θ(ηa−η)θ(η−ηb) corresponds to the regu-
larized production vertex with cut-offs ηa,b, to be evaluated in the limit ηa,b → ∞.
Once integrated over the full range in η, Eq. (25) without regulators would result
in a (longitudinal) high-energy divergence, proportional to the real part of the LO
BFKL kernel.

For the quasi-elastic contribution q(pa)r∗(k) → g(q)q(p), we ˇrst evaluate
the sum of the effective diagrams
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With the Sudakov decomposition of external momenta given by

pa =
p+

a

2
n−, p =

(1 − z)p+
a

2
n− +

p−

2
n+ + k − q,

(26)

k =
k−

2
n+ + k, q =

zp+
a

2
n− +

k− − p−

2
n+ + q,

with z = q+/p+
a and

p− =
(k − q2)
(1 − z)p+

a
, k− =

Δ2 + z(1 − z)k2

(1 − z)p+
a

, Δ = q − zk, (27)

the squared amplitude reads

|M|2r∗q→qg =
8g4p+2

a

N2
c − 1

Pgq(z, ε)
Δ2q2

(1 − z)zk2

k′2 θ

(
z − e−ηb

√
q2
⊥

p+
a

)
×

×
[
CF z2k′2 + Nc(1 − z)Δ · q

]
, (28)

where Pgq(z, ε) = CF
1 + (1 − z)2 + εz2

z
is the real part of the q → g splitting

function and k′ = q − k. The lower cut-off ηb on the rapidity η = ln q2/(zp+
a )

of the gluon has been introduced, in direct analogy to the corresponding lower
cut-off for the central production vertex. The upper limit for the quasi-elastic
contribution is bounded by kinematics since z < 1. Putting together these results,
the real corrections to the jet vertex are

h(1)(k) dz d2+2εq =

√
N2

c − 1
(2p+

a )2

∫
dk−

(2π)2+ε
dΦ(2)|M|2qg∗→qg

1
k2

, (29)

with the two-particle phase space explicitly given by

dΦ(2) =
1

2p+
a (2π)2+2ε

dz d2+2εq
1

(1 − z)z
δ

(
k− − Δ2 + z(1 − z)k2

(1 − z)p+
a

)
. (30)

The ˇnal result exactly agrees with the equivalent one in [14]:

h(1)(z;k2,k′2,q2) = h(0)(k2) · Fqqg(q,k, z),
(31)

Fqqg(q,k, z) =
αs

2π

Pgq(z, ε)
πε

1
q2Δ2 θ

(
z− e−ηb

√
q2

p+
a

)
[CF z2k′2P+Nc(1−z)Δq].

Note that in the limit z → 0, which corresponds to a large distance in rapidity
between the ˇnal-state quark and gluon, the above expression turns into the central
production vertex, multiplied by the leading order impact factor

lim
z→0

h(1)(z;k2,k′2,q2) dz = h(0)(k2)V (q;k,k′) dη. (32)
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Simply adding quasielastic and central production cross section therefore leads to
the expected over-counting. For production processes at tree level, there are two
immediate solutions. A physical intuitive solution slices the longitudinal phase
space and associates a ˇxed range of rapidity to gluon production in the quasi-
elastic (where the gluon separation of gluon and one ˇnal-state quark is small)
and central region (with a signiˇcant separation between both quarks). Here
we choose to follow a different treatment suggested at the end of Subsec. 2.1
and subtract the central production contribution of Eq. (34), including the full
cut-off dependence as given in Eq. (25) from the quasi-elastic correction, i.e.,
schematically

In this way the subtracted quasi-elastic contribution to the exclusive differential
cross section is already local in rapidity space, in the sense that it only depends
on the regulator ηa,

dσ̂
(qea)
ab = h(0)

a (k′)h(0)
b (k)Ga

qqg(k,q, z, ηa, ηb) d2+2εq d2+2εk dz, (33)

where

Ga,b
qqg = lim

ηb→∞
[Fqqg − V(q;k,k′, ηa, ηb)] =

=
αs

2π

{
Pgq(z, ε)

π1+εΓ(1 − ε)

[
CF z2k′2

q2Δ2 +
Nc(1 − z)Δ · q

q2Δ2

]
− Nc

z

1
q2

}
+

+
Nc

z

1
q2

θ

(
z − e±ηa,b

√
q2

p+
a

)
. (34)

The complete exclusive differential cross section is then given as the sum of
central and quasi-elastic contributions,

dσ̂ab = dσ̂
(c)
ab + dσ̂

(qea)
ab + dσ̂

(qeb)
ab , (35)

for which the dependence on the regulators ηa,b cancels. Let us now consider the
corresponding virtual contributions.

2.3. Virtual Corrections: Pole Prescription and Regularization. To evalu-
ate loop corrections within the effective action, it is necessary to ˇx a prescription
for the light-cone pole of the induced vertex in Fig. 1, c. Although the ˇnal result
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for a scattering amplitude must be independent of the chosen prescription, a con-
venient one can considerably help simplify the full calculation. In the following
we use the prescription suggested in [15]. We replace the unregulated operator
W±(v) in the induced Lagrangian of Eq. (12) by the expression

W ε
±[v] =

1
2

[
PA

(
v±

1
D± − ε

∂±

)
+ PA

(
v±

1
D± + ε

∂±

)]
. (36)

The projector PA is needed since the color structure of the induced vertices is
deˇned in terms of only antisymmetric color structure, in terms of the SU(Nc)
structure constants fabc. While for nonzero values of the operators 1/∂± this
happens automatically, a pole prescription of the above kind leads to momen-
tum space expressions which are proportional to symmetric color tensors mul-
tiplied by a delta function in one of the light-cone momenta. We remove
these subleading terms using a suitable projector, keeping in this way the same
color structure as in the unregulated case. The projector PA acts then order
by order in g on the SU(Nc) color structure of the gluonic ˇelds v±(x) =
−itava(x),

PA

(
v±

1
D± − ε

∂±

)
≡ −i

(
P

(1)
A (ta)va

± − (−ig)va1
±

1
∂± − ε

va2
± P

(2)
A (ta1ta2)+

+ (−ig)2va1
±

1
∂± − ε

va2
±

1
∂± − ε

va3
± P

(3)
A (ta1ta2ta3) − . . .

)
, (37)

where P
(n)
A are the projectors of the color tensors with n adjoint indices on the

maximal antisymmetric subsector of order n. The latter can be deˇned by an
iterative procedure, outlined in [15]. For the O(g) induced vertex, to which
we can restrict ourselves in the following, this means discarding the symmetric
color tensor dabc from the O(g) induced vertex which arises from Eq. (36) be-
fore projecting, resulting in a Cauchy principal value prescription for the pole
in Fig. 1, c.

Furthermore, in full analogy with the evaluation of real corrections, loop
diagrams of the effective action lead to a new type of longitudinal divergences,
which are not present in conventional quantum corrections to QCD amplitudes.
For loop calculations, a convenient way to regularize these divergences is to
introduce an external parameter ρ, evaluated in the limit ρ → ∞, which can be
interpreted as log s. It deforms the light-cone four-vectors of the effective action
in the form

n− → na = e−ρn+ + n−, n+ → nb = n+ + e−ρn−. (38)

To study the virtual corrections, it is ˇrst needed to obtain the one-loop self-
energy corrections to the reggeized gluon propagator. The contributing diagrams
(including ghost loops) are shown in Fig. 5.
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Fig. 5. Diagrams contributing to the one-loop reggeized gluon self-energy

Keeping the O(ρ, ρ0) terms, for ρ → ∞, we have the following result:

= Σ(1)

(
ρ; ε,

q2

μ2

)
=

(−2iq2)αsNcΓ2(1 + ε)
4πΓ(1 + 2ε)

(
q2

μ2

)ε

×

×
{

iπ − 2ρ

ε
− 1

(1 + 2ε)ε

[
5 + 3ε

3 + 2ε
− nf

Nc

(
2 + 2ε

3 + 2ε

) ]}
. (39)

It contains both ˇnite ∼ ρ0 and divergent terms ∼ ρ, where the latter are found
to be proportional to the one-loop gluon Regge trajectory. The one-loop correc-

tions to the quarkÄquark-reggeized gluon vertex iM(1)
qr∗→q are on the other hand

obtained from evaluating the set of diagrams shown in Fig. 6.

Fig. 6. Contributions to the unsubtracted one-loop quarkÄquark-reggeized gluon vertex
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We obtain the following result:

=

= iM(′)
�∇∗→�

αsNc

4πε

Γ(1 + ε)2

Γ(1 + 2ε)

(
k2

μ2

)ε [
−

(
ln

−p+
a√

k2
+ ln

p+
a√
k2

+ ρ

)
+

+
3 + 2ε

N2
c 2ε(1 + 2ε)

− 11 + 7ε

(3 + 2ε)(1 + 2ε)
+

nf

Nc

2 + 2ε

(3 + 2ε)(1 + 2ε)
+

+
2 + 11ε

2ε(1 + 2ε)
− (ψ(1 − ε) − 2ψ(ε) + ψ(1))

]
, (40)

where ψ(z) = Γ′(z)/Γ(z). In analogy with our treatment of the real NLO
corrections, we subtract from the above result the nonlocal contributions stemming
from the one-loop corrections to the reggeized gluon propagator combined with
the tree-level quarkÄreggeized gluon coupling:

= iM(0)
qr∗→q

αs

4π

(
k2

μ2

)ε Γ2(1 + ε)
Γ(1 + 2ε)

{
−2Nc

ε

(
ln

p+
a√
k2

− ρ

2

)
+

+
Nc(2 + 7ε)
2ε2(1 + 2ε)

+
1

Nc

(
1

ε2(1 + 2ε)
+

1
2ε

)
− Nc

1
ε

(
ψ(1 − ε) − 2ψ(ε) + ψ(1)

)}
.

(41)

The four-point elastic amplitude is the sum of two contributions as the one
calculated above:

(42)
While each of the three diagrams in the right-hand side of Eq. (42) is diver-
gent in the ρ → ∞ limit, these ρ-divergences cancel in the sum, yielding the
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following result:

iM(1)
qaqb→q1q2

iM(0)
qaqb→q1q2

=

=
1
2

(
ln

s

k2
+ ln

−s

k2

)
ω(1)

(
ε,

q2

μ2

)
+ Γ(1)

a

(
ε,

q2

μ2

)
+ Γ(1)

b

(
ε,

q2

μ2

)
. (43)

Here the one-loop gluon Regge trajectory reads

ω(1)

(
ε,

q2

μ2

)
= −αsNc

2πε

(
k2

μ2

)ε Γ2(1 + ε)
Γ(1 + 2ε)

. (44)

This piece is associated to the reggeized gluon exchange, whereas

Γ(1)
a,b

(
ε,

q2

μ2

)
=

αs

2

(
k2

μ2

)ε [
Nc

π

85 + 9π2

36
− β0

4πε
− 5

18
nf

π
−

− CF

π

(
1
ε2

− 3
2ε

+ 4 − π2

6

) ]
+ O(ε) (45)

provides the virtual corrections to the quark impact factor. This result is in perfect
agreement with the QCD calculations by [16], conˇrmed in [17]. At this point
we would like to stress that in order to arrive at this result it is necessary to
subtract in Eq. (41) not only the divergent pieces ∼ ρ but also ˇnite terms. This
is in contrast with the real contributions, where the entire central corrections are
proportional to the high-energy divergence. We now discuss the calculation of
the gluon Regge trajectory in terms of the quark contributions.

3. QUARK CONTRIBUTION
TO THE NLO GLUON REGGE TRAJECTORY

It is useful to approach the calculation of the gluon Regge trajectory from the
point of view of renormalized effective vertices and propagators. Formally, this
can be understood as a renormalization of the coefˇcients of the reggeized gluon
action as obtained after integrating out gluon and quark ˇelds with the subsequent
subtraction of nonlocal contributions. At the amplitude level this corresponds
to the following deˇnition of the renormalized quarkÄreggeized gluon coupling
coefˇcients:

CR
qr∗→q

(
p+

a

M+
; ε,

q2

μ2

)
= Z+

(
M+

√
k2

, ρ; ε,
k2

μ2

)
Cqr∗→q

(
p+

a√
k2

, ρ; ε
k2

μ2

)
, (46)

CR
qr∗→q

(
p−b
M− ; ε,

k2

μ2

)
= Z−

(
M−
√

k2
, ρ; ε,

k2

μ2

)
Cqr∗→q

(
p−b√
k2

, ρ; ε
k2

μ2

)
, (47)
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and the renormalized reggeized gluon propagator:

GR
(
M+, M−; ε,k2, μ2

)
=

G
(
ρ; ε,k2, μ2

)
Z+

(
M+

√
k2

, ρ; ε,
k2

μ2

)
Z−

(
M−
√

k2
, ρ; ε,

k2

μ2

) , (48)

with the bare reggeized gluon propagator given by

G
(
ρ; ε,k2, μ2

)
=

=
i/2
k2

{
1 +

i/2
k2

Σ
(

ρ; ε,
k2

μ2

)
+

[
i/2
k2

Σ
(

ρ; ε,
k2

μ2

)]2

+ . . .

}
. (49)

The renormalization factors Z± cancel for the complete quarkÄquark scattering
amplitude and can be parameterized as follows:

Z±
(

M±
√

k2
, ρ; ε,

k2

μ2

)
= exp

[(
ρ − ln

M±
√

k
2

)
ω

(
ε,

k2

μ2

)
+ f

(
ε,

k2

μ2

)]
, (50)

where the gluon Regge trajectory has the following perturbative expansion:

ω

(
ε,

k2

μ2

)
= ω(1)

(
ε,

k2

μ2

)
+ ω(2)

(
ε,

k2

μ2

)
+ . . . , (51)

with the one-loop expression given in Eq. (44). The function f(ε,k2) parameter-
izes ˇnite contributions and is, in principle, arbitrary. Regge theory suggests to
ˇx it in such a way that at one loop the non-ρ-enhanced contributions of the one-
loop reggeized gluon self-energy are entirely transferred to the quarkÄreggeized
gluon couplings leading to

f (1)

(
ε,

k2

μ2

)
=

αsNcΓ2(1 + ε)
4πΓ(1 + 2ε)

(
q2

μ2

)ε

×

× (−1)
(1 + 2ε)2ε

[
2 +

5 + 3ε

3 + 2ε
− nf

Nc

(
2 + 2ε

3 + 2ε

) ]
. (52)

Using M+ = p+
a , M− = p−b , we can see that this choice for f keeps the full

s-dependence of the amplitude inside the reggeized gluon exchange, while the
renormalized quarkÄreggeized gluon couplings agree with Eq. (45). In [8] this
formalism has been put to test through the determination of the quark contribu-
tions to the two-loop gluon Regge trajectory. The complete set of contributing
diagrams is given in Fig. 7. The diagrams in the second line of this ˇgure can
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Fig. 7. Diagrams contributing to the one-loop reggeized gluon self-energy

be neglected since they do not give ρ-enhanced contributions. These subleading
diagrams are obtained as projections of the quark contribution to the two-loop
gluon polarization tensor and are therefore ˇnite when ρ → ∞.

Among all the remaining diagrams we found that only the ˇrst one in Fig. 7 is
ρ-enhanced. This graph is unique since the reggeized gluon couples from above
and below to the usual gluon loop through an induced vertex. The complete set
of enhanced contributions in Fig. 7 is given by

= −ρ(−i2k2)ḡ4 4nf

εNc

Γ2(2 + ε)
Γ(4 + 2ε)

3Γ(1 − 2ε)Γ(1 + ε)Γ(1 + 2ε)
Γ2(1 − ε)Γ(1 + 3ε)ε

. (53)

As for the one-loop corrections to the quarkÄquark-reggeized gluon vertex, it is
needed to subtract from this result the corresponding diagrams with a reggeized
gluon exchange. For the complete two-loop trajectory we have

(54)
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More precisely, the terms to be subtracted which are both proportional to nf and
ρ-enhanced read

= −ρ(−2ik2)
α2

sNc

(4π)2

(
k2

μ2

)2ε 8nf

ε

Γ2(2 + ε)
Γ(4 + 2ε)

Γ2(1 + ε)
Γ(1 + 2ε)

2
ε
. (55)

The ˇnal subtracted reggeized gluon self-energy, in terms of nf and ρ contribu-
tions, is

Σ(2)
nf

(
ρ; ε,

k2

μ2

)
= =

ρ(−2ik2)α2
sNc4nf

(4π)2ε
Γ2(2 + ε)
Γ(4 + 2ε)

(
k2

μ2

)2ε

×

×
(

Γ2(1 + ε)
Γ(1 + 2ε)

4
ε
− 3Γ(1 − 2ε)Γ(1 + ε)Γ(1 + 2ε)

Γ2(1 − ε)Γ(1 + 3ε)ε

)
. (56)

To extract the quark contribution to the gluon Regge trajectory at two loops, it
is needed to identify the ρ-enhanced contributions of the bare reggeized gluon
propagator up to two loops. These are

G
(
ρ; ε,k2, μ2

)
=

i/2
k2

{
1 +

i/2
k2

Σ(1)

(
ρ; ε,

k2

μ2

)
+

+
i/2
k2

Σ(2)

(
ρ; ε,

k2

μ2

)
+

[
i/2
k2

Σ(1)

(
ρ; ε,

k2

μ2

)]2

+ . . .

}
. (57)

Selecting only the terms proportional to nf , the pieces of O(ρ) in the renormalized
reggeized gluon propagator at two loops are

GR

∣∣∣∣
nf ,ρ

=
i/2
k2

{
i/2
k2

Σ(2)
nf

+
[
i/2
k2

Σ(1)

(
ρ; ε,

k2

μ2

)]2 ∣∣∣∣
nf ,ρ

−

− ρ ω(1)

(
ε,

k2

μ2

)
f (1)

nf

(
ε,

k2

μ2

)
− ρ ω(2)

nf

(
ε,

k2

μ2

) }
, (58)
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with

f (1)
nf

(
ε,

k2

μ2

)
= nf

αsΓ2(1 + ε)
4πΓ(1 + 2ε)

(
q2

μ2

)ε (
2 + 2ε

3 + 2ε

)
(59)

being the part proportional to nf of f (1) in Eq. (52). The requirement that the
ρ-dependence in Eq. (58) has to cancel in the limit ρ → ∞ then yields the quark
contribution to the gluon Regge trajectory at two loops as

ω(2)
nf

(
ε,

k2

μ2

)
=

α2
sNc

4π2

(
k2

μ2

)2ε
nf

ε

Γ2(2 + ε)
Γ(4 + 2ε)

×

×
[

Γ2(1 + ε)
Γ(1 + 2ε)

2
ε
− 3Γ(1 − 2ε)Γ(1 + ε)Γ(1 + 2ε)

Γ2(1 − ε)Γ(1 + 3ε)ε

]
, (60)

which is in perfect agreement with Eq. (9) of the original study of Fadin et al.
in [18]. This conˇrms the validity of our approach to the effective action at
two-loop level and the regularization prescription here presented.

4. CONCLUSIONS AND OUTLOOK

In this contribution, a brief introduction to Lipatov's effective action to
describe high-energy processes in QCD has been given. This effective action
is not obtained through a reduction of the number of degrees of freedom, but
rather adds a new degree of freedom through the reggeized gluon. This leads
to a series of subtleties that have been recently addressed in [8, 9, 19] by means
of a regularization and subtraction procedure that ensures the locality in rapidity.
Several nontrivial checks of the validity of this prescription, including one- and
two-loop computations, have been performed ˇnding agreement with previous
results in the literature. We have explicitly discussed the quark-initiated forward
jet vertex and quark contributions to the gluon Regge trajectories at next-to-
leading order. The gluon-initiated jet vertex and the gluon contributions to the
gluon trajectory will be presented elsewhere [19].
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