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The review is devoted to the elucidation of the basic problems arising in the theoretical in-
vestigation of systems with Bose-Einstein condensate. Understanding these challenging problems is
necessary for the correct description of Bose-condensed systems. The principal problems considered
in the review are as follows: (i) What is the relation between Bose—Einstein condensation and global
gauge symmetry breaking? (ii) How to resolve the Hohenberg—Martin dilemma of conserving versus
gapless theories? (iii) How to describe Bose-condensed systems in strong spatially random potentials?
(iv) Whether thermodynamically anomalous fluctuations in Bose systems are admissible? (v) How
to create nonground-state condensates? Detailed answers to these questions are given in the review.
As examples of nonequilibrium condensates, three cases are described: coherent modes, turbulent
superfluids, and heterophase fluids.

O0630p HOCBSIICH P 3bSICHEHHIO OCHOBHBIX IIPOONIEM, BO3HUK HOIIMX B TEOPETHYECKHUX UCCIENOB -
HHSX CHCTeM C 603e-9iHINTEeHHOBCKUM KOHAeHC ToM. [IoHMM HHe 3THX Kp eYrolbHBIX IpobiieM Heob-
XOAUMO I/I TP BWIBHOTO OIHC HUS 603e-KOHIEGHCHPOB HHBIX CHCTeM. P ccM TpuB 10TCs cremyromye
OCHOBHBIC MpOOJIeMbl: (i) K KOB CBSI3b MEXIY CyIIECTBOB HHeM 003e-2HHIITEHHOBCKOrO KOHICHC T
U H pylIeHHeM 100 JIbHOW K JTUOPOBOYHOM cumMerpuy; (ii) K K p 3peluTs auiemMmy XoxeHOepr —
M pruH , yTBEpXKI IOLIYI0, YTO TeOpHH 003e-KOHIEHCHPOB HHBIX CHCTEM JIMOO YIOBIETBOPSIOT 3 KO-
H M COXp HeHwHs, MO0 umeroT GeciuesneBoil crektp; (iii) K K OMHUCHIB Th 003e-KOHIEHCHPOB HHbBIE CH-
CTEMBI B CWJIbHO CJTyd IHBIX HPOCTP HCTBEHHBIX MOTEHLH J X; (1V) ZOMYCTUMbI JIM TEPMOJMH MHUYECKH

HOM JIbHBIE (DITYKTy IUU B 603e-CHCTeM X; (V) K K MOXHO CO3[ B Th Hep BHOBECHBIE BO30YXIECHHbBIE
KOHJEHC Thl. [l [OTCS JeT JIbHBIE OTBETHI H ®TH BOHpochl. K K IpuMepbl Hep BHOBECHBIX KOHICH-
C TOB P CCM TPUB IOTCS TPHU CIIy4 s: KOTE€PEHTHbIE MOJbI, TYpOYJICHTHbIE CBEPXTEKY4He XKHIKOCTH U
reTepoch 3HbIE KHUIKOCTH.

PACS: 03.75.Hh; 03.75.Kk; 03.75.Nt; 05.30.Ch; 05.30.Jp; 67.85.Bc; 67.85.De;
67.85.Jk

1. PRINCIPAL THEORETICAL PROBLEMS

In recent years, the topic of Bose—FEinstein condensation has been attracting
very high attention. There have been published the books [1,2] and a number
of review articles (e.g., [3—12]). This great attention is mainly due to a series
of beautiful experiments with trapped atoms, accomplished in many laboratories
of different countries and promising a variety of interesting applications. The
interpretation of experiments requires the development of theory. It is well known
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that there is nothing more practical than a good theory. Only a correct theory
allows for the proper understanding of experiments and can suggest appropriate
and realistic technical applications.

The theory of real systems with Bose—Einstein condensate was advanced by
Bogolubov [13-16] who considered uniform weakly nonideal low-temperature
Bose gas. Extensions to nonuniform zero-temperature weakly interacting gas are
due to Gross [17-19], Ginzburg and Pitaevskii [20], and Pitaevskii [21]. This
approach has been the main tool for describing Bose-condensed systems, since
the majority of initial experiments with trapped atoms had been accomplished
with weakly interacting Bose gases at low temperatures, using the techniques of
cooling and trapping [22].

Since London [23], it is assumed that superfluidity in *He is accompanied
by Bose-Einstein condensation, although detecting the condensate fraction in
helium is a rather difficult experimental task. The existence in liquid helium
of Bose—Einstein condensate with zero momentum has not been directly proved,
without model assumptions, though the majority of experiments are in agreement
with the existence of condensate fraction of about 10% [24]. The possibility
that superfluidity is accompanied by mid-range atomic correlations [25-27] or
that it is due to the appearance in superfluid helium of a condensate with a
finite modulus of momentum [28-31] has also been discussed. In his works on
superfluid helium, Landau [32] has never assumed the condensate existence. That
is why the direct observation of Bose—Einstein condensation of trapped atoms has
become so important and intensively studied phenomenon [1-12].

The trapped Bose gases are dilute and can be cooled down to very low
temperatures. Usually, they also are weakly interacting. Thus, cold trapped
atomic gases have become the ideal object for the application of the Bogolubov
theory [13-16].

However, by employing the Feshbach resonance techniques [33,34] it is
possible to vary atomic interactions, making them arbitrarily strong. In addition,
the properties of trapped gases at nonzero temperature have also to be properly
described. But the Bogolubov approximation, designed for weakly interacting
low-temperature systems, cannot be applied for Bose systems at finite interactions
and temperature.

Attempts to use the Hartree—Fock—Bogolubov approximation resulted in the
appearance of an unphysical gap in the spectrum [35,36]. While there should
be no gap according to the Hugenholtz—Pines [37] and Bogolubov [16] theo-
rems. This gap cannot be removed without loosing the self-consistency of theory,
which would lead to the distortion of conservation laws and thermodynamic rela-
tions [16]. The situation was carefully analyzed by Hohenberg and Martin [38],
who showed that, as soon as the global gauge symmetry, associated with the
Bose—Einstein condensation, is broken, any theory, in the frame of the grand
canonical ensemble, becomes either nonconserving or acquires a gap in the spec-
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trum. This dramatic conclusion is known as the Hohenberg—Martin dilemma of
conserving versus gapless theories. In this review, it is shown how a correct
self-consistent theory has to be developed, being both conserving and gapless,
and being valid for finite temperatures and arbitrary interactions.

In the Bogolubov approach, the global gauge symmetry U(1) is broken,
which yields Bose—FEinstein condensation. Hence, this gauge symmetry breaking
is a sufficient condition for condensation. But maybe it is not necessary? Some
researchers state that Bose—Einstein condensation does not require any symmetry
breaking. This delusion is explained in the review, where it is emphasized that
the gauge symmetry breaking is the necessary and sufficient condition for Bose—
Einstein condensation.

In recent literature on Bose systems, there often happens a very unfortunate
mistake, when one omits anomalous averages, arising because of the gauge sym-
metry breaking. But it is straightforward to show that this omission is principally
wrong from the precise mathematical point of view. To get an excuse for the
unjustified omission of anomalous averages, one ascribes such an omission to
Popov, terming this trick «Popov approximation». Popov, however, has never
suggested such an incorrect trick, which can be easily inferred from his original
works [39,40].

The general self-consistent theory, presented in the review, is based on the
Bogolubov shift of field operators, which explicitly breaks the gauge symmetry.
The theory is valid for arbitrary interacting Bose systems, whether equilibrium or
nonequilibrium, uniform or nonuniform, in the presence of any external potentials,
and at any temperature. External potentials of a special type are spatially random
potentials. For treating the latter, one often uses perturbation theory with respect
to disorder. However, it is possible to show that such perturbation theory can be
misleading, yielding wrong results. In this review, a method is described that can
be used for disorder potentials of any strength.

One of the most confusing problems, widely discussed in recent literature,
is the occurrence of thermodynamically anomalous particle fluctuations in Bose-
condensed systems. In the review, a detailed explanation is given that such
anomalous fluctuations cannot arise in any real system, since their presence would
make the system unstable, thus, precluding its very existence. The appearance of
such anomalous fluctuations in some theoretical calculations is caused by technical
mistakes.

The usual Bose—Einstein condensate corresponds to the accumulation of par-
ticles on the ground-state level. An important problem, considered in the review,
is whether it would be admissible to create nonground-state condensates. A pos-
itive answer is given and it is explained how this could be done and what would
be the features of such condensates.

Throughout the paper, the system of units is employed, where the Planck
constant 2 = 1 and the Boltzmann constant kg = 1.
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2. CRITERIA OF BOSE-EINSTEIN CONDENSATION

2.1. Einstein Criterion. Bose-Einstein condensation implies macroscopic
accumulation of particles on the ground-state level of a Bose system. This
means that, if the number of condensed particles is Ny and the total number of
particles in the system is N, then Bose—Einstein condensation occurs, when N
is proportional to N. To formulate this criterion in a more precise way, it is
necessary to invoke the notion of the thermodynamic limit, when the number of
particles N, as well as the system volume V, tend to infinity, with their ratio
remaining finite:

N
N — o0, V — o0, v — const. @)
Then the Einstein criterion is formulated as the limiting property

No
lim — >0, 2
where the thermodynamic limit (1) is assumed. This is a very general criterion
that, however, does not hint on how the condensate particle number Ny should

be found.

2.2. Yang Criterion. The Yang criterion [41] is related to the notion of the
off-diagonal long-range order related to the behavior of reduced density matri-
ces [42]. The first-order reduced density matrix p(r,r’) defines the limit

N,
lim p(r,0) = lim =

—00 N—oco V ’

3)

in which r = |r|. One says that this matrix displays the off-diagonal long-range
order and Bose—Einstein condensation occurs, when

lim p(r,0) > 0. 4)

The Yang criterion can be useful for uniform systems, but is not suitable for
confined systems, where the limit of p(r,0), as r — oo, is always zero, while
condensation can happen [3, 9].

2.3. Penrose—Onsager Criterion. Penrose and Onsager [43] showed that
the occurrence of condensation is reflected in the eigenvalue spectrum of the
single-particle density matrix. For the latter, the eigenproblem

/ o, ¥ )i ()t = i (r) 5)

defines the eigenfunctions ¢ (r) and eigenvalues ny, labelled by a quantum
multi-index k. The largest eigenvalue

Ny = supny, (6)
k
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gives the number of condensed particles Ny. That is, condensation occurs, when

sup Nk
: k
lim ———— > 0. 7
N—o0 N ( )
This criterion is quite general and can be used for uniform as well as for nonuni-
form systems.

2.4. Order Indices. A convenient criterion can be formulated by means of
the order indices for reduced density matrices [44-47]. Order indices can be
introduced for any operators possessing a norm and a trace [48]. Let A be such
an operator. Then the operator order index is defined [48] as

i log || A]

A) = - 8
() log |Tr A|’ ®)

where the logarithm can be taken to any base. Considering g1 = [p(r,r’)] as a
matrix with respect to the spatial variables results in the order index

R log |||
= —. 9
01 = fog Ty pa] ©
Using the expressions
l|p1]] = supng = No, Trpr = N,
E
yields the order index for the density matrix
. log Ny
= . 10
w(p1) Tog N (10)

This order index makes it possible to give the classification of different types of
order:

w(p1) <0 (no order),
1 (mid-range order), (11)

0<w(pr) <
w(p1) =1 (long-range order).
The latter corresponds to Bose—Einstein condensation, when

lim w(p) =1, (12)

N—o0

in agreement with the previous criteria. Generally, there can exist Bose sys-
tems with mid-range order [45-48]. In such systems there is no Bose—Einstein
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condensate but there happens a quasi-ordered state that can be called quasi-
condensate [39].

The order indices are useful in studying confined systems. But for confined
systems, the notion of thermodynamic limit is to be generalized. For this purpose,
one has to consider extensive observable quantities [49,50]. Let Ax be such an
observable quantity for a system of N particles. The most general form of the
thermodynamic limit can be given [12,51] as the limiting condition

A
N — o0, Ayxy — o0, WN — const. (13)

Similar conditions with respect to the system ground-state energy imply the system
thermodynamic stability [52].

2.5. Condensate Existence. The condensation criteria show that Bose—
Einstein condensation imposes the following restriction on the behavior of the
density-matrix eigenvalues ny. Recall that, by its definition, n; means the parti-
cle distribution over the quantum multi-indices k. According to Egs. (6) and (7),

one has
1

1
x ——0 (N —o0). (14)
Supy, ng

If condensation occurs into the state labelled by the multi-index kg, so that

SUp ng = Nk,
k
then the condensation condition [12] is valid:

1
lim — =0 (N . 15
dm (N — o0) (15)

Writing N — oo implies, as usual, the thermodynamic limit in one of the forms,
either as in Eq. (1) or as in Eq. (13).

3. GAUGE SYMMETRY BREAKING

3.1. Gauge Symmetry. The global gauge symmetry U (1) for a Hamiltonian
H{[+], which is a functional of the field operator ¢, means that this Hamiltonian
is invariant under the gauge transformation

P(r) = ¢(r) e, (16)
where « is a real number. That is,

H[pe'] = H[y). (17)
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Here and in what follows, the time dependence of field operators is assumed but
is not shown explicitly, when it is not important and cannot lead to confusion.
The field operator can always be decomposed into an expansion

Y(r) = Zakgok(r) (18)
k

over an orthonormal complete basis. Though, in general, the basis can be ar-
bitrary, for what follows, it is important to choose the natural basis, composed
of natural orbitals [42]. By definition, the basis is natural if and only if it is
composed of the eigenfunctions of the single-particle density matrix, defined by
the eigenproblem (5). Then the eigenvalues ny describe the particle distribution
over the quantum indices k.

Bose-Einstein condensation can occur not to any state but only into one of
the states of the natural basis, that is, into one of the natural orbitals. Denoting
the related natural orbital by g (r), one can write

¥(r) = vo(r) + ¢1(r), (19)
separating the part corresponding to condensate,
Yo(r) = aopo(r), (20)
from the part related to uncondensed particles,
Yi(r) =Y arpn(r). 1)
k#0

By construction, the condensate part is orthogonal to that of uncondensed
particles:

/ ) (x) i (x) dr = 0, (22)

which follows from the orthogonality of natural orbitals. And by the definition
of the natural orbitals as eigenfunctions of the single-particle density matrix, the
quantum-number conservation condition

(akap) = 6kp<a,tak> (23)

is valid. Because of the latter, one has the particular form of the quantum
conservation condition

(W) i (r)) = 0. (24)

The number-operator for condensed particles is

No = / P () 1o (r) dr = afaq. (25)
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And the number-operator for uncondensed particles is

N = /1/1{(1‘)1/)1 (r)dr = Za,tak. (26)

k#0
So, the total number-operator reads as
N = Ny + Ny. (27)
The number of condensed particles is the statistical average
No = (No) = (a}ag). (28)
According to the condensation criteria, Bose—Einstein condensate appears when

lim —<agao>

N—oo

> 0. (29)

Till now, no symmetry breaking has been involved in the consideration.
Because of this, one could naively think that no symmetry breaking is necessary
for treating Bose condensation. However, the above consideration is yet nothing
but a set of definitions. To understand whether gauge symmetry breaking is
compulsory for treating Bose condensation, one has to analyze the properties of
the defined quantities.

3.2. Symmetry Breaking. There are several ways how the Hamiltonian sym-
metry could be broken. The oldest method is by incorporating in the description
of the system an order parameter with a prescribed properties corresponding to
a thermodynamic phase with the broken symmetry, as is done in mean-field ap-
proximations [32]. Another traditional way, advanced by Bogolubov [15, 16], is
by adding to the Hamiltonian symmetry-breaking terms, getting

He[y] = H[Y] + e[y, (30)

where (I'[¢)])e &« N and € is a small number. The statistical averages, with
Hamiltonian (30), are denoted as (---).. Upon calculating such an average,
one should take, first, the thermodynamic limit N — oo, after which the limit
¢ — 0. The so-defined averages are called quasiaverages. It is also possible
to combine these two limits in one, prescribing to € a dependence on N and
taking the sole thermodynamic limit. The latter procedure defines thermodynamic
quasiaverages [53]. Other methods of symmetry breaking are described in the
review [54]. Here, for concreteness, the standard way of symmetry breaking by
means of the Bogolubov quasiaverages will be used.
Spontaneous breaking of gauge symmetry occurs when

e—0 N—oo N

lim lim l/|<w0(r)>s|2dr>0. (31)
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This can also be rewritten as

. . |<a0>s‘2
By Jim

> 0. (32)

By the Cauchy—Schwarz inequality,
[{ao0)<]* < (afao)= (33)

for any €. This means that gauge symmetry breaking yields Bose condensation.
Theorem 1. When gauge symmetry is spontaneously broken, then there exists
Bose—Einstein condensate.
Proof. Spontaneous breaking of gauge symmetry corresponds to Eq. (32). In
view of the Schwarz inequality (33), it follows that

t
lim lim M

e—0 N—oo N > 07 (34)

which implies Bose—Einstein condensation.

3.3. Ginibre Theorem. The Hamiltonian of a Bose system is a functional
of the field operator 1 that can always be represented as the sum (19) of two
terms (20) and (21). Thus, Hamiltonian (30) is H.[¢)] = H:[to,%1]. For an
equilibrium system, this Hamiltonian defines the grand thermodynamic potential

Q. = —TnTr exp{—FH[tbo, 1]}, (35)

where T is temperature and 3 = 1/T. Let us replace the operator term g by a
nonoperator quantity 7, getting

Qe = —TInTr exp {—FH:[n, 1]} (36)

and assuming that this thermodynamic potential is minimized with respect to 7,
so that
Qpe = ir;f Qe (37)

Ginibre [55] proved the following proposition.

Theorem 2. In thermodynamic limit, the thermodynamic potentials (35)
and (36) coincide:

S o Qe

NN TN N

(38)

This theorem holds true irrespective of whether there is Bose condensation or
not. But if, when minimizing potential (36), one gets a nonzero 7, then, according
to condition (31), there is spontaneous gauge symmetry breaking. Hence, because
of Theorem 1, Bose condensation occurs.
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3.4. Bogolubov Theorem. Let

Ce(tho, 1) = (o g -] o o hr)e (39)

be a class of correlation functions being the averages, with respect to the Hamil-
tonian H_[to, 1], of the normal products of the field operators (20) and (21).
And let

05(7777/11)E<~~~77*~~~1/JI~~~77~~¢1>775 (40)
be a class of correlation functions being the averages, with respect to the Hamil-
tonian H.[n, 1], of the normal products of the field-operator terms, where the
operators ¥y have been replaced by a nonoperator quantity 7 that minimizes the
thermodynamic potential (36). Then the Bogolubov theorem [16] holds.

Theorem 3. In thermodynamic limit, the corresponding correlation functions
from classes (39) and (40) coincide:

J&EHOOCE(%,%) = A}EHOOC'E(%%) 41)

As particular consequences from this theorem, it follows that

lim lim — /<¢$(r)wo(r)>gdr=NIi§1m %/In(r)mr,

e—0 N—oo IN
lim lim (¢o(r))e = n(r). (42)
e—0 N—oo
Invoking the conservation condition (24) yields

lim lim (¢ (r))e =0,

e—0 N—oo

lim lim (¢(r))e = n(r).

e—0 N—oo

(43)

Hence, if n is not zero, the spontaneous gauge symmetry breaking takes place.
Respectively, Bose condensation occurs. This important consequence of the
Bogolubov theorem can be formulated as the following proposition.

Theorem 4. Spontaneous gauge symmetry breaking implies Bose—Einstein

condensation: :
2
lim lim M = lim lim M .

e—0 N—oo N e—0 N—oo N (44)

3.5. Roepstorff Theorem. The above theorems show that spontaneous gauge
symmetry breaking is a sufficient condition for Bose—Einstein condensation. The
fact that the former is also the necessary condition for the latter was, first, proved
by Roepstorff [56] and recently the proof was polished in [57, 58].
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Theorem 5. Bose—Einstein condensation implies spontaneous gauge symme-
try breaking:

o fabao) _ o [ao)el?
W TN S Ty
In the left-hand side of inequality (45), the average is taken without explicitly
breaking the gauge symmetry. Combining theorems 4 and 5 leads to the following
conclusion:

(45)

Conclusion. Spontaneous gauge symmetry breaking is the necessary and
sufficient condition for Bose—FEinstein condensation.

4. GENERAL SELF-CONSISTENT APPROACH

4.1. Representative Ensembles. A statistical ensemble is a pair {F, 5} of
the space of microstates F and a statistical operator p. Defining the statistical
operator, it is necessary to take into account all conditions and constraints that
uniquely describe the considered statistical system. This requirement was empha-
sized by Gibbs [59,60] and Ter Haar [61,62]. Such an ensemble is termed a
representative ensemble. The general formulation of the representative ensembles
and their properties has been given in [54, 63, 64].

Constraints, imposed on the system, can be represented as the statistical

averages of condition operators C;, with i = 1,2, ... being the index enumerating
the condition operators. This gives the set of statistical conditions
(Ci) = Cs. (46)

Taking into account the latter defines the grand Hamiltonian

H=H+> NG, (47)

K3

in which H is the energy operator and \; are Lagrange multipliers guaranteeing
the validity of conditions (46).

4.2. Bogolubov Shift. The most convenient way of gauge symmetry breaking
for Bose systems is by means of the Bogolubov shift [16] of the field operator,
when the field operator ¢ of a system without condensate is replaced by the field
operator A

¥(r) =n(r) + ¢i(r), (48)
in which n(r) is the condensate wave function and the second term is the field
operator of uncondensed particles. The latter is a Bose operator, with the standard
commutation relations

(@), @)] = or - ).
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It is important to remember that the Fock space F (1)), generated by the operator
1, is orthogonal to the Fock space JF (i), generated by the operator 11, so
that after the Bogolubov shift (48) it is necessary to work in the space F(¢1).
Mathematical details can be found in [65].

Similarly to property (22), the condensate wave function is orthogonal to the
field operator of uncondensed particles:

/ 0 (€)1 () dr = 0. (49)

The quantum-number conservation condition, analogous to Egs. (24) and (43),
takes the form

(th1(r)) =0. (50)
Then Eq. (48) yields .
(¥(r)) = n(r), (51)
which shows that the condensate function plays the role of an order parameter.
The condensate function is normalized to the number of condensed particles

%z/M®Wn (52)

The number of uncondensed particles gives another normalization condition

N1 = (M), (53)

where the number operator Ny is as in Eq. (26). The total number operator
Nz/wwwﬂmzm+m (54)

defines the total number of particles

N = (N)= Ny + M. (55)

In the Bogolubov representation of the field operator (48), the condensate
function and the field operator of uncondensed particles are two independent
variables, orthogonal to each other.

4.3. Grand Hamiltonian. The general self-consistent theory to be presented
in this and in the following sections, is based on [63-71], where all details can
be found.

In order to define a representative ensemble, one has to keep in mind the
normalization conditions (52) and (53). The quantum-number conservation con-
dition (50) is another restriction that is necessary to take into account. The
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latter equation can be rewritten in the standard form of a statistical condition by
introducing the operator

A= [ Mol + X @ )] i, (56)

in which A(r) is a complex function that accomplishes the role of a Lagrange mul-
tiplier guaranteeing the validity of the conservation condition (50). For this pur-
pose, it is sufficient [71] to choose A(r) such that to kill in the grand Hamiltonian
the terms linear in 11 (r). The conservation condition (50) can be represented as

(A)y = 0. (57)

Taking into account the given statistical conditions (52), (53), and (57) pre-
scribes the form of the grand Hamiltonian

HZFI—/,LoNo—MlNl—A, (58)

in which p and y; are the related Lagrange multipliers and H = H|[n, /1] is the

energy operator. The multiplier ;o has the meaning of the condensate chemical

potential and p; can be called the chemical potential of uncondensed particles.
The Hamiltonian average can be represented as

(H) = (H) — pN, (59)

with p being the system chemical potential. Then, from Eq. (58), it follows that
the chemical potential is
B = pono + pina, (60)

where the fractions of condensed and uncondensed particles,
ng=—, Np=— (61)

are introduced.

It is necessary to stress that the number of Lagrange multipliers in the grand
Hamiltonian has to be equal to the number of imposed statistical conditions.
Only then the statistical ensemble will be representative. In other case, the system
would not be uniquely defined. Here, there are three conditions, the normalization
conditions (52) and (53) and the conservation condition (57).

It is easy to show that the multipliers o and p; do not need to coincide.
To this end, let us consider the thermodynamic stability condition requiring the
extremization of the system free energy F' = F(T,V, Ny, N1), that is, 6F = 0.
This gives

oF OF

F=_—0Ny+ —0N; =0. 2
é 8N050+8N161 0 (62)
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Substituting here

oF oF
o =75 Ny’ =7 N (63)
transforms Eq. (62) to the equation
/J()(SN() + M15N1 =0. (64)

The total number of particles N = Ny + V7 is assumed to be fixed, so that
0N =0 and § Ny = —JN;. Then Eq. (64) reduces to the relation

(110 — p11)Ny = 0. (65)

If N; were arbitrary, then one would have the equivalence of the multipliers
and p;. However, the number of uncondensed particles N is fixed for each fixed
T, V,and N. That is, §N; = 0 and Eq.(65) is satisfied for any multipliers.
Hence the multipliers po and w1 do not have to be equal.

It would be possible to say that Ny is fixed for each given T,V, N. But,
clearly, this is the same as to say that N; is fixed. In any case, there always
exist two normalization conditions requiring to introduce two related Lagrange
multipliers.

The Hamiltonian energy operator is

H= /&T(r) (—V—2 + U) U(r) dr+

2m
4y [P )8 ) drdr', (60

where ®(—r) = ®(r) is a pair-interaction potential and U = U (r, t) is an external
potential that, generally, can depend on time ¢.

Substituting into the grand Hamiltonian (58) the shifted operator (48) results
in the form

4
H=>» H™, (67)
n=0

whose terms are classified according to the order of the products of the field
operators ;. The zero-order term

1O = [ @) (~3 +U = o) nte) ars

2m

1
45 [ o=l Par i’ (68)
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does not contain the operators ;. The first-order term
H®M =0 (69)
is zero because of the conservation condition (57). The second-order term is

1 = [ul(e) (=50 +U = ) () ars

2m

+ [0 =) [Pl () + 7 @ 1o e+

g 1 O (e 1) + 5 0 1yl o) a0

Respectively, one has the third-order term

O = [ (e =) [ (00006 1) + 01610 0 ()] e
(71)
and the fourth-order term

" — % / DT ()0 — ') (t)h (r) dr dr'. (72)

4.4. Variational Principle. In the Heisenberg representation, field operators
satisfy the Heisenberg equation involving a commutator of the operator with the
system Hamiltonian. At the same time, in quantum field theory, one usually gets
the equations for the field operators by extremizing an action functional [72, 73],
which reduces to the variation of the Hamiltonian. Conditions, when these two
methods are equivalent, are clarified in the following propositions.

Theorem 6. Let a field operator (r) be either Bose or Fermi operator
satisfying, respectively, the commutation or anticommutation relations

[w(r), v ()] =d(r—1), (), o)) =0, (73)

with the upper sign index being for Bose statistics; while the lower, for Fermi
statistics. Then for the products

Ppn = PPy, Bh=]]v'm), Po=]]vE), (74)
i=1 i=1
where m and n are real integers, one has the commutators

OB ME

+ [(£1)™ " = 1] Prntp(r). (75)
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Proof. Using the variational derivative

st(r) e

Sty O,
it is straightforward to find
sPF SP;
51#*21“) =0(r —r1), W?r) =6(r — 1)yl (ry) £0(r — 1)1 (r1),
SP;
W:Zr) = §(r—r1)" (r2)0" (r3) 26 (r—r2) " (r1) Y (r3)+6(r—r3) " (1) (r2),
and so on. By induction, it follows that
5P+ "
Sory — 2 (EDTG H i), (76)
j=1 i(#5)

Using the commutator

D), v (1)) = 8(r — ') + (1 = 1o (r)u(r),

—

we derive
[o(r), PF] = 6(r — 1) + (£1 = 1) P o(r),
[(r), ] = 6(r —r1)ypT (ra) £ 6(r — r2)0 " (r1),
[(r), P ] = 6(r —r1)9 T (r2))" (r3) £ 6(r — r2)yT (r1)9 " (r3)+

+0(r —r3)¢T ()01 (1) + (1 — 1) P (x),
and so on. From here, using Eq. (76), by induction, we get

5Pt

[0, P] = 5y +IED™ — U Pru(e). (77)
Also, it is easy to check that
[h(x), P] = [(£1)" = 1] Paip(r). (78)

Then, taking into account that, for any three operators /1, B , C, the equality
[A, BC]) = [A, B]C + B[A, C]
is valid, we have
[(x), Prn] = [(x), PL] P + P [4(x), P

Substituting here Egs. (77) and (78) gives the required Eq. (75).
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Theorem 7. Let F[P,,,] be a linear functional of the products defined
in Eq. (74). And let the linear combination

contain only such functionals for which, in the case of Bose statistics, m and n
are arbitrary while, for the case of Fermi statistics, m + n is even. Then

A
oYt(r)’

[W(r), F] = (80)

Proof. The proof is straightforward, following immediately from Eq. (75).

The latter theorem shows that for a large class of functionals the commutator
with the field operator is equivalent to the variational derivative. The operators of
observable quantities are in this class, as well as Hamiltonians. This is because
for Fermi systems, the field operators enter the observables always in pairs,
which is necessary for spin conservation. This is why the Heisenberg equations
for the field operators can be written in two equivalent ways, in the form of a
commutator, as in the left-hand side of Eq. (80), or in the form of a variational
derivative, as in the right-hand side of that equation. Note that the standard
form of many phenomenological evolution equations also involves variational
derivatives [74, 75].

4.5. Evolution Equations. With the grand Hamiltonian (58), the evolution
equations for the field variables 1 and v, read as

0 0H
; — )= ———— 81
P M0 = 5 81)
for the condensate function, and as
0 0H
1 Pi(r,t) = ——, (82)
ot V0 = STy
for the field operator of uncondensed particles. Recall that, in view of Theorem 7,
o0H
O = [ui(r, 1), H]
6w1 (I‘, t)

Invoking expression (67) of the grand Hamiltonian gives the equation
2

.0 \Y
¢ a n(ra t) - <_% +U - UO) n(rvt)+

+ / O(r —v')[Xo(r,r') + X(r, )] dr’, (83)
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in which the notations are introduced:

Xo(r,r') = n*(c")n(x")n(r),

X(r,r') = 9] )y (¢ )n(e) + 1 () ) (v)+

+ () r ()r (v) + ] () hr (¢ (x). (84

In these expressions, for brevity, the explicit dependence on time is not shown.
Equation (82) yields the equation for the field operator of uncondensed par-
ticles:

2
i % Ui (r,t) = <_2v_m U m) et

where

+ / O(r — ') [ Xy (r,r') + X (r,r)]dr', (85)

Xi(r,x') = 0" () ) (v) + 07 (¢ )en (2 )n(x) + 91 (@)@ )n(x).  (86)
An equation for the condensate function follows from averaging Eq. (81),
with the standard notation for a statistical average of an operator A as

(A(t)) = Trp(0)A(1),

where 5(0) is the statistical operator at the initial time ¢ = 0, so that the
condensate-function equation is

e oH
0= (i) o

Averaging the right-hand side of Eq.(83), we shall need the notations for the
single-particle density matrix

p1(r,r') = <¢I(r/)¢1 (r))

(88)
and the anomalous density matrix

o1(r,1’) = (Y1 (r') ¢ (r)). (89)
The density of condensed particles is

po(r)

[n(x)[,

(90)
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while the density of uncondensed particles is

pi(r) = pa(rx') = (1) (r)). (91)
The diagonal element of the anomalous density matrix,
o1(r) = o1(r,r) = (1 (r)¢1(r)), (92)

defines the density of pair-correlated particles as |o1(r)|. The total density of
particles in the system is the sum

p(r) = po(r) + pi(r). (93)
Also, we shall need the notation for the anomalous triple correlator
E(r,r') = (@ () (¢)n (). (94)

Employing these notations gives

Xo(r,x') = po(r')n(x),

(X(r,r")) = pr()n(x) + pr (v, x')n(x') + on (e, 2 )y () + & (r, x).
Finally, Eqgs. (83) and (87) result in the equation for the condensate function

2

e, \Y
i 5 n(r,t) = (—% +U — uo) n(r,t)+

+ / O(r — ') [p(r")n(r) + pr(r,x)n(r") + on (r,x')y" (x') + £ (r, x)] dr’. (95)

Equations for the densities can be obtained from the above equations, with
introducing the condensate density of current

. i * *
Jo(r,t) = —o— ["(r) V() — n(x) Vg™ ()] (96)
and the current density of uncondensed particles
] i
i1 t) = == (O Ve ) - |8l )] vi@))- 97)
And let us also define the source term
[(r,t) = i/@(r —r') [E*(r,r") — E(r,x")] dr’, (98)

with the anomalous correlation function

E(r,x') =07 (r) [n"(")or (x, 1) + £(r, x)].
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Then we get the continuity equations for the condensate,

e po(r,t) + V- jo(r,t) =T'(r, 1), (99)

and for uncondensed particles,

o1 (08) £V i, 8) = ~T(r,1). (100)

The total density (93) satisfies the continuity equation

P04V (1) =0, (101)

with the total density of current
j(r,t) =jo(r,t) + ji(x,1). (102)

For the anomalous diagonal average (92), we find the equation

i % oi(r,t) = 2K (r, t)+2(U—M1)01(r,t)+2/@(r—r’)S(r7r’7t) dr’, (103)

where the average anomalous kinetic-energy density is defined as

K(rt) = 5 (T i) + ) e ) a0k
and where we use the notation
S(r,x',t) = n(r)n(x’)p1(r,x") + 1" (t")n(r)or (v, ) + 0" (" )n(x")or (r)+
+ ()€, 1) + 0 ) (@] (¢ )y (r)ehr (v))+

0 () (@r (2 r ()1 () + (] (2 )ebr (2 )y ()31 (r))+
+ [P (r) + o1 (r)]6(r —1').  (105)

5. SUPERFLUIDITY IN QUANTUM SYSTEMS

5.1. Superfluid Fraction. One of the most important features of Bose-
condensed systems is superfluidity. Therefore it is necessary to have a general
definition for calculating the superfluid fraction. Probably, the most general such
a definition is by identifying the superfluid fraction as the fraction of particles
nontrivially responding to a velocity boost.
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The systems Hamiltonian H = H[¢)] is a functional of the field operator ).
The operator of momentum is

P= / PT(r)pd(r) dr, (106)
where p = —iV.

Boosting the system with a velocity v leads to the Galilean transformation
of the field operators in the laboratory frame

ﬁv(r,t) zzﬁ(r—vt) exp {z (mv~r— mTv2t>}7 (107)

expressed through the field operators ¢ in the frame accompanying the moving
system. Then the operator of momentum in the frame at rest,

P, = / ol (r)pid (r) dr, (108)
transforms into
P, = /W(r)(p +mv)(r)dr =P +mvN. (109)
Since X ) A2 )
LZZZV) = 2p—m +v-p+ %7

the Hamiltonian H, = H [zﬁq,] for the moving system becomes

0t . me2 ~
H,=H+ [ {'(r) v-p+T P (r)dr. (110)
The generalized superfluid fraction is defined through the ratio
: ]-A)v v
ns(v)zw, (111)
(8/0v - Py)y

in which the statistical averages (---), are determined for the moving system
with the Hamiltonian H,, given in Eq.(110). This definition is valid for any
system, including nonequilibrium and nonuniform systems of arbitrary statistics.

One usually defines the superfluid fraction for a system at rest, which gives

Ng = lin%) ns(v). (112)
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For equilibrium systems, the statistical averages are given by the expressions

Tr Aexp (—3H,)

Ay, = 11
(4) Trexp (—8H,) ’ (113)
for the moving system, and by
- i e—BH .
(Ay= AT Ay, (114)

Tre—PH v—0

for the system at rest.
In the case of equilibrium systems, the derivatives over parameters can be
calculated according to the formulas of [76]. Thus, we have

9 - o - - O0H,
8—V'<Pv>v—<8_V'Pv>v_ﬁCOV (P’Uva—v>7 (115)

where the covariance of any two operators, A and B, is

From Egs. (109) and (110), one has

9
ov

Consequently, fraction (111) becomes

P, :3mN,

A2(P,
ne(v) =1~ Sm(NT) ’

where the notation for an operator dispersion

(116)

A2(Av) = <A12]>'U - <Av>2

is used. Therefore, for fraction (112), Eq.(116) yields
A%(P)
3MNT’

ng =1

(117)

with the dispersion given as

The quantity

(118)
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describes the heat dissipated in the considered quantum system. While the dissi-
pated heat in the classical case reads as

Qo = %T. (119)
Hence, the superfluid fraction (117) can be represented by the expression
Q
ne=1- 2. (120)
Qo

For an immovable system, the average momentum <f’> is zero; then

A*(P) = (P?) ((P)=0).
And the dissipated heat reduces to

(P?)

Q=9N

(121)

5.2. Moment of Inertia. Another way of defining the superfluid fraction is
through the system response to rotation. The latter is connected with the angular
momentum operator

L= /w(r)(r x P)ip(r) dr. (122)

When the system is rotated with the angular velocity w, the related linear
velocity is
Vo =W XT. (123)

Then, in the laboratory frame, the angular momentum operator takes the form

L, = /w(r) [r % (p + mv,,)] (r) dr. (124)

This, using the equality

rx (wxr)=r’w—(w-r)r,

gives

L,=L+ m/ﬁ*(r) [rw — (w - r)r] Y(r) dr. (125)
The energy Hamiltonian of an immovable system can be written as the sum

H=K+V (126)
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of the kinetic energy operator
. N
K= — d 127
[t 2w ar (127)

and the potential energy part v, respectively.

Under rotation, the potential energy part does not change, but only the kinetic
part varies, so that the energy Hamiltonian of a rotating system, in the laboratory
frame, becomes

H,=K,+V, (128)

with the same potential energy operator V. The kinetic energy operator, in the
laboratory frame, can be represented [77, 78] by the formula

A~ ~ N 2 ~
K, = / Pi(r) W W(r) dr. (129)

In the rotating frame, where the system is at rest, the kinetic energy operator can
be obtained from Eq. (129) with replacing w by —w and, respectively, replacing
v, by —v,. Using the relations

(wxr)? =w??— (w-r)? (wxr)-p=w-(rxp)

allows us to represent the kinetic energy operator (129) as

Ko=K+w-L+ % /z&(r) [w?r? — (w - 1)?] Y(r) dr. (130)
Thus, the energy Hamiltonian (128), in the laboratory frame, takes the form
H, :ff—i-w-ﬁ—i—%/z/;(r) [w?r? — (w - 1)?] Y(r) dr. (131)

Rotating systems are characterized by the inertia tensor

A 0L
I3 = « 132
B D5 (132)
that, in view of Eq. (125), reads as
las = m/ VI(r) (r*0as — rars) ¥ (x) dr. (133)

If one chooses the axis z in the direction of the angular velocity, so that

w = we,, (134)
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then the angular momentum (125) is given by the expression
L7 =1L, +wl.., (135)

with the inertia tensor

I.= m/z/;T(r) (x2 + y2) 1/;(1‘) dr, (136)

where the relation 2 — 22 = 2 + y2 is used. The energy Hamiltonian (128),

characterizing the system energy in the laboratory frame, can be represented as

~ ~ ~ w2 ~
H, :H+sz+7IZZ, (137)
with H from Eq. (126).
The generalized superfluid fraction is defined as

na(w) = 20 Lo)s (138)

- <a/awﬁ5>w

For an equilibrium system, we can again employ the formulas of differentia-
tion over parameters [76], leading to the derivative

o .. /0 -, .. 0H,
% <Lw>w = <% Lw>u ,BCOV (Lw, —aw ) . (139)

Substituting here

oLy _;  OHy _ ;.
ow 7 ow T
we come to the expression
A?(L?
ng(w)=1-— E “J). (140)
T< zz>w

Considering the superfluid fraction in the nonrotating limit
ng = limO ng(w), (141)

and using the notation

—0

IL.=lim({..)y=m / (z* +y?) p(r) dr, (142)
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we obtain the superfluid fraction in the form

A*(L.)

s = 1-
5 T1..

(143)

The dispersion of L. is calculated with the Hamiltonian for a nonrotating system.
Introducing the notation

Ig = BA%(L.) (144)
allows us to represent the superfluid fraction (143) as
Ieff
s=1-— ) 145
n 1. (145)

For a nonrotating system, one has
A*(L.)=(L%) ((L:)=0).

Hence I.g = G(L2).

5.3. Equivalence of Definitions. The definitions of the superfluid fraction,
considered in Subsecs. 5.1 and 5.2, are equivalent with each other. To show this,
one can take a cylindrical annulus of radius R, width J, and length L, such that
6 < R. The volume of this annulus is V ~ 2w RLJ. Then the classical inertia
tensor (142) is I, ~ mNR?. The angular momentum (122) can be written as

L,= / Pi(r) (—z‘%) W (r) dr, (146)

where ¢ is the angle of the cylindrical system of coordinates.

For the annulus of large radius R, making the round along the annulus
circumference, one has the path element 6! = Rdp. Therefore, the angular
momentum (146) can be represented as

L.=RP, (147)

being proportional to the momentum

N 9\ -

P = [ 4 (r) —io () dr. (148)
Then the superfluid fraction (143) becomes

)
ng=1- AR (149)

The same formula follows from the consideration of Subsec. 5.1 if one takes the
velocity boost along the annulus circumference.



912 YUKALOV V.L

5.4. Local Superfluidity. In some cases, it is important to know the spatial
distribution of the superfluid fraction that would be given by the spatial depen-
dence ns(r). This can be necessary, when one considers equilibrium nonuniform
systems or systems in local equilibrium [79, 80].

To describe local superfluidity, we can consider the momentum density

P(r) = ¢! (r)pY(r). (150)

Following Subsec. 5.1, we introduce a velocity boost, which leads to the momen-
tum density

P,(r) = ¢ @) (p + mv)i(r) (151)

in the laboratory frame. The local superfluid fraction is defined as

ng(r) = lim - (152)
v=0 <a/av : Pv(r)>
Because of form (151), one has
O Bu(e) = 3milf (e ().
ov
Then the local superfluid fraction (152) reduces to
cov(P(r), P)
sr)=1— ——2=, 153
ns(r) 3mp(r)T (153)
Owing to the relation
ps(r) = ns(r)p(r), (154)
we get the local superfluid density
cov (P(x), P
pu(e) = plr) - “CAPELE) (155)

Integrating the above equation over r and considering the average fraction

ng = %/ps(r)dr

would bring us back to formula (117).



BASICS OF BOSE-EINSTEIN CONDENSATION 913

5.5. Superfluidity and Condensation. Usually, Bose—Einstein condensation
is accompanied by superfluidity. However, there is no straightforward relation be-
tween these phenomena and the related fractions [3, 12]. Thus, in two-dimensional
systems at finite temperature, there is no Bose condensation, but there can exist
superfluidity. And in spatially random systems, there can happen local Bose
condensation without superfluidity.

The relation between Bose condensation and superfluidity depends on the
type of the effective particle spectrum and system dimensionality. To illustrate
this, let us consider a d-dimensional Bose gas with an effective particle spectrum

w = AK™ — p, (156)

where A and n are positive parameters and k is d-dimensional momentum. For
the d-dimensional case, the superfluid fraction (117) takes the form
(P?)
NmTd

(157)

Nsg =

The integration over the d-dimensional momenta involves the relation

dk 2k 1dk
—
(2m)®  (4m)42T(d/2)’

in which I'(z) is the gamma function.
For the condensation temperature, we find

n/d

; (158)

_ [<4w>d/2r<d/2>np}

2T (d/n)¢(d/n)

where ((z) is the Riemann zeta function. The latter can be represented in several
forms:

C(a) = f: =T 7 e (159)
S Legr T(x) ) et—1"
j=1 0
when Rex > 1, and
1 7 us !
‘@) = a2 /e“ 1 (160)
0

if Rex > 0.
Taking into account that I'(z) > 0 for > 0 and ((z) < 0 in the interval

0 < x < 1 tells us that there is no condensation for d < n. When d = n, then
T.=0. And T, > 0 for d > n.
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For d > n, the condensate fraction below 7T, is given by the expression

T d/n
ng=1- (T) (T <T.), (161)
while the superfluid fraction, under p = 0, is
ns=1-— B (M) T(d+2—n)/n, (162)
n
where dio
2(d+2—n)T (H)

B= n (163)

(47)/2T (d/2) Ald+2)/nmpn2d’
If there is no condensate, then p is defined by the equation
_20(d/n)gayn(z)T4"

P = am)d2T(d)2)n Al (164)

in which z = ef* is fugacity and

zu™

1 [ !
gn(z)Em/eu_zd“
0

is the Bose function. The superfluid fraction, in the absence of condensate, is

ns = 1= Bgayonyn(z)TEH/, (165)

Generally speaking, Bose—Einstein condensation is neither necessary nor suf-
ficient for superfluidity. These phenomena are connected with different system
features. Bose condensation implies the appearance of coherence in the system,
while superfluidity is related to the presence of sufficiently strong pair correla-
tions. Thus, there can occur four possibilities, depending on the values of the
condensate and superfluid fractions:

(i) incoherent normal fluid

ng =0, ng=0;
(1) coherent normal fluid

ng >0, ng=0;
(iii) incoherent superfluid

no = 07 ng > Oa
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(iv) coherent superfluid
ng >0, ng>0.

In this classification, we do not take into account that the system can form a
solid [12].

6. EQUILIBRIUM UNIFORM SYSTEMS

6.1. Information Functional. The definition of statistical averages involves
the use of a statistical operator. The form of the latter, in the case of an equi-
librium system, can be found from the principle of minimal information. This
principle requires that, composing an information functional, one has to take into
account all conditions and constraints that uniquely define the considered sys-
tem [81]. Only then the corresponding statistical ensemble will be representative
and will correctly describe the system. In the other case, if not all necessary con-
straints have been taken into account, so that the system is not uniquely described,
the ensemble is not representative and cannot correctly characterize the system.
In such a case, one confronts different problems, for instance, the occurrence of
thermodynamic instability or nonequivalence of ensembles. However, all those
problems are caused by the use of nonrepresentative ensembles and have nothing
to do with physics. A detailed discussion of these problems can be found in [63].
The construction of representative ensembles for Bose-condensed systems is given
in [64,71].

A statistical operator p of an equilibrium system should be the minimizer
of the Shannon information pln p, under given statistical conditions. The first
evident condition is the normalization

1y=Trp=1, (166)

with 1 being the unity operator. Then, one defines the internal energy E through
the average
(H)=TrpH = E. (167)

The normalization condition (52) for the condensate function can also be presented
in the standard form of a statistical condition as

(No) = Tr pNy = Ny, (168)

where NO = Noi. Normalization (53), for the number of uncondensed particles,
can be written as R R
<N1> ETI‘ﬁNl :Nl. (169)
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Finally, the conservation condition (57) reads as
(A)=TrpA =0. (170)

Note that, in general, the conditional operators do not need to be necessarily
commutative with the energy operator [80]. For instance, here the operator No
does commute with H , but A does not have to commute with the latter.

It is also worth stressing that the average quantities, involved in the statistical
conditions, do not need to be directly prescribed, but they have to be uniquely
defined by fixing other thermodynamic parameters. Thus, internal energy is not
prescribed directly in either canonical or grand canonical ensembles, but it is
uniquely defined through the fixed temperature, the number of particles in the
system, and volume. Similarly, the number of condensed particles may be not
directly given, but it is uniquely defined, and can be measured, by fixing other
thermodynamic parameters, temperature, total number of particles, and volume.
For confined systems, instead of volume, the external potential is given.

The information functional, under the above conditions, takes the form

I[p) = Trplnjp+ Ao(Trp— 1) + B(Tr pH — E)—
— Bo(Tr pNo — No) — B (Tr pNy — Ni) — BTr pA,  (171)

in which the corresponding Lagrange multipliers are introduced. Minimizing this
functional with respect to p yields the statistical operator

e PH

—_— 172
Tre—AH’ (172)

ﬁ:

with the same grand Hamiltonian (58).

6.2. Momentum Representation. For a uniform system, it is convenient
to pass to the momentum representation by means of the Fourier transformation
with plane waves. This is because the plane waves are the natural orbitals for
a uniform system, which implies that they are the eigenfunctions of the density
matrix in the sense of eigenproblem (5).

The field operator of uncondensed particles transforms as

1 . 1 .
i(r) = —= ) ape™®T, aqp = —/¢ r)e KT dr. (173)
We assume that the pair interaction potential is Fourier transformable,

1 . .
d(r) = %G D> @, = /@(r) e~ kT, (174)
k
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The condensate function 7)(r), for a uniform system, is a constant 7, such
that

po(r) = [n* = po. (175)
These transformations are substituted into the grand Hamiltonian (67). Then
the zero-order term (68) becomes

1
HO = <§po<1>o - m) No. (176)

The first-order term H; is automatically zero, as in Eq.(69). The second-order
term (70) reads as

k‘2
H® = Z [% + po(Po + Pp) — Ml] Cl]TcClk—F
k0

1
+ B Zpoék (a};aik + a_kak). (177)
k+£0
The third-order term (71) is

/
e /p_‘; > @, (afarspap +al ol o), (178)
kp

where in the sum
k#0, p#0, k+p#0.
The fourth-order term (72) takes the form
H® = % S5 bafadap g, (179)
q kp
where

k#0, p#0, p+q#0, k—q#0.

6.3. Condensate Function. In the case of an equilibrium system, the con-
densate function does not depend on time,

0
- t) =0. 180
5;/1(r,1) =0 (180)
Therefore, Eq. (95) reduces to the eigenvalue problem
2
5 U] 0+

+/ D (r—1") [p(r")n(r)+p1 (r, ' )n(x")+or (r,x')n" (') +&(r, 1) |dr = pon(r).
(181)
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A uniform system presupposes the absence of a nonuniform external potential.
Hence, one can set U = 0. The average densities pg and p; are constant. The
total particle density is

p=p(r) =po+p1 (182)
Then Eq. (181) gives

§(r,0)
1o :p<I>0+/<I> r {m r,0)+oy(r,0) + dr. (183)
(r) |p1(r,0) + o1 (r,0) NS
The normal density matrix is written as
1 ; /
pi(r,r’) = 7 Z ny e @1 (184)
k#0
where
ni = (ajag). (185)
And the anomalous average
1 » /
o1(r,r') = - > o ekl (186)
k#0
is expressed through
Ok = <aka_k>. (187)

The triple anomalous correlator (94) can be represented as

{(r,x') = % > g, (188)
k=0
with )
&=—=> (arapa_k_p). (189)
W p#0

The diagonal element of Eq. (184) gives the density of uncondensed particles

1
p1 = pi(r,r) = v > (190)
k+£0
The diagonal element of the anomalous average (186) is

1
o1 =oi(r,r) = Vzak. (191)
k#£0
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And the triple correlator (188) leads to

E=¢(rr) = %ka. (192)
k#£0

The condensate chemical potential (183) can be rewritten in the form

1 Ek
:<I>+—E (n +o +—><I>. (193)
Ho = PPo V’#O k k /7 k

6.4. Green Functions. There are several types of Green functions. Here, we
shall deal with the causal Green functions [81, 82] that are called propagators.
The set {r;,¢;} of the spatial variable r; and time ¢; will be denoted, for brevity,
just as j. If there are other internal variables, they can also be included in the
notation j.

For a Bose-condensed system, one considers four types of Green functions:

G (12) = —i(Ty1 (1)9](2)), G12(12) = —i(T1 (1)1 (2)), 194)
Go1(12) = —i(T] (Y] (2)), Gaa(12) = —i(T] ()1 (2)),

in which T is chronological operator. It is convenient [83] to introduce the
retarded interaction

®(12) = D(r1 —r2)d(t; —t2 +0). (195)

Also, one defines the inverse propagators

G7l(12) = ;0 Vi U@l 5(12) — 244 (12
1 ( )—Za—h+%— (1) 4+ pr | 6(12) — ¥11(12),

G5 (12) = =%12(12), G5 (12) = =%, (12), (196)
_ .0 V2

6312) = |=i g+ 5L = U() + | 812) - Za(12),

where 3,3(12) is self-energy. Using these, one can write the equations of motion
in the matrix form

GG+ G Go =1, G'Gra+ G Gaa = 0,
G2_11G11 + G2_21G21 =0, G2_11G12 + G2_21G22 =1. (197)

For a uniform system, when U = 0, one passes to the Fourier transforms of
the Green functions G (k,w), inverse propagators G;ﬁl(k, w), and self-energies
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Yos(k,w). The inverse propagators (196) transform into

k2
Gy (kw) =w— o TH1 Sukw), Grkw)=-Xkw),
k2
G;ll(k,w) = Yo (k,w), G2_21 kyw)=—-w-— om + 1 — Boo(k,w). (198)

The Green functions enjoy the properties

Gag(—k,w) = Gag(k,w), Gll(k, —w) = GQQ(k,w),

(199)
G12(k, —w) = G21(k,w) = Glg(k, w).
And the self-energies also share the same properties
Zaﬁ(—k,w) = Eag(k,w), Zu(k, —w) = Zgg(k,w),
Zlg(k, —w) = 221(1(, w) = Elg(k, w). (200)
Equations (197) yield
w+k2/2m—u1 +211(k,w) Elg(k,w)
Gi1(k = Gqo(k — _Zi2\mH)
11( 7w) D(k,w) 5 12( ,Cd) D(k,w) ’
(201)
with the denominator
D(k,w) = 23, (k,w) — Gt (k,w)Goy (k,w). (202)

6.5. Hugenholtz—Pines Relation. Hugenholtz and Pines [37], using perturba-
tion theory at zero temperature, found the relation

p1 = %11(0,0) — X12(0,0). (203)

The most general proof of this relation, for any temperature, was given by
Bogolubov [16]. He proved the theorem, according to which

G (1, 0)| > 7, (204)
where ng is the condensate fraction, and
|G11(k,0) — G12(k,0)| > % (205)
From inequality (204), one has
]liir%) ul)l_)l’rb D(k,w) = 0. (206)
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And from inequality (205), it follows that

k2 k2
o TH1TF Y11(k,0) = E12(k,0)| < —. (207)
m mno

The latter inequality leads to the Hugenholtz—Pines relation (203).

It is important to stress that the expression for w;, given by Eq.(203), is
exact and, generally, it differs from the exact value of pg in Eq. (183).

The Hugenholtz—Pines relation is equivalent to the fact that the particle spec-
trum is gapless, which follows from the following.

The spectrum ¢j, is given by the zeroes of the Green-function denominator:

D(k,er) =0, (208)
which gives the equation
1
& =3 [E11(k, er) — Eoa(k, ex)] + /wi — X3, (k, er), (209)
where
o= 2 e ) + Sl 2] (210)
k=5, T gl = 22(K, €k Hi.

In view of condition (206), the limit

lim 5 = 0 211)
k—0

is valid, that is, the spectrum is gapless.
To find the long-wave spectrum behavior, keeping in mind that the spectrum
is uniquely defined by Eq. (209), we can use the expansion

Sap(k,er) = Tap(0,0) + X, 5k, (212)

in which £ — 0 and

- ¥12(0,0) (213)

and the effective mass

*

m" = )
L+ m (3 + X5y — 259,)

(214)
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we get the acoustic spectrum
er =~ ck (k—0). (215)

Equation (213), characterizing the general feature of the long-wave spec-
trum, has been obtained without approximations, assuming only the validity of
expansion (212). Therefore, in a Bose-condensed system, the anomalous self-
energy Y12(0,0) must be nonzero in order to define a meaningful nonzero sound
velocity. The zero sound velocity would mean the system instability. Since
expression (213) involves no perturbation theory and no approximations, the con-
dition

ElQ(Oa 0) # 0

is general, as soon as expansion (212) is valid.

7. HARTREE-FOCK-BOGOLUBOV APPROXIMATION

7.1. Nonuniform Matter. To realize practical calculations, it is necessary
to resort to some approximation. The Bogolubov approximation [13, 14] is valid
for low temperatures and asymptotically weak interactions. The more general ap-
proximation, that would be valid for all temperatures and any interaction strength,
is the Hartree-Fock—Bogolubov (HFB) approximation. Early works [35,36],
employing this approximation, confronted the inconsistency problem discussed
in Sec. 1, because of a gap in the particle spectrum. This happened as a re-
sult of the use of a nonrepresentative ensemble. Employing the representative
ensemble of Sec.4 yields no gap and no any other problems. The HFB approxi-
mation, applied in the frame of the self-consistent theory of Sec. 4, is gapless and
conserving [63-71].

The HFB approximation simplifies the general Hamiltonian (67). For gener-
ality, we consider, first, the nonuniform case.

The third-order term (71) in the HFB approximation is zero. And in the
fourth-order term (72), the HFB approximation gives

DL e)] ()1 (1) () =
= p1(0)] ()1 (¢) + pr ()] (x)ehr (x) + pr (', )] (Yo () +
+ pr (e, )] (0 () + o (v, )] () () +
+ o1 (0, p)e] () (v) = pr(r)pr () — [pr (r,2)]? = o (x,x') 2. (216)

In what follows, it is convenient to use the notation for the total single-particle
density matrix

p(r,r’) = n(r)n*(t') + pi(r,r’) (217)
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and for the total anomalous average

o(r,r’) =n(r)n(’) + o1 (r,r) . (218)
These equations reduce the grand Hamiltonian (67) to the HFB form

2
Hyrp = Enrs + /wi(r) <_2V_m +U — m) 1 (r)dr+

+ [0 =) o)l o) + om0 @) )+

4 5ole T Y )l (0) + 5o (e i () () de ', 219)

in which the nonoperator term is

1
EMB=H@—§/Mrwvm&m&vﬂmmﬂW+wmwMﬂMMK

(220)
The condensate-function equation (95) becomes

2

.0 v
1&77(1“’ t) = <—% +U - Mo) n(r)+

+/@@—wmwwm+mmmmm+mmﬂwvmw.am>

And the equation of motion (85) for the operator of uncondensed particles now
reads as

2
Z% Pr(r,t) = (—:—m +U - u1> P1(r)+

+ /@(r —r) [p(r’)¢1 (x) 4 p(r, 2 V1 (') + o (v, 2 )l (¢)) | dr'.  (222)

In the case of an equilibrium system, Eq. (221) reduces to the eigenproblem

(—% + U) n(r)+

+/¢’(r—r') [p(x)n(r) + p1 (v, x)n(x") + o1 (r, )" (x)] dr’” = pon(r)
(223)

defining the condensate function and the the condensate chemical potential

1 i} v
M:R%/nm{3—+vm} e+ - [ o1 i)+
o pa(e ) (W) + o (e (e () e’ 224)
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7.2. Bogolubov Transformations. The HFB Hamiltonian (219) is a quadratic
form with respect to the operators ;. As any quadratic form, it can be diag-
onalized by means of the Bogolubov canonical transformations, whose general
properties are described in detail in the book [84]. In the present case, the
Bogoliubov transformations read as

0i) = 3 [+ i) b= [ w0 @) - vie)l @) ar

* (225)
Since 1), is a Bose operator, it should be:
D [k (@)ui (') = v (r)or(x')] = 6(x — 1),
i (226)
> lun(r)oj (') = vj(r)ur(x')] = 0.
k

And, the condition that by is also a Bose operator leads to the relations

[ i) = ey 6)) de = Gy [ e () o) — 00 (6)) e = 0.
(227)
The coefficient functions uy and vy are to be defined by the requirement of the
Hamiltonian diagonalization, under conditions (226) and (227).
Let us introduce the notations

2
w(r,r') = {_2V_m +U(r) — 1 —|—/<I>(r —1')p(r) dr/] S(r—r')+
+®(r —1')p(r,r') (228)
and
A(r,r') = ®(r —1')o(r,1’). (229)

Then the Hamiltonian diagonalization leads to the Bogolubov equations
[t ) + Aol = (o),
(230)
/[w*(r, rug(r') + A*(r, v )ug (r)]dr’ = —egvi(r).
This is the eigenproblem for the Bogolubov functions uj and vy and the Bogol-

ubov spectrum ¢y
The resulting diagonal Hamiltonian is

Hp =Ep+ Y exblbr, (231)
k
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with the nonoperator term
Ep = Enrp — Zﬁk / oy, () *dr.
k

The quasiparticles, described by the operators by, are called bogolons.
quantum-number distribution is easily calculated, giving
—1
T = (b;bw = (eﬁﬁk -1)

which can also be represented as

1 €k
— L eom (25) -1].
Tk 2 [cot 5T
The normal density matrix (88) takes the form
pr(rx) = [mpun ()i (v) + (14 m)vi (oo ()],
k
while the anomalous average (89) becomes
oy(r,r’) = Z [mrug(v)vp (') + (1 + 7)o (r)ug ()]
k
The density of uncondensed particles (91) is
pr(r) =Y [melur(r)? + (1+ ) |ox (r) ]
k
and the diagonal anomalous average (92) is
o1(r) = > (1 + 2me)ur(r)vi (r).
k

The grand thermodynamic potential
= —TInTre PH

)

under Hamiltonian (231), reads as

QO=Ep+T» In(l—e "),
k

where the first term, defined in Eq. (232), gives

B = [ 8~ 1) [n@m()+

+ 2po(r)p1 (') 4 20" () (x") p1 (v, ¥') + 207" (1)1 (") o (1, 1") +
+ p1(0)pr () + [pa (e, ) [* + |oa (r, 1) P drdr’ =) ey, / vk (r)[*dr.
k

(232)

Their

(233)

(234)

(235)

(236)

(237)

(238)

(239)

(240)

(241)
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The above equations are valid for any nonuniform matter, with an arbitrary

external potential U (r).

7.3. Uniform Matter. The previous equations simplify for a uniform case,
when there is no external potential. Setting U = 0, we can use the Fourier

transformation (173) and follow the way of Sec. 6.
Instead of expressions (228) and (229), we now have

k2 1
we =5 + p®o + poPy + v ;np@kﬂ; —
p

and

1
A = poPr + V Z()'pq)k_H,.
p#0

The HFB Hamiltonian (219) reduces to
1
Hyrp = Eurs + Zwka;tak + 3 Z Ay (azaik + afkak) ;
k#0 k0
with the nonoperator term

1

1 /
Furp = HO© — Epf%V - WZ Doy p(ninp + ok0p),
kp

in which k # 0,p # 0.
Instead of the Bogolubov canonical transformations (225), one has

ar = upbg + vikbik, br = ujar — v,’gaik.
And the Bogolubov equations (230) become
(wk — e’:‘k)uk + Ao = 0, Apuy + (wk + ak)vk =0.

The Bogolubov Hamiltonian (231) has the same form, but with

1
Ep = EurB + 3 Z(&c — W),
k20

instead of Eq.(232).

(242)

(243)

(244)

(245)

(246)

(247)

(248)

The coefficient functions ug and vy are defined by the Bogolubov equa-

tions (247), under conditions

|uk‘2 - ‘U—k"2 - 17 Uk'UZ - ’Uiku_k = O’

(249)
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replacing conditions (226) and (227). These functions, due to the system unifor-
mity and isotropy, are real and symmetric with respect to the momentum inversion
k — —k. As a result, one has

Wi Ay
uﬁ—vizl, ui—&—v,%:—, ukvk:——% ,
k Kk
(250)
u2_wk+6k UQ_Wk—Ek
k 25k ’ k 25k

The Bogolubov spectrum becomes

el = Jwi — A2 (251)

As is known from Sec. 6, the spectrum has to be gapless, which gives

1
= pPo + ];)(nk — 0k)Pp.. (252)

This differs form the condensate chemical potential (224) that is

1
Ho = p®o + 72 > (nk + 0k) P (253)
k0
With p; from Eq. (252), expression (242) is
2

k 1
“k = om + po®r + Vv Z;ﬁ;)(npq)k+p —np®y + 0p®p). (254)
P

In the long-wave limit, the Bogolubov spectrum (251) is of acoustic form (215),
with the sound velocity

A
c= = (255)
m
in which 1
A= lim A = po®o + 7 > o, (256)
p#0
and the effective mass is
m' = —— n , (257)
m
1+ — ) (np—0p)®
\%4
p#0
where 9
"=
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From Eqgs. (255) and (256), we have
. 1
A=m'c = po®o + 37 D 0py. (258)
p#0
Hence, expression (254) can be written as
* 2 k2 1
wi =" + 5+ po(®k — Bo) + 7 > np(@ppp — Dp). (259)
p#0
Comparing Eqs. (213) and (255) yields
1
$12(0,0) = po®o + > 0,0, (260)
p#0
And from the Hugenholtz—Pines relation (203), with p; from Eq.(252), we get
1
21(0,0) = (p+ po)®o + 7 > 1y (261)
p#0

Of course, the same Egs. (260) and (261) can be derived directly from the Green
function equations.
The condensate chemical potential (253) can be written as

po = 2£11(0,0) + X12(0,0) — 2p0Pp. (262)
The difference between Eqgs. (252) and (253) takes the form
jo — 1 = 2[£12(0,0) — poo] (263)

which again tells us that these chemical potentials are different. They coincide
only in the Bogolubov approximation [13, 14], when 315(0, 0) equals po®(. Then
o and pg both are also equal to po®P( and, hence, to each other.

The momentum distribution (185) is

Wk kL 1
= %% coth <—) - 264
=9, M) T 2 (264)

while the anomalous average (187) reads as

Ak Ek
ok 7 cot ( QT) (265)
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The grand potential (239) enjoys the same form (240), but with

-
Ep = -3 ®(r) [p* + 2p0p1(r,0) + 2pooy (r,0)+
1
+ lo1 (0 + | (£, 0)F] dr + 5 J(en —wi), (266)
k

which can be transformed to

N
Ep = _EPCI’O - Po ;(np + 0p)Pp—

1

2V

1
. (nknp + O'kO'p)CI)ker + 5 ;(Ek — wk). (267)
P

7.4. Local-Density Approximation. When there exists an external potential
U(r) and the system is nonuniform, one can use the equations from Subsec.7.2.
It is also possible to resort to the local-density approximation [1-3]. The local-
density, or semiclassical, approximation [85, 86] is applicable when the external
potential is sufficiently smooth, such that

Iy 9U(x)
U() aI‘

<1, (268)

where Up and [y are the characteristic depth and length of the potential, respec-
tively.
In this approximation, one looks for the solutions of the Bogolubov equa-
tions (230), represented as
) = uler) . i) = vller)
Uk = UK, I)——, Vg = VK, )
vV VvV
where the functions u(k,r) and v(k,r) are assumed to be slowly varying as
compared to the exponentials, so that

(269)

[Vu(k,r)| < klu(k,r)|, |Vulkr)| < Elv(k,r)| (270)

Then, using the notations
k2
wk,r) = % + U(r) + 2Pop(r) — p1(r) (271)

and
A(r) = [po(r) + o1(r)] P , (272)
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one reduces the Bogolubov equations (230) to the form
wk,r) —e(k,r)]ulk,r) + A(r)v(k,r) =0,
A*(r)u(k,r) + [w*(k,r) + ek, r)]vk, 1) =0,

(273)

in which

D) = /@(r)dr. (274)

The following procedure is analogous to the uniform case. For the coefficient
functions, we have

k
i)~ en) =1, ) () = 2T,
A(r)
=— 75
ulkor)oller) = —5 s 275)
k,r) +e(k,r) wk,r) —ek,r)
2 k — Cd( ) ’ 2 k — ) ) )
w (k) 2e(k, 1) » vlkr) 2e(k, 1)
The local Bogolubov spectrum is
e(k,r) = /w?(k,r) — A2%(r). (276)
From the requirement that the spectrum be gapless,
%12% e(k,r) =0, 277)
we find
1 (r) = U(x) + [po(r) + 21 (x) — 01 (r)] 0. (278)
Denoting
A(r) = mc(r), (279)
from Eq. (272), we get
mc?(r) = [po(r) + o1(r)]Do. (280)
Then Eq. (271) becomes
k2
= mc? —. 281
w(k,r) = mc*(r) + v (281)

The local Bogolubov spectrum (276) takes the form

e(k,r) = \/02(r)k2 + (%)2 (282)

This shows that ¢(r) is the local sound velocity.
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With spectrum (282), the bogolon momentum distribution (234) reads as

(k. r) = % {coth { 6%‘;) } _ 1] .

In view of the system isotropy, the symmetry properties
6(_k7 I‘) = 6(1{, I‘), W(_kv I‘) = 7.‘-(1{7 I‘)

are valid.
The single-particle density matrix (235) now transforms into

1 X /
P1 (I‘, I‘/) = V Zk: n(k7 I‘) ezk-(r—r )a
while the anomalous average (236) becomes

1 : ,
oi(r, 1) = v > ok r)e T,

k

Here the particle local momentum distribution, replacing Eq. (264), is

wk,r)

2e(k,r)

and, instead of the anomalous average (265), one has

~ md?(r) e(k,r)
olk,r) = " %) coth {T] .

n(k,r) =

coth r(k’ r)} — %

2T

The density of uncondensed particles (237) gives
1
pr) = > n(k,r)
k
and the anomalous average (238) is

(1)=& olkr)
o = — o .

1 V - )

The grand potential (239) reads as

0= By +T/ln 1 — exp {—Be(k,r)}]

(283)

(284)

(285)

(286)

(287)

(288)

(289)

(290)

(291)
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Here the first term, after the dimensional regularization of the expression

dk 16m*
/ [eler) ~wlk )l gy = 75 7<), (292)
takes the form
®
Ep = —70 [0(x) + 2po(r)p1 () + 2p0(r)or (r) + pi(r) + of (r)] dr+
8m*
+ 153 A(r)dr. (293)

When the system is constrained inside a fixed volume V/, then the grand
potential @ = — PV defines the system pressure P = —Q/V, irrespectively of
whether the system is uniform or not. But, when a nonuniform system is confined
inside a trapping potential that does not have rigid boundaries constraining the
system inside a given volume, then the system pressure cannot be defined as
—Q/V. It is possible, being based on the generalized definition of thermodynamic
limit (13), to introduce an effective volume and effective pressure. However,
these quantities are different for different potentials and, moreover, they are not
uniquely defined even for a given potential, hence, they would have no physical
meaning.

What is well defined for any nonuniform system is the local pressure p(r)
that enters the grand potential through the equality

Q= —/p(r) dr. (294)

For the grand potential (291), the local pressure is

p(r) = —T/ln [1 —exp{—Pe(k,r)}] (;:)3+
+ % [0%(x) + 2p0(r)p1(r) + 2p0(x)o1 (r) + pi(x) + of(r)] — %é(r)_
(295)

Equation (295) can be represented as the sum

p(r) = po(r) + pr(r),
in which
m2ci(r)  8m?

polr) = () = pi(x)] B0+ TG - e
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and
pr(r) = —T/ln[l —exp{—pe(k,r)}] (;ﬂl_()g

The latter term, when temperature decreases, tends to zero as

T4
pr(r) ~

_WZ)’(I‘) (T — 0).

For asymptotically weak interactions, when &, — 0, Eq. (280), defining the
local sound velocity, reduces to

me?(r) =~ po(r)®o.
In that case, the local pressure (295) simplifies to

dk

p(r) = %pQ(I‘)‘I)O _ T/ln[l —exp {—pBe(k, r)}]W,

with the local Bogolubov spectrum

ko) = (22

Such local thermodynamic quantities are common for nonuniform systems,
both equilibrium [87] and quasi-equilibrium [88, 89].

7.5. Particle Densities. In the local-density approximation, it is straightfor-
ward to find the densities of particles. Thus, the condensate density is

po(r) = |n(r)[>. (296)

For an equilibrium system, the condensate function is real. Equation (223) for
the condensate function, in the local-density approximation, becomes

V2

[_ i U(r)} n(®) + Bolpo(r) + 201(x) + 1 (On(r) = pon(r).  (297)

The simplest way of solving this equation is by means of the Thomas—Fermi
approximation, when one neglects the spatial derivative, which yields

:MO—U(I‘)

(I)O — 2p1 (I‘) — 01 (I‘) (298)

prr(r)

In the case of cylindrical symmetry, one can introduce the Thomas—Fermi volume
Vrp = mR?L, with the Thomas—Fermi radius R and the Thomas—Fermi length L
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defined by the equations

o = U(R,0) + ®¢[2p1(R,0) + 01(R,0)],

L L L
po=U (0, 5) + o [2[)1 (Qg) + o1 (O, 5)} :

In the Thomas—Fermi approximation, the condensate density is nonzero only
inside the Thomas—Fermi volume, where

(299)

po(r) = pre(r)O(R — 1O (g - z) , (300)

with ©(-) being the unit step function. Of course, more correctly, the condensate
function should be calculated by directly solving Eq. (297).
The density of uncondensed particles (289) can be written as

13 ] e 8 o [£52] 1) 2

(301)
And the anomalous average (290) is
1 [ mc?(r) ek,r)] dk
=—= th . 302
o1(r) = =3 / clkr) { oT | (27)3 (302)
At zero temperature, the anomalous average becomes
1 %(r) dk
oolr) = -1 [ et _dke (303)

2 ) ek,r) (2m)3°

This integral diverges. It can be regularized invoking the dimensional regular-
ization that is well defined for asymptotically weak interactions [4]. Employing
the dimensional regularization for finite interactions requires that the limiting
condition

oo(r) =0 (po—0) (304)

be satisfied [12, 66,67,69-71]. This condition takes into account that the anom-

alous averages and Bose condensate always exist together, both being due to the

common reason of gauge symmetry breaking. As soon as the condensate density

is nonzero, the anomalous average is also nonzero. And, conversely, when the

condensate density becomes zero, the anomalous averages have also to disappear.
Another limiting condition is

oo(r) >0 (g — 0). (305)
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This condition takes into account that the anomalous average nullifies for the
ideal Bose gas [12,66,67,69-71].
Under conditions (304) and (305), the dimensional regularization gives

1 dk om
/6(k, r) (27)3 _ﬁ\/ﬂm.

Then Eq. (303) reduces to

oo(e) = "CO o). (306)

Thus, at temperatures outside the critical region, the anomalous average (302)
can be represented in the form

o1(r) = 0o —% 7:(12(:)) {coth {E(;’Tr)} - 1} ( 2‘2_{)3. (307)

This form can also be used even in the critical region, provided that interactions
are weak. Strictly speaking, form (307) is valid when one of the following
conditions holds true:

T pcb()
— <1
T. < 1, T.
where T, is the critical temperature.
In the vicinity of the transition point 7., where ¢(r) — 0, the anomalous
average (302) behaves as

<1, (308)

m?T
2

o1(r) ~ — c(r) (T —-T). (309)
This behavior guarantees that the Bose condensation transition is of second order
for any interaction strength [12,69-71].

For the convenience of calculations, the density (301) of uncondensed parti-
cles can be transformed into

pr(r) = mie) )y, 2\3/5 Z(\/H—x?— 1)1/2 (coth {mg(r) x] - ) dz b

32 2T

(310)
and the anomalous average (307), into

o1 (x) = oo (x) — ”jj;‘;) 7 (Ve (coth [mcm) 4 . 1) or.
0

The sound velocity here is defined by Eq. (280).
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The local superfluid density has been introduced in Eq.(155). In the local-
density approximation, for an equilibrium system, we have

2Q(r)
s(r) = — , 12
pulr) = pr) = =27 (12)
with the local dissipated heat
Q(r) / 2 [n(k r) +n2(k,r) 2(k r)] dk (313)
= | — -0 .
2m ’ ’ ’ (2m)3
In view of Egs. (287) and (288), this yields
17 KA dk
Q(I‘) = 2 / . 12 )
(4m)%m ) sinh*[e(k,r)/2T]
which can be transformed into
oo 3/2
m*c®(r Vi+z2 -1 T dx
Q) = o) [ ) G14)

(2m)2V/2 )V 1+ 22 sinh®[me?(r)z/2T)

It is necessary to stress the importance of taking account of the anomalous
average. If in Eq.(313) one would omit this anomalous average, then the dissi-
pated heat would be infinite, hence the superfluid density would not exist at all.
But, taking the anomalous average into account renders the dissipated heat (314)
a well defined finite quantity. The fact that the anomalous average is crucially im-
portant for describing superfluidity should be apparent remembering that |0y (r)]
is the density of pair-correlated particles. These pair correlations are, actually,
responsible for the existence of superfluidity as such. Therefore, when there are
no pair correlations, there is no supefluidity.

Having all particle densities defined makes it possible to study their spatial
distributions and to calculate the average condensate, ng, and superfluid, ng, frac-
tions, as well as the fraction n; of uncondensed particles, given by the equations

1 1
ng = N/po(r) dr, ns= N/ps(r)dr,

. (315)
n, = N/pl(r)dr7 ng +n1 = 1.

8. LOCAL INTERACTION POTENTIAL

8.1. Grand Hamiltonian. Till now, the consideration, for generality, has been
accomplished for any type of the symmetric interaction potential ®(—r) = &(r),
with the sole restriction that this potential be integrable, such that integral (274),
defining ®y, be finite.
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When particles interact with each other through a potential, whose effective
interaction radius rg is much shorter than the mean interparticle distance a, then
this potential can be represented in the local form

B(r) = Do(r), o= 47r:‘n—5, (316)

in which the interaction strength ®( is expressed through s-wave scattering length
as and mass m. For uniform systems, the potential is called stable [90] when
® is positive. For trapped atoms, a finite system can be stable also for negative
interactions [1-3,91].

The grand Hamiltonian (67), for the local interaction potential (316), contains
the following terms. The zero-order term (68) reads as

(0) * v? Qg 4
H =/n(r) YU e n(r)dr+7/ln(r)l i, (17)

2m

The first-order term, as always, is zero. The second-order term (70) is

2
H® — /¢}(r) <—2v—m +U - m) Y1 (1) dr Py x

[ |2l + 507 ()20 + 500 @] )] .
(318)

The third-order term (71) becomes
1O =0 [ [ @001 @) + 0] 0o ) 0] dr. G319

And the fourth-order term (72) reduces to
o
HW = 70 / I (0)¢d (r)4r (r)2y (r) dr. (320)

8.2. Evolution Equations. Evolution equations, derived in Subsec. 4.5, sim-
plify for the local potential (316). The same notations (90) to (93) can be used.
But, instead of (94), we define

&(r) = (W] (r)v1 (x) (v)). (321)

In addition, we shall employ the notation

€1(r) = (W1 ()1 (r)hi(r)). (322)
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Equation (95) for the condensate function yields

imon(r) = (‘v—z +U- “°> n(r)+

2m
+ o [po(r)n(r) + 2p1(r)n(r) + o1 (r)n™ (r) +£(r)] . (323)

The continuity equations (99) to (101) have the same form, but with the source
term
[(r,t) =i® [Z*(r) — Z(v)], (324)

with the anomalous correlation function

E(r) = n"(r)[n"(r)or(r) + £(r)].
Equation (85) for the operator of uncondensed particles changes to
2

i%wl(r, t) = (—QV—m +U -~ m) Pn(r,t) + B [Xl(r, r) + X(r,r)|. (325)

Equation (103) for the anomalous average becomes

i%al (r,t) =2K(r) +2(U — p1)o1(r)+

200 [12 ()1 (1) + 200 (1)1 (1) + 20 (r)&(x) + 7" (1)1 (1) +
(0] ()01 (091 (0091 ()] +2 [ (1) + 01 (1)] (0). (326)

The quantity ®(0), under the local potential (316), is not defined and requires to
be specified by additional constraints.

A straightforward formal way of giving some meaning to this quantity would
be by remembering that the delta potential (316) is the limiting form of a potential
with a finite interaction range ¢, such that ryp < a. For instance, potential (316)
could be treated as the limiting form of the potential

2
O(r) = Aexp (—;%) , (327)
0

where 7y — 0, so that the integral
Oy = / ®(r) dr
is fixed as in Eq.(316). The interaction radius is defined as

re = C}%o /r2¢>(r) dr. (328)
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(3 3/2%
2 re’

Then, for potential (327), the quantity ®(0) should be defined as

These requirements give

B(0) = A =3,/ 8 — (329)
T mrg

However, we have to always remember that the local interaction poten-
tial (316) is an effective potential modeling particle interactions for the processes
occurring at the interparticle distance much larger than the interaction radius. In
order to characterize the processes at short distance, one has to use a different
effective potential that takes into account particle correlations [5,81,83]. The
latter, in particular, show that two particles cannot exist at the same spatial point.
This is equivalent to saying that ®(0) must be set to zero.

The four-operator term can be simplified as

(W1 ()1 (£)1h1 (x)¢hr (r)) = 3p1 ()0 (), (330)

while the three-operator terms are left untouched.
Then the evolution equation (103) for the anomalous average leads to

i%al (r) = 2K (r) + 2(U — pu1)o () +

+ 20 [17°(r)p1(r) + 2p0(r)o1 (r) + Bpa(r)or (v) + 2n(r)E(x) + " (r)&s (r)(]3,31)

with the anomalous kinetic-energy density K (r) given by Eq. (104) and with ®(0)
set to zero.

The derived evolution equations can be used for studying the initiation of
Bose—Einstein condensation and also the decoherence processes in systems with
spontaneous symmetry breaking. For finite systems, with /N degrees of freedom,
coherence can persist [92-95] during the time not longer than that of order N/T.

8.3. Equilibrium Systems. Considering equilibrium systems, we follow
Secs. 6 and 7, substituting in the corresponding equations the local potential (316).
The grand Hamiltonian (219), in the HFB approximation, reads as

2
Hyurp = Enrp + /wi(r) (—V— +U - u1> 1 (r) dr+

2m

+00 [ 200151690100 + 0@l 0](0) + o () 0 )] i,
(332)
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where the nonoperator term is
i)
Bygpp = HO — 2 / [202(r) + 02(r)] dr, (333)

and the notation

p(r) = po(r) + p1(r),  o(r) =7*(r) + ou(r) (334)
is used. The condensate-function equation (223) becomes

V2

(= 3o + U ) 2080 o))+ 201 (1)0(e) + (0 () + )] = ().

2m
(335)
For the condensate chemical potential (224), we have

fo = Nio/n*(r) (—; +U> n(r) dr+

2 [ [ + 2001 (1) + (0" (1) 01 (1)] . 336)

N

Employing the Bogolubov transformations (225) yields the Bogolubov equa-
tions

O(r)ug(r) + A(r)vg(r) = epug(r), o(r)vg(r) + A*(r)ug(r) = —ervg(r)

(337)
replacing Eqgs. (230), with the operator
v2
&(r) = —o— + U(r) — 1 + 20op(r), (338)
2m
instead of Eq.(228), and with
A(r) = ®o [1n*(r) + o1(r)] (339)

instead of Eq. (229). The chemical potential p is defined by the requirement that
the spectrum ¢, be gapless.
The grand potential has the same form (240), with

Eo=—=20 [0+ 4o x) + 203 1) + 2" (1)

2
-3 [aluldr, G40
k

>o1(r) + o3 (r)| dr—

in agreement with Eq. (241).
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8.4. Uniform Systems. Resorting to the Fourier transformation (173) gives
the following terms of the grand Hamiltonian (67). The zero-order term (317) is

1
1ﬂ“=(§f®m—mm)w (341)

The first-order term is, as always, zero. The second-order term (318) reads as

k2 1
H® — Z (— + 2po Py — ul) a};ak—k—po@o Z (a};aik + a_kak) . (342)

2m 2
k0 k0
The third-order term (319) yields
/
H® — 1/ p—‘;)tboz (a};akﬂ,a_p + aT_pa,Tchpak) , (343)
kp

where
k#0, k+p#0, p#0.
And the fourth-order term (320) becomes
[0)) /
5{} > aladapsqan—q, (344)

q kp

H® —

in which
k#0, p#0, p+q#0, k—q#0.

Equation (183) defines the condensate chemical potential

®o €k )
=pPo+ — ng+op+—1. 345
o =pPo+ 57 k%ﬁo( ¥kt o (345)

The grand Hamiltonian (332) in the HFB approximation transforms to

A
_ T Tt
Hyr = Furs + kééo wgaag + 2 kééo (akafk + Cl_kak) , (346)

where the nonoperator term (333) is given by the expression

Eurs g

v = o (P — 201 + 1) = popo. (347)

Also, here the notation
2

k
wi = 5— — p1 + 2pPo (348)
2m
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is used, and, instead of Eq. (339), we have

A = Qg(po + 01).

(349)

The diagonalization of Hamiltonian (346) is done by the Bogolubov canonical
transformations (246), resulting in the Hamiltonian of the Bogolubov form (231).

The condensate chemical potential (253), or (336), reads as

1o = DPo(po + 2p1 + 01).

And the chemical potential (252) becomes

p1 = Po(po +2p1 — 01).

Using the latter in Eq. (348) gives
2
Wk = 5+ ®o(po +01).

The long-wave spectrum is acoustic,
er 2 ck (k—0),

with the sound velocity

which is defined by the equation
me? = Cbo(po + 01).

Combining Eqs. (352) and (355) yields

2
W = me? + —.
2m

(350)

(351)

(352)

(353)

(354)

(355)

(356)

The solution to the Bogolubov equations (247) results in the Bogolubov

spectrum

er =1/ (ck)? + (%)2

(357)

Calculating Eq. (340), we resort to the dimensional regularization giving

dk 16m*c?
/(e’:‘k —wk)(— = — .

2m)3 1572
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Then Eq. (340) reduces to

Ep Dy 4 9 9 8m?c®
v = — > [p +2po(p1 + 01) + p1 +0'1] +W.

The system pressure can be expressed through the grand potential (240),
which gives

(358)

gy dk
=g T [ o (359)

The integral in Eq. (359) corresponds to thermal pressure. It can be calculated by
transforming it to the form

/ln (1 —ef’ge’“) % =

N 2(3567):)2 71n {1 —exp (—mTCQxﬂ (%/zxd@

0

At low temperatures, such that T < mc?, one can expand the integral as

27)3 272
(T =0). (360)

Therefore, the zero-temperature pressure is

Ep
\%4

The internal energy is given by the expression

p:

E = (H) + uN, (361)

in which the average of the grand Hamiltonian is as in Eq.(59) and the sys-
tem chemical potential is defined in Eq.(60). At zero temperature, the internal
energy (361) yields the ground-state energy

FEy=FEp+ uN (T =0), (362)
where we take into account that
(H)=(Hp)=FEp (I'=0).

Then the ground-state energy is given by the equation

E 2ma, 8micd
— == (" +p} — 2001 —0}) +

— 363
N mp 1572p (363)



944 YUKALOV V.L

For convenience, let us introduce the dimensionless ground-state energy

2mE
€y = W (364)
and the dimensionless gas parameter
v = pMa, (365)

The ground-state energy (364) at weak interactions, when v < 1, allows [69, 70]
for the expansion
eq ~ 47y + yﬁ’ysm + g’y‘l.
15 9
The first two terms here reproduce the Lee—Huang—Yang result [96-98]. When
particle interactions are strong, so that v > 1, then [69] one has

6 /3 3 1731 1 1/3 1
ey ~ 81y + 5 (9774) 1 (37?5) ; + 61 (37r8) g. (367)

(366)

8.5. Atomic Fractions. For the local interaction potential (316), it is straight-
forward to calculate all atomic densities and fractions. The condensate density

00 =p—p1 (368)

is expressed through the density of uncondensed particles
dk W Ek 1 dk
= [y = [ o2 coth (55) - 5 369
P~ /”’c (27) /{Qak Har 2] (27) (369)
that can be rewritten as
1 Wk dk Wi €k dk

S S N o et
pl 2/<5k )(%)3 +/2€k o ar (2m)3 (370)

The anomalous average

dk me? €k dk
= o = [ otn (R 1
7 / CTE e <2T) (371)

can be treated as in Sec.7, by separating the term

mc?  dk
= | ——— 372
o0 2er (@) (372)
which gives
me? £k dk
g1 =00 — / E |:COth (ﬁ) — 1:| (2/”_)3. (373)
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Expression (372) diverges, but can be regularized invoking the dimensional
regularization, as in Sec. 7, resulting in

1 dk 2m
[ aetamy =V
Then Eq. (372) becomes

o0 = (%)2 Vmpo®o. (374)

The anomalous average (373), with the separated term (374), is valid if at least
one of conditions (308) is satisfied.

In the vicinity of the condensation temperature 7, it is necessary to use the
anomalous average in the form

T - T.), (375)

which follows from Eq. (371) and guarantees the second-order phase transition.
The density of uncondensed particles (370) can be represented as

3.3

m°c 3 7 1/2 mc?
= — K1+ — (\/1 2—1) th{ —=z | —1|dzx ;,
1 372 +2\/§/ +x {co <2Tx> } T
0
(376)
and the anomalous average (373), as

00 1/2

3.3 V1 2 _1 2

o1 = 0g — me / ( e ) {coth (EI> — 1] dx. (377)
21/272 V14 a2 2T

0

The superfluid fraction

2Q
s=1-= 378
" 3T (378)
is expressed through the dissipated heat
A2(P P2
= (P) = { > (379)
2mN 2mN

In the HFB approximation, we get

1 [k > 9
Q=- / o (nk + i — 0%) 2m)3’ (380)
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which reduces to

1 7 kdk
= . 1
@ (47r)2mp0/ sinh? (e, /2T) (81

The superfluid fraction (378) leads to the superfluid density

oo

(mc)® (VI+a2-— 1)3/2 xdz

s =P — . (382)
=P 6+/2m2mT ) V1 + 22 sinh? (mc2z/2T)
The particle densities are related to particle fractions
nOE@:I—nl, nlzg, nsz&. (383)
p
Also, let us define the dimensionless anomalous average
o= (384)
p
and the dimensionless sound velocity
mc
§= ——. (385)
pl/3
At zero temperature, we have
53 s3
n=1-s=, m=55, ns=1,
32
3 T (386)

When interactions are weak, such that v < 1, then the following expansions are
valid for the condensate fraction

8 4p 64 5 640 o,

~1l—-— — = — 387
no 3\/%W 3z " omn) (387)
sound velocity
16 32 3904

~ 92 1/2 VA2 7/2 5 388
5 2/ 3T s 57 (388)

and the anomalous average

2 64

02173/24—3— 3 — 492, (389)

™ s w3/2
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As is seen, the anomalous average is three times larger than the normal fraction
of uncondensed particles:

T o3 (7<) (390)
ny

This emphasizes again that the anomalous average in no way can be neglected
for a Bose-condensed system.

For strong interactions, when v > 1, we find the following expansions for
the condensate fraction:

1 1 (m\'1
~ T (T} o 391
T 512(9) 5 39D

sound velocity

1 /m\"* 1 1 /7\'?1
~ 3o () e (D) o 392
s = (37°) 64 \ 9 3 T 1536\ 3 35 (392)

and the anomalous average
OmY31 w1 1 [(#\'/*1 L 13 (393)
o~ — = —— — — | = —+— = —.
4 v 643 128 \ 3 ¥4 512\ 9 0k

Though now the anomalous average is smaller than n;, but it is much larger than
the condensate fraction:

ni ~ 1551692 (> 1). (394)
0

Thus, the anomalous average is always of crucial importance and can never be
neglected.
At low temperatures, such that

T
eZ <1, (395)

we find [69-71] the fraction of uncondensed particles

(me)®  (me)® [ T \°
e 3m2p + 12p \mc2) ’ (396)

anomalous average

3 2
o~ % _ (ma) <i> , (397)
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condensate fraction

(me)®  (me)® [ T \°
~1— — — 398
1o 3m2p 12p \mec?2) ’ (398)
and the superfluid fraction
2r2(me)® (T \*

Notice that the temperature corrections for ¢ are the same as for n; and ng.
Bose—Einstein condensation happens at the temperature

7= _2 " 400
= lwm) o

In the critical region, where 7' — T, so that

ch

=« 401
<L (401)

we find [69-71] the expansions

<T>3/2 (me)? m2cT <T>3/2 (mce)3
ny = | & + , O no~1—|(— -

T. 3m2p B 2mp T. 32
(402)
o T 3/2+ 12 (T 2, 2
° T Tc C(3/2) TC TC .

The superfluid fraction disappears together with the condensate fraction.
Passing to dimensionless quantities, it is convenient to consider the tempera-
ture deviation

T
T=l- (I<T) (403)
from the dimensionless transition temperature
T. 2
o= e _ T _3.312498. (404)

pl /e [CB3/2)P

Then we obtain

3 9 2 3 3
s~ 20 + W(l—%)ﬁ, nmo~1— o1+ o7

t it 2" "8
3 3 67\ 33,
02—57+§<1+’y—t3>77 ’I’L()'l’iT—gT, (405)
L33 (), 1241
Tls_2T 3 t‘z’ T .
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As is evident, though the anomalous average tends to zero, as T' — T, but
it is of the same order as the condensate fraction, hence, again the anomalous
average cannot be omitted. If it were neglected, the transition would become of
first order, which is principally incorrect [67,71]. While accurate taking account
of the anomalous average renders the Bose—Einstein condensation the correct
second-order transition, as is obvious from expansions (405).

9. DISORDERED BOSE SYSTEMS

9.1. Random Potentials. The properties of Bose systems can be essentially
changed by imposing external spatially random potentials. In this section, the
theory is presented for the case when such random potentials are imposed on a
uniform system. There is vast literature studying Bose systems inside randomly
perturbed periodic lattices (see the review article [12] and recent works [99-101],
where further references can be found). But this is a different problem that is not
touched in the present section. In several papers (e.g., [102-106]) the influence
of weak disorder on a uniform Bose-condensed system has been studied. Strong
disorder can be treated by means of numerical Monte Carlo simulations [107]. In
the present section, the analytical theory is described, which is valid for arbitrarily
strong disorder. The consideration below is based on [108-110].

The system is described by the grand Hamiltonian
H=H —poNo — i1 N1 — A, (406)

with the energy Hamiltonian

2
= [ 310 [~ + Ut + )| Syt + 22 [ S0 b
(407)
containing a random external potential £(r). Other notations are the same as in
the previous sections.
The random potential, without the loss of generality, can be treated as zero-
centered, such that

{{€(r))) = 0. (408)

The double brackets imply the related stochastic averaging [111]. The random-
potential correlations are characterized by the correlation function

((€(r)s(r))) = R(xr —1'). (409)
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One can use the Fourier transformations

— L ik-r — i —ik-r
g(l‘) - \/v ;gk € ’ gk \/V /5(1‘) e dI‘,
1 (410)
R(r) = v Zk:Rk elkr, Ry = /R(r) e ergr,

Then Eq. (409) yields the correlators

((6i&p)) = OrpRi,  ((Ekp)) = O—kpRi- (411)

The quantum statistical averaging, involving a Hamiltonian /7, for an operator
A, is denoted as

i _gH
(Ayg = %. (412)
The total averaging, including both the quantum and stochastic averagings, is
denoted as R R
(4) = ((((A)m)))- (413)
The grand thermodynamic potential is given by the expression
Q= -T{(InTre PH)), (414)

corresponding to the frozen disorder.

In addition to the particle densities, considered in the previous sections, for a
random system, it is necessary to introduce one more density. This is the glassy
density [108]

1
pe =37 [ (@1 (x)m))dr. (415)
With the Fourier transform
1 4
,(/)1 (I‘) - = Zak ezk.r7
Wi
we come to 1
po =7 D _{(loxl), (416)
k0
where
ap = (k) H- (417)

Because of condition (50), we have

((ag)) = (ar) = 0. (418)
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However, quantity (417) is not zero. The glassy fraction is given by

1
no =25 = % [l @19)
which can be represented as
1
na =5 > ({laxl*). (420)
k0

To better illustrate the idea of the approach we aim at developing, let us
set U = 0. This will simplify the consideration. Then the grand Hamiltonian
writes as

4
H=> H"+H, (421)
n=0
where the first sum consists of terms (341) to (344), while the last part

1
He = po&oVV + /oo (a,tgk + EZak) v > s, (422)
K£0 kp(£0)

is due to the presence of the random potential.

9.2. Stochastic Decoupling. The sum in Hamiltonian (421) can be treated
in the standard way by resorting to the HFB approximation, as in the previous
sections. But the part (422), characterizing the action on particles of the random
potential, has to be treated with caution. If one would apply to this part the
simple HFB-type approximation

altapgk—p - <altap>§k—13 + altap<§k—p> - <altap><§k—p>’

then the influence of this part, because of Eq. (408), would reduce to the trivial

mean-field form 1
N Z a;rcapfk—p . Plfo\/v,
kp(#0)
containing no nontrivial information on the action of the random potential on
particles.

In order not to loose the information on the influence of the random potential,
we employ the idea of stochastic decoupling that has been used earlier for taking
into account stochastic effects in different systems, such as resonant atoms [112—
115] and spin assemblies [116—121].

In the present case, the idea is that the simplification of the third-order
expression in the last term of Eq. (422) should include only the quantum statistical
averaging, but not the stochastic averaging, thus retaining undisturbed stochastic
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correlations. This idea can be represented in several equivalent ways. We can
write

(afap€i—p) = ((afaptep)), (423)

which is equivalent to
(akap€i—p)tr = fapbip. (424)
In turn, the latter is equivalent to the decoupling
a,tap = a,tozp + ajap, — agop. (425)
Then, we introduce [108-110] the nonuniform canonical transformation
ar = urbg + vikbik + Wk Pk, (426)

whose coefficient functions are defined so that to diagonalize the grand Hamil-
tonian (421) in terms of the operators by. The latter are treated as quantum
variables with the condition

(br)r = 0. 427)

The variables @y, represent stochastic fields. In view of Egs. (426) and (427), we
have

ap = (ak)g = WrPk. (428)

Diagonalizing Hamiltonian (421) results in the relations

ugzwk+5k vgzwk_5k
k 25k k 26k ’
(429)
mc? 1
URVEp = ——— Wy = ———
kUk QEk; ) k QWk + me2’
in which
k2 9
W = — + mc”. (430)
2m
The Bogolubov spectrum
2 K2\
= k — 431
o=+ () @3

has the standard form, with the sound velocity defined by the equation

me? = (no T 2) p®o. (432)
p



BASICS OF BOSE-EINSTEIN CONDENSATION 953

The stochastic field satisfies the Fredholm equation

ok = V/Pols — Z Skrtp (433)

wp +me?’
Hamiltonian (421) acquires the diagonal form

H=Ep+)_ erblbe + Hyan, (434)
k

where the last term
Hran = ®o NO (435)

characterizes the explicit influence of the random potential on the system energy.
For the particle momentum distribution (185), we get

Wk Lk 1 9
= — h — — = ; 4
mi = 3 cot (2T) >+ (o) (436)

and for the anomalous average (187),

m02

ok =~ th(QT)+<<|ak|2>>. (437)

Expressions (436) and (437) possess, as compared with Egs.(264) and (265),
additional terms caused by the random potential. From Eqgs. (428) and (429), it
follows that

(o)) = 2D (438)

(wg +mc?)?

The partial chemical potentials (350) and (351) are of the same form
po=(p+p1+o1)Po, p1=(p+p1—o01)P. (439)

But the quantities

E ng, 01 = E Ok

k;éo k;éo

entering them are now different. The density of uncondensed particles becomes
the sum of two terms,

p1 = pN + pG- (440)

The first term is the normal density

o 1 W Ek dk
pN = 5/ [5 coth (ﬁ) - 1] COE (441)
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that, as earlier, is due to finite temperature and interactions, while the second

term,

o - | WlenP)) _dk w2
(Wi + mc?)? (2m)3’

is the glassy density produced by the random potential.
The anomalous average is also the sum of two terms,

o1 =0N + pG- (443)
The first term is 1 2 dk
oy =—= [ ™ (6—’“) o= (444)
2 Ek 2T/ (27)3

while the second term, caused by the presence of the random potential, coincides
with the glassy density (442).
The partial chemical potentials (439), with expressions (440) and (443), be-
come
po = (p+pn+on+2pc)P0, p1=(p+pn—0on)Po,  (445)

essentially differing from each other.
The superfluid density (378) requires the knowledge of the dissipated heat (379).
The latter also reduces to the two-term sum

QR =Qn~ + Qc- (446)
The first term is analogous to Eq. (380) giving
1 k2 dk
= . 447
Qv 8mp? / sinh? (e /2T) (27)3 (447)

And the second term

_ b e evy dk
Qo = 2mp / er(wr + me?) coth (ﬁ) (2m)3 (448)

is the heat dissipated by the glassy fraction. Thus, the superfluid density (378)
takes the form

R (449)

9.3. Perturbation-Theory Failure. Considering the case of weak disorder,
it is tempting to resort to perturbation theory with respect to disorder strength.
In doing this, one has to keep in mind that such a perturbation theory can fail.
Therefore, the results derived by means of perturbation theory may be not reliable.
To illustrate this, let us consider the average energy

Eran = <Hran> = <<@O>>\/]70a (450)

related to the random term (435).
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Assuming that disorder is weak, one could think that Eq.(433) could be
treated perturbatively, by means of the iteration procedure starting with

LP;(CO) = pok-

The first iteration gives

(1) _ [P0 Ee—pSp
©r" = VPolk V;wip—kmc?

Using this in Eq. (450) yields

(&%)
ran = —pPo Z w 4 m02

In view of correlators (411), one gets

EL — _ _Noltp, _dp . (451)
ran wp +me? (2m)3
That is, the direct influence of the random potential would lead to the decrease
of the system energy. It is exactly this expression (451) that has been obtained
by several authors (see, e.g., [122]) employing perturbation theory.
However, from Egs. (418) and (428), involving no perturbation theory, it is
seen that

({ar)) =0, ((¢r)) = 0.

Consequently, the random energy (450) is exactly zero:
Eran = <Hran> =0. (452)

Also, using perturbation theory in calculating sound velocity, some authors
(e.g., [122]) find that the speed of sound would increase due to the random po-
tential. Contrary to this, in our theory [108-110], the sound velocity decreases,
which looks more natural and is in agreement with other [105] calculations. Re-
ally, it looks to be clear that the occurrence of an additional random potential
should lead to additional scattering and, hence, to the decrease of sound veloc-
ity. Some other contradictions resulting from the use of perturbation theory are
illustrated in [108, 110].

Note that all consideration above is valid for any type of disorder character-
ized by the corresponding correlation function (409).
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9.4. Local Correlations. To proceed further, let us consider local correlations,
described by the delta-correlated disorder, when the correlation function (409) is

R(r) = Roé(r). (453)

Then Eq. (411) gives
{(6:€p)) = Onp Ro- (454)
The solution to the Fredholm equation (433) can be well approximated [108] by
o = VPot (455)

1 13 ’
14+ — P
* VV Zp: wp + mc?
It is convenient to introduce [108] the disorder parameter

a 1
lloc B pl/glloc’

¢ = (456)

being the ratio of the mean interparticle distance versus the localization length

47
lioe = . 457
1 TmZRe (457)
Employing the self-similar approximation theory [123-132] results in
2 POROSS/ 7
= 458
Uoel®)) = 2557 (458)

where s is the dimensionless sound velocity (385).

The local disorder, with the delta correlation (453), allows for more straight-
forward calculations. At the same time, it gives good understanding of the
influence of disorder on the system even for the general case of nonlocal disor-
der. If the random potential £(r) is characterized by a finite strength Vi, with
the correlation function (409) having a finite correlation length [y, then, to pass
to that case, one should make the replacement

Ry = V3213, (459)

which follows directly from the definition of correlator (409). As a result, the
localization length (457) becomes

47

S 4
TAVIT, (460)

lloc =
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The particle fractions
£o PN PG
ng=—, NN=-—, ng=-— (461)
p p P
satisfy the normalization

no+ny +ng=1. (462)
Let us define the dimensionless anomalous averages

IN ot (463)

p’p

g

Passing to dimensionless quantities, let us use the gas parameter -y, defined
in Eq. (365), dimensionless sound velocity (385), and dimensionless temperature

mT
t= —. (464)
p2/3
Then, the equation for the sound velocity (432) reads as
s = 41y(1 —ng + o). (465)

For the normal fraction of uncondensed particles, we have
3 2

s 3 7 1/2 s’z
ny = —— 1+ﬁ0/(\/1—|—x2—1) [coth(Q—)—l}dx . (466)

32 t

The glassy fraction is

_ (@ —=nn)¢
ng = T 7505 — O (467)
And the superfluid fraction becomes
00 3/2
4 5 Vi4a2-1 d
ne=1-=ng — — (Vita?-l) ade (468)

377 6v2n2t )V 1+ 22sinh?(s2z/2t)

The Bose-Einstein condensation temperature 7, in the presence of disorder,
decreases linearly with the increasing disorder strength, as compared to the tran-
sition temperature 7, given by Eq.(400), for the system without disorder. The
relative transition temperature decrease, for ¢ < 1, follows [108] the law

— Tc B Tpo 2<
5T, = T o (469)

This is in agreement with Monte Carlo simulations [107].
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Depending on the relation between the localization length [}, and the coher-
ence length
[ rls(r,0)|dr
leon = s (470)
J1s((r,0)| dr
there can exist three different phases [110].
Superfluid phase exists, when the localization length is larger than the coher-
ence length:

lloc > lc0h~ (471)

In this case, the disorder is yet weak and cannot destroy the system coherence.
Bose glass can occur, when the localization length becomes shorter than the
coherence length, but yet larger than the mean interparticle distance:

a < lioe < leon- 472)

Then a kind of granular condensate can exist, being localized in different spatial
regions that are separated from each other by the normal nonsuperfluid phase.
Normal glass appears, when the localization length is shorter than the mean
interparticle distance:
lioe < a. (473)

Therefore no coherence between particles can arise, all of them being localized
in separate regions of deep random wells.

9.5. Bose Glass. The peculiar phase of the Bose glass is the random mixture
of Bose-condensed droplets, localized in different spatial regions that are separated
from each other by the normal phase. In the Bose-condensed regions, the gauge
symmetry is locally broken, while in the regions of the normal phase, the gauge
symmetry is preserved. All these regions are randomly distributed in space and it
is even possible that they chaotically change their spatial locations. Also, they are
not necessarily compact and may be ramified having fractal geometry [133, 134].

Such a randomly mixed system is a particular case of heterophase systems,
whose examples are ubiquitous in condensed matter physics. In this respect, it
is possible to mention paramagnets with local magnetic ordering revealing spin
waves [135-139], many ferroelectrics [140-143] and superconductors [144-149],
colossal magnetoresistant materials [150-152], and some other systems reviewed
in [54, 153-157].

The typical features of these heterophase materials are: (i) the embryos of
one phase inside another are mesoscopic, their characteristic sizes being much
larger than the mean interparticle distance but shorter than the system length;
(ii) the spatial distribution of the embryos, as well as their shapes are random;
(iii) the system, as a whole, is quasi-equilibrium, being either stable, or at least
metastable, with the lifetime essentially longer than the local equilibration time.



BASICS OF BOSE-EINSTEIN CONDENSATION 959

Such materials, with randomly distributed mesoscopic embryos of one phase
inside another should be distinguished from systems composed of large station-
ary domains and from Gibbs mixtures of coexisting macroscopic phases [158].
For the equilibrium macroscopic phases, coexisting with each other, one has to
consider the interfacial free energy [159]. The notion of interfacial free energy
arises when one considers uniform macroscopic phases, while the mesoscopic het-
erophase inclusions are nonuniform. For quasi-equilibrium mesoscopic embryos,
the interfacial regions are not well defined, being often ramified and nonequilib-
rium. Quasi-equilibrium embryos of competing phases are also different from
nonequilibrium nuclei arising in kinetic phase transitions [160, 161].

A general approach to treating such random heterophase mixtures has been
advanced and developed in [162-171], and summarized in the review artic-
les [54, 156, 157]. Here, this approach is applied for describing the Bose glass.

Assume that we aim at describing the heterophase mixture of normal un-
condensed phase and Bose-condensed phase. The condensed phase exists in the
form of mesoscopic embryos surrounded by the normal uncondensed phase. The
effective total volume, occupied by each phase is V), with the index v = 1,2
enumerating the phases. The geometric weight of each phase is

(V=Vi+ V), (474)

where V is the system volume. This weight enjoys the standard probability
properties
wi+w2 =1, 0<w, <1, (475)

because of which it can be termed the geometric probability.

The nonuniform mixture of phases, consisting of mesoscopic embryos, re-
quires the use of two types of averages, the statistical averaging over the particle
degrees of freedom and the configuration averaging over all admissible random
spatial phase configurations. Accomplishing the configuration averaging over
phase configurations [54, 156, 157] results in the appearance of the renormalized
Hamiltonian

H=H P H, (476)

consisting of two terms corresponding to each of the phases. This Hamiltonian is
defined on the mixture space

M =Hy Q) Ho. (477)
By its mathematical structure, this space is the tensor product of the weighted

Hilbert spaces [54,156,157]. It can be treated as a particular case of a fiber
bundle [172].
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The effective statistical operator for the random mixture becomes

p=p1 () e, (478)

with p, being the effective statistical operators for each of the phases.

Thus, after the configuration averaging, we come to the statistical ensemble
{p, M} that is the collection of the partial phase ensembles {p,, H, }. The partial
ensembles can be called the reduced, or restricted, ensembles, since they are
defined on the restricted spaces of microscopic states, typical of the corresponding
phase [173-175]. All details are given in the reviews [54, 156, 157].

The Hamiltonians H, are the effective phase Hamiltonians. For the Bose-
condensed phase, . . R

Hy = Hy — poNo — p1 N1 — A, (479)

while for the normal uncondensed phase,
Hy = Hy — o Ny, (480)

where N, is the number operator for the normal phase.
The energy Hamiltonian for the Bose-condensed phase reads as

. N V2 R
= [0 |5+ U0 + €] D) art
[ )0t~ ) dra, a8
with the Bogolubov-shifted field operator

W(r) = n(r) + i (r).

For the normal phase, the energy Hamiltonian is

o=y [ 0l(6) [ 5+ U + €00 () e+

2m
2
+ % /wg(r)%(r')@(r — r’)w2(r/)w2(r) drdr’. (482)

The interaction potential here is written in the general form. But, in particular, it
can take the local form (316).

In the broken-symmetry phase, we have, as earlier, the densities of condensed
and uncondensed particles, respectively,

2, pi(r) = @] (@) (r)). (483)

po(r) = [n(r)
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And in the normal phase, there is only the density of normal particles

pa(r) = (Y5 ()2 (r)). (484)

The numbers of particles in the whole heterophase system are written as
follows. The number of condensed particles is

NO = w1 /po(r) dr. (485)

Here and below, the integration is over the whole system. The number of
uncondensed particles is given by the average

Ni = (N1) = w /P1(I‘) dr (486)
of the number operator

S =wn [ ol dr, (487)
The number of normal particles is the average

Ny = (Na) = ws / pa(r) dr (488)
of the number operator

Mo = ws [ Uhe)usle)dr, (489)

The total number of particles in the system is the sum
N = Ny + Ny + No. (490)

The related fractions of condensed, ng, uncondensed, n1, and normal, ns, particles
satisfy the normalization
ng+ni1+ne = 1. (491)

The system chemical potential is
p= pono + pani + pane. (492)
From the condition of equilibrium, it follows [12] that

_ pono - pim
R I M

— 493
- M (493)
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The grand thermodynamic potential is defined as in the previous sections,

Q= —T{((InTre PH)), (494)
with the double brackets implying the stochastic averaging over the random ex-
ternal potential £(r). The geometric weights w, are defined to be the minimizers
of the grand potential (494), under the normalization condition (475). The latter
can be taken into account explicitly by introducing the notation

wy=w, we=1-—w. (495)

Then the minimization of the grand potential (494) implies

o5 0%Q

The first condition gives the equation

(1052 ) - (529 -

for the weight w, while the second, the stability condition

~ ~\ 2
0’H OH
— — . 498
Since the right-hand side of inequality (498) is non-negative, the sufficient stability

condition is
O*H
— ) >0. 499
(21} o

Let us use the notation for the single-particle terms of the condensed phase,

Ki= [ (310 |-+ U+ 6] b)) de
—MO/PO(I‘) dr—ﬂl/m(l‘) dr, (500)

and the normal phase,

ko= [ (uho) [~ 400+ vate) e = [ patey i, son

2m
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respectively. Similarly, we can define the interaction terms for the condensed
phase,

) = / (W) ()@ (r — )i (x)d(x)) dr dr, (502)

and the normal phase,

Py = / (W3 () () B(r — x')ha(x)iin (r) dr . (503)

In the above expressions (500) and (502), it is assumed that the linear in 1 terms
are omitted, being cancelled by the term A in Hamiltonian (479).
Then Eq. (497) yields the equation for the geometric weight of the condensed

phase
w— Oy + Ko — Ky

504
D1+ Dy (o04)

and the stability condition (499) results in the inequality
P + D5 > 0. (505)

The latter condition shows that the heterophase mixture can exist only for particles
with repulsive interactions.

10. PARTICLE FLUCTUATIONS AND STABILITY

10.1. Stability Conditions. Fluctuations of observable quantities in statistical
systems are characterized by the dispersions of self-adjoint operators correspond-
ing to observables. LetAA be the operator of an observable quantity given by

the statistical average (A) of this operator. The fluctuations of this observable
quantity are quantified by the dispersion

A%(A) = (A%) — (A)2 (506)

The fluctuations of an observable quantity are called thermodynamically nor-
mal when the related dispersion is proportional to N®, with « not larger than
one. And the fluctuations are termed thermodynamically anomalous if the cor-
responding dispersion is proportional to N“, with « larger than one. In recent
literature on Bose systems there has appeared a number of articles claiming the
occurrence of thermodynamically anomalous fluctuations of the particle number
in Bose systems everywhere below the transition temperature.

In the papers [63,176—178] and reviews [5,9, 12], it has been explained that
the occurrence of such anomalous fluctuations contradicts the basic principles
of statistical physics and that their appearance in some theoretical works is due
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merely to incorrect calculations. Because of the importance of this problem, it is
described below, being based on [5,9, 12,63,176-178].

The ratio of the operator dispersion to its average value quantifies the intensity
of the system response to the variation of the considered observable. This response
has to be finite in order that the system would be stable with respect to the
observable-quantity fluctuations. That is, this ratio has to satisfy the stability
condition [12,63,176-178]

o
0< = SA) < 00. (507)

[(A)]
This condition must hold for all observables and for any statistical system, in-
cluding thermodynamic limit. For extensive observables, to be considered below,

(A) o< N. The limiting ratio

x(A) = lim A%(A)

Neoso N (508)

has the meaning of the response function related to the variation of the observ-
able represented by the operator A, and can be called fluctuation susceptibility.
Therefore, another form of the stability condition is

0 < x(4) < . (509)

_ The number of particles is the observable represented by the number operator

N. Hence, the stability condition with respect to particle fluctuations is

0< x(N) < . (510)

From the general relations of statistical mechanics and thermodynamics that
can be found in almost any course [49,50,59,60,62,79,81,88-90], it is easy
to show that quantity (508) is really proportional to some physical susceptibility.
Being interested in particle fluctuations, one has to consider the dispersion AQ(N ).
The related physical susceptibility is the isothermal compressibility. This can be
defined in any statistical ensemble, as is shown below.

In the canonical ensemble, where the thermodynamic potential is the free
energy F' = F(T,V, N), the isothermal compressibility is given by the derivatives

1 (0?F\ " 1 (oP\""
kr == | 5= =—= == . (511)
VA\OV2 ),y VAV )y
In the Gibbs ensemble, with the Gibbs thermodynamic potential

G = G(T, P,N), the compressibility is

1 /6%G 1 /0V
Ty (WLN G (a—P)TN' C12)
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And in the grand canonical ensemble, with the grand thermodynamic potential
Q = Q(T,V, ), the compressibility becomes

1 82Q> 1 <8N>
g Np <3M2 v Np o TV

Of course, the value of the compressibility does not depend on the used en-
semble, provided that it is correctly defined as a representative ensemb-
le [54,63,64,71]. The fact that the compressibility is directly related to par-
ticle fluctuations is the most evident in the grand canonical ensemble, where

_ AW
R = pTN .

(514)

The importance of correctly describing the particle fluctuations is caused by
the fact that they define not only the compressibility, but also are connected with
several other observable quantities, such as the hydrodynamic sound velocity sr,

s%zi<a—P) 1 NTA, (515)
m\90p/)p mprr  mAZ(N)

and the central structure factor

T
S(0) = pThy = —5 = . (516)
mST

As is seen, the susceptibility x (V) coincides with the structure factor (516).

It is worth stressing that all expressions (511) to (516) are exact thermody-
namic relations that are valid for any stable equilibrium statistical system.

In stable statistical systems, the compressibility, as well as the structure factor,
are finite. This is a very well-known experimental fact. They can be divergent
only at phase transition points, where, as is known, the system is unstable. But
everywhere outside of transition points, all these quantities must be finite.

10.2. Fluctuation Theorem. The stability condition (509) is necessary in
order that the system would be stable with respect to the fluctuations of the
observable quantity represented by the operator A. But what can be said with
regard to an observable represented by a composite operator

A=Y4, (517)

given by a sum of several self-adjoint operators? How the fluctuations for the
total sum of A are connected with partial fluctuations for A;? To formulate this
question more precisely, let us give some definitions.
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Definition. Thermodynamically normal fluctuations.

Fluctuations of an observable quantity, represented by a self-adjoint opera-
tor A, are called thermodynamically normal if and only if the stability condi-
tion (509) holds for this operator. Then the related susceptibility (508) is also
called thermodynamically normal.

Definition. Thermodynamically anomalous fluctuations.

Fluctuations of an observable quantity, represented by a self-adjoint opera-
tor A, are called thermodynamically anomalous if and only if the stability condi-
tion (509) does not hold for this operator. Then the related susceptibility (508) is
also termed thermodynamically anomalous.

The question of interest is how the total fluctuation susceptibility X(/l) is
connected with the partial fluctuation susceptibilities X(Ai)- Or, in physical
terminology, can it happen that the total susceptibility be finite, while some of
the partial susceptibilities be infinite? The answer to this question is given by the
following theorem on fluctuations of composite observables.

Fluctuation Theorem (Yukalov [63,177]). Let the observable quantity be
represented by a composite operator (517) that is a sum of self-adjoint operators.
Then the dispersion of this operator is

2 (Z&) =D A%(A) + > X\ A2(A)A2(4)), (518)

i#]

where |A;;| < 1, hence the total fluctuation susceptibility reads as

X(Z&-)zzx( )+ i/ x(Ai)x(4)). (519)

i#]

From here it follows that the total fluctuation susceptibility is normal if and
only if all partial fluctuation susceptibilities are normal. And the total fluctuation
susceptibility is anomalous if and only if at least one of the partial fluctuation
susceptibilities is anomalous.

10.3. Ideal-Gas Instability. For illustrative purpose, one often considers the
ideal Bose gas. The grand Hamiltonian for noninteracting particles is a particular
case of Hamiltonian (58), where the energy Hamiltonian is

H= /w* (—— +U> O(r) dr. (520)

Substituting here the Bogolubov shift (48) yields the grand Hamiltonian

P T . WP TR ey PR

(521)
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The equations of motion become

’i%’l[q(l‘,t) = (——m +U — /Jl> ’(/)1 (I‘,t). (522)

Let us pass to the uniform gas, when there is no external potential, U = 0.
Then, in equilibrium, the condensate function is constant, n(r,t) = 1 = const.
The equation for the condensate function gives pg = 0.

In the momentum representation, Hamiltonian (521), with U = 0, reduces to

k2
H=Y" <% - m) ala. (523)

k0

The condition of the condensate existence (15), as well as the Hugenholtz—Pines
relation (203), result in 3 = O for temperatures below the condensation tem-
perature )
o P d/2
r= 2wt .
written here for a d-dimensional space. Expression (524) shows that positive T
does not exist for d = 1, since ((1/2) = —1.460 and that T, = 0 for d = 2, since
¢(1) = oo. Positive T, exists only for d > 2.
For the number operator N = Ng + Nl, taking into account that
cov (No, N1) = 0 and A%(Np) = 0, one finds

A%(N) = A%(Ny). (525)
Let us emphasize that the condensate fraction does not fluctuate at all and

that the total fluctuations are caused solely by the uncondensed particles. The
number operator of the latter is

N = /1/1{(1‘)1/)1 (r)dr = Za,tak. (526)
k#0
Invoking the commutation relations and the Wick theorem, one has
<a};aka;ap> = <a£a;akap> + Skpni,
<a£a;f,akap> =nEnp + 5kpni,
where the momentum distribution is

n, = (alay) = [exp (5—k2> - 1} - .

2m
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This leads to .
(NZ) = NP+ ni(1+ ny).
k#0

Therefore particle fluctuations are characterized by the dispersion

A*(N) = A% (Ny) =) ng(1 4 me). (527)
k#£0

Remark. In some works, the authors forget that Bose—Einstein condensation
necessarily requires broken gauge symmetry. Forgetting this, one extends the
sum in Eq.(526) to £k = 0. Then, separating the term with k& = 0, one gets
the condensate fluctuations described by the dispersion A%(Ny) proportional to
NZ. One blames the grand canonical ensemble to be guilty for this unreasonable
result, naming this «grand canonical catastrophe». However, as is clear, there
is no any catastrophe here and not the grand ensemble is guilty, but the authors
doing incorrect calculations. One should not forget that, if the gauge symmetry
is not broken, then Ny = 0.

Summing the right-hand side of Eq. (527) yields

2
A%(N,) = (m—T> Vs, (528)

™

This gives the fluctuation susceptibility

N—o0 e

2 2
X(N) = x(N1) = lim <M> N3 = 0. (529)

Consequently, the stability condition (510) does not hold. This means that the
ideal uniform Bose-condensed gas is not stable. It is a pathological object that
cannot exist in reality.

10.4. Trapped Atoms. But maybe the ideal Bose-condensed gas could be
stabilized by confining it inside a trap formed by a trapping external potential. A
general expression for such a trapping potential is given by the power-law form

d(.d
27

which is written here in the d-dimensional space. The trapping frequency w, and
the trapping length [, are connected by the relations

Na

; (530)

N|Q

1 1
wa = — lOt = . (531)

MWe,
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It is also useful to introduce the effective frequency and effective length by the
geometric averages

1/d

d 1/d 1 d 1
wo = We = —5, lo = la = . (532)
() o o= (0] -

Let us define the confining dimension [51]

1
Z -~ (533)

Passing from the trapping potential to the uniform case implies the limits

MI&

I d
Ng — 00, l0—>§, HQla—>Ld,

where L is the linear size of the system volume V = L%, As a result, s — d/2,
that is, s becomes semidimension.

Bose-Einstein condensation of the ideal Bose gas in the trapping poten-
tial (530) can be described employing the generalized quasi-classical approxima-
tion [51]. The condensation temperature reads as

bN M
T. = , (534)
Lzs(l)]
where we use the notation
/2 d 1/2+1/na
- 1;[ T(1+1/nq)
and introduce the generalized Bose function
1 7 2us!
s(2) = = | — du, 535
gs(2) I‘(s)/e“—z U ( )
uo

in which the integration is limited from below by the value

wo
=—. 536
Uuo = o (536)

Recall that in the standard Bose function, the integration starts from zero.
The value g5(1) of the generalized function (535) is finite for all s on the
complex plane, since I'(s) # 0, so that 1/I'(s) is an entire function. But I'(s) can
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be negative for s < 0, e.g., it is negative in the interval —1 < s < 0. Therefore,
gs(1) is positive and finite for all s > 0. Contrary to this, the standard Bose
function would diverge for s < 1, and there would be no finite condensation
temperatures for these s. While, in the case of the generalized function (535),
finite condensation temperatures formally exist for any positive s. Below T, and
for s > 0, the condensate fraction is

T S
no=1- (T) (T < T.). (537)

The most often studied trapping potential is the harmonic potential, for which
ne = 2 and s = d. Then the condensation temperatures are

— NUJO —
Te= In(2N) (d=1),

T = [%y” @>2)

The condensation temperature (534) is finite for any finite N. But it is
necessary to check whether it is finite in thermodynamic limit, when N — co. For
confined systems, the effective thermodynamic limit is defined [51] in Eq. (13).
As an extensive observable, we can take the internal energy that, in the present
case, below T, is

(538)

Ey = ggl+s(1)T1+S. (539)
Then, the thermodynamic limit (13) reads as
N — 00, FEn — o0, EWN — const. (540)
The value g145 is finite for N — oo at all s > 0. Hence, Eq.(540) can be
rewritten as the limit
N —o00, b—0, bN — const. (541)

For the equipower traps, for which n, = n, the effective thermodynamic li-
mit (541) takes the form

N — o0, wyp—0, Nuwj— const. (542)

Considering the thermodynamic limit for the condensation temperature (534),
we have to take into account that the generalized function (535) yields

1 27\ *
gs(1) A—sT(s) (w—()) 0<s<1),

gs(1) =Z1n <§> (s =1).

wo

I

(543)
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Consequently, for the condensation temperature (534), as N — oo, we find

1
TCOCW—?() (0<S<1),

) (544)
TCO(WHO (s=1), T.— const (s>1).

Therefore, finite condensation temperatures exist only for s > 1. This implies that
for harmonic traps, for which s = d, the finite condensation temperature occurs
only for d > 2. Bose-Einstein condensation cannot happen in one-dimensional
harmonic traps at finite temperature.

But this is not yet the whole story. As we know from Subsec. 10.3, a finite
condensation temperature can formally occur, however, the condensed system in
reality is unstable, thus, cannot exist. To check the stability, it is necessary to
consider the system susceptibilities. Specific heat for the Bose-condensed trapped
gas is finite at all temperatures, displaying a jump at the transition point [51].
We need to consider the isothermic compressibility (514) that shows the system
response with respect to particle fluctuations. The dispersion for the number
operators behaves as

A%(Ng) =0, A%(N)=A%N). (545)
It is convenient to introduce the finite- N susceptibility
AN
XN = ]E] ), (546)
whose limit .
Jim oy = x (V)
yields the susceptibility defined in Eq. (508). Below T;, we obtain
98—1(1) T\®

= — | . 547
XN 71 ( T (547)

Susceptibility (547) is negative for s < 1 and does not satisfy the stability
condition (510). For the values of s > 1, we have

XN = % (%)2 (s=1),
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For asymptotically large N, we get

XN XN (s=1),

XN X N@=s)/s (1<s<?2),
XN XInN (s=2),

XN x const (s> 2).

(549)

This shows that the trapped Bose gas is stable only for s > 2, when the stability
condition (510) is satisfied, that is, when

d 1
555+Z—>2. (550)

In particular, for harmonic traps, for which s = d and b = w?, one finds

XN = % (%)2 (d=1),

2
XN = %ﬂ(%)ﬁf 1n3<%) (d=2),
XN = m (E) (d=3).

For large N, this gives

XNO(N (d=1),
XNy XInN (d=2),
XN o const (d =3).

Thus, the Bose-condensed gas in a harmonic trap is stable only in the three-
dimensional space, d = 3.

The above analysis demonstrates that confining the ideal Bose gas in a trap
may stabilize it, which, however, depends on the confining dimension s, defined
in Eq. (533). The occurrence of a formal expression for the critical temperature 7
is not yet sufficient for claiming the possibility of Bose—Einstein condensation in
a trapped gas, but it is also necessary to check the system stability. For example,
in the case of the power-law trapping potentials, the condensation temperature
formally exists for s > 1. But the trapped condensed gas can be stable only for
s > 2. One- and two-dimensional harmonic traps are not able to stabilize the
condensate. Only the three-dimensional harmonic trap is able to host the ideal
Bose-condensed gas.
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10.5. Interacting Systems. Ideal gases are, actually, rather artificial objects,
since there always exist particle interactions, though, maybe, weak. Now we pass
to studying the stability of interacting systems.

To a great surprise, there have been published many papers, in which the
authors claim that interacting Bose-condensed systems, both uniform as well as
trapped, exhibit thermodynamically anomalous particle fluctuations of the same
kind as the ideal Bose gas, with the number-operator dispersion (528). By the
Bogolubov theorem, one always has A%(Np) = 0, hence, A2(N) = A2(N).
Then the thermodynamically anomalous dispersion A%(N) o< N4/3 would lead
to xn & N/3 and to the divergence of x(N) — oco. In that case, the stability
condition (510) is not satisfied, and the behavior of all physical quantities would
be rather wild. Then the isothermal compressibility (514) would diverge, the
sound velocity (515) would be zero, and the structure factor (516) would be
infinite. That is, the system would be absolutely unstable.

Moreover, this would mean that any system with spontaneously broken gauge
symmetry would not exist. Clearly, such a strange conclusion would contradict all
known experiments observing Bose—Einstein condensed trapped gases. Superfluid
helium is also the system with broken gauge symmetry, hence, it also would not
be able to exist, which is evidently absurd.

In [5,9,12,63,176-178], it has been explained that the occurrence, in some
works, of thermodynamically anomalous fluctuations is caused by incorrect cal-
culations. One calculates the dispersion AQ(Nl) invoking the Bogolubov ap-
proximation that is a second-order approximation with respect to the operators of
uncondensed particles. But the expression ]\712 is of fourth order with respect to
these operators. Calculating the fourth-order terms in the second-order approxima-
tion, strictly speaking, is not self-consistent and can lead to unreasonable results,
such as the occurrence of thermodynamically anomalous particle fluctuations.

The correct calculation of the dispersion A2(N ) and, hence, of susceptibil-
ity (546), can be done as follows. From the definition of the particle dispersion
AZ%(N), one has the exact expression

1
=14 o [ o)) lglex) - 1) dear’, (551)

which is valid for any system, whether uniform or nonuniform, equilibrium or
not [176-178]. Here,

(r) = po(r) + p1(r)

>

is the total particle density and

is the pair correlation function.
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In the HFB approximation, analogously to the Bogolubov approximation, one
has to retain in Eq.(551) the terms up to the second-order with respect to the
operators of uncondensed particles. For nonuniform systems, one can employ the
local-density approximation of Subsec.7.4. Then Eq. (551) reduces to

XN—1+—/ hm (k,r) + o(k,r)]dr. (552)

Using the formulas of Subsec. 7.4 gives

XN = (553)

mN | 2(r)

The same Eq. (553) represents the structure factor (516). Equation (515), defining
the hydrodynamic sound velocity, leads to

2 = % / Cﬁ((rr)) dr]_l. (554)

And the isothermal compressibility (514) becomes

= — 555
T mpN | 2(r) (535)
provided the average density p is defined.
For a uniform system, the above formulas reduce to
A%(N) T 1
= = = — = = . 556
XN N 5(0) mez TG RTE o (556)

It is important to emphasize the necessity of taking into account the gauge
symmetry breaking in the above calculations. If the symmetry would not be
broken, or if the anomalous average o would be omitted, one would get the
divergence of expressions (553) and (555), which would mean the system insta-
bility [179].

In some works on particle fluctuations, one also makes the following mistake.
One writes that, in the canonical ensemble, the condensate fluctuations are given
by A(Np) that is equal to A(N), and one calculates the latter in the second
quantization representation. However, this representation uses the field operators
defined on the Fock space and, by construction, it is introduced for the grand
canonical ensemble. So, A(Nl) has nothing to do with condensate fluctuations
that, by the Bogolubov theorem correspond to A(Np) = 0.

In this way, correct calculations lead to no anomalous thermodynamic par-
ticle fluctuations. The latter arise only in incorrect calculations. There are no
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anomalous fluctuations neither in correctly employed Bogolubov or HFB approx-
imations [5,9, 12,63, 176-179] nor in the renormalization group approach [180].

If thermodynamically anomalous fluctuations would not be caused by calcu-
lational defects, but would be real, then not merely equilibrium Bose-condensed
gas and superfluid helium would not exist, but the situation would be even more
dramatic. This is because the systems with gauge symmetry U(1) are just a
particular case of systems with continuous symmetry, all such systems having
general properties connected with their continuous symmetry and the symmetry
breaking [181]. Therefore all such systems exhibiting thermodynamically anom-
alous fluctuations would not exist. We mean here only equilibrium statistical
systems, since nonequilibrium systems can possess strong fluctuations making
them unstable [182-184].

For example, many magnetic systems exhibit continuous symmetry connected
with spin rotation. The appearance of magnetic order in such magnetic systems
implies the spontaneous breaking of the spin rotational symmetry. If the con-
tinuous symmetry breaking would lead to the appearance of thermodynamically
anomalous fluctuations of the order parameter, then, in magnetic systems, this
would mean the occurrence of thermodynamically anomalous magnetic suscep-
tibility, hence, instability. Then there would be no stable equilibrium magnetic
systems with continuous symmetry breaking, which is again absurd.

To show that the spontaneous breaking of the spin-rotation symmetry does not
lead to thermodynamically anomalous magnetic fluctuations [12], let us consider
the Hesenberg model, with the Hamiltonian

H=-) J;S;-S; - B-S, (557)
i#j i

in which S; is a spin operator on the i-lattice site, J;; is an exchange interaction
potential, and B is an external magnetic field. The Hamiltonian enjoys the spin
rotation symmetry in the absence of the external field B.

The Gibbs potential is defined as

G=-ThhTre ?? = G(T, N, B). (558)
The system magnetic moment

_0G _ JoH\ _ -
M=o = <8B>_<M> (559)

can be represented as the average of the magnetic-moment operator

~_ OH
M=-——2 = ZS (560)
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The magnetic susceptibility tensor is given by the elements

10Mg 1 0°G

X“ENE__NW' (561)
Direct calculations yield
1 ~ ~
XaB = 7y OV (Mq, Mp), (562)
which shows that the diagonal elements
Xao = % (563)

are expressed through the dispersion of the components of the magnetic-moment
operator (560).

The HFB approximation for the field operators of Bose systems is equiva-
lent to the mean-field approximation for the spin operators of magnetic systems.
Therefore, it is reasonable to resort here to the mean-field approximation, although
the results are qualitatively the same if we invoke more elaborate techniques. In
the mean-field approximation, Hamiltonian (557) reads as

H=-) H-S;+NJS) (564)

in which the notation is used for the effective field

H=2J(S;,)+B (565)
and the effective interaction
1
i#j

For concreteness, let us consider one-half spin. Then the Gibbs poten-
tial (558) becomes

G=—-NTln {2 cosh (%)] + NJ(S;)?, (567)

where the ideality of the lattice is implied and

Hy=H|= |Y HZ
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The average spin is defined by the extremization condition

oG

=0 568
a8y (568)
which is equivalent to the equation
1 0G
(Si) = “NIB' (569)
As a result, one finds
H Hy
This defines the magnetic susceptibility (561) as
0
B = S9Y. 571
Xop = {50 (571)
Let us define the order parameter
n = 2[(Sq)|- (572)
In view of Eq. (570), this reads as
Hy
=tanh [ — | . 573
7= tan (2T) (573)

Susceptibility (571) takes the form
Xap = L(éaﬁ + 2JXO¢B)+
2H,
Hp 1-n" 1
— | H, +2 avH —— —]. (574
+2H§< +J§:X””><2T ) 6™
Directing the external magnetic field along the axis z, so that

B,=B,=0, B.=h, (575)

yields
H,=H,=0, H,=2J(5/)+B.,

which can be rewritten as

Hy = 60.Hy, Hy=H,=Jn+h. (576)
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The average spin components become
(S7) = (S0 =0, (55)=1. (577)

The susceptibility tensor (574) leads to the equation
1— 2
T )], (578)

1 n
_(5045 + QJXaﬁ) |:F0 +5ﬁz ( T - FO

Xapg = 9
with the order parameter
Jn+h
= tanh . 579
n an( ﬂw> (579)
Equation (578) shows that the nondiagonal elements are zero:
Xzy = Xazz = Xyz = 0, (580)
while the diagonal elements give the transverse components
and the longitudinal component
1— 2
7 (582)

X2 T oRT— T -2

The latter, with the notation for the critical temperature T, = J/2, can be repre-

sented as )
]_ —
N (583)

= TAr T - )

At low temperature, and h — 0, the order parameter (579) behaves as

T.
n~1-—2exp (—T> (T < T,) (584)
and susceptibility (583), as
1 T.
Xzz 2 T exp <_T> (T < T.). (585)
At high temperature, and h — 0, susceptibility (583) acquires the Curie-Weiss
(586)

law 1
zZz =~ T 2 TC .
T ( )



BASICS OF BOSE-EINSTEIN CONDENSATION 979

The latter susceptibility diverges at the critical point 7.. However, this divergence
has nothing to do with the thermodynamically anomalous behavior, since this is
the divergence with respect to temperature 7', but not with respect to the number
of particles N. In addition, the phase transition point is the point of system
instability, where the system becomes nonequilibrium and fluctuations have right
to infinitely rise.

One introduces the transverse susceptibility

A2(M,)
= Xoz = ———t 587
X1 = Xa NT (587)
and the longitudinal susceptibility
A2(M,)
= Yoy = ——t, 588
X|| =X NT (588)

where relation (563) is taken into account. In view of Eqgs.(581) and (582), one
finds the dispersions for the magnetic-moment operator (560), characterizing the
transverse fluctuations,
A%(M,) nT
—_— T = —
N XL 20 )
and the longitudinal fluctuations,

(589)

A2(NL.) T(1- 7%
B B T ]

(590)

of the system magnetic moment.

The longitudinal fluctuations are always thermodynamically normal, if cal-
culated in a self-consistent way, as it should be, according to the stability con-
dition (509). In some papers, one finds thermodynamically anomalous magnetic
fluctuations of the same type as for Bose systems, with A(M.)/N o N/3. But,
as has been explained in [5], this is due to the same mistake as one does when
dealing with Bose systems. One approximates Hamiltonian (557) by a second-
order form, with respect to small deviations from the average magnetic moment.
And then, one considers the fourth-order form calculating the dispersion of M..
Going outside of the region of applicability of the chosen approximation leads
to the appearance of meaningless results. But self-consistent calculations, as is
shown above, always give normal longitudinal fluctuations.

The transverse fluctuations are known [185] to be much larger than the
longitudinal ones. Formally, Eq. (589) diverges when h — 0. This, however, does
not make the transverse magnetic fluctuations thermodynamically anomalous. To
be thermodynamically anomalous, expression (589) should diverge with respect
to the number of particles N, or, what is the same, with respect to the system
volume V. But here, it is the divergence with respect to h.



980 YUKALOV V.IL

Moreover, one should not forget that below the transition temperature 7,
the spin-rotation symmetry is broken. The symmetry breaking is described by
switching on a small external magnetic field h # 0. But then Eq. (589) is finite.
Switching off this field restores the symmetry, as a result of which Eq.(589)
would diverge, similarly to how the compressibility of a Bose-condensed system
would diverge being incorrectly calculated without the gauge symmetry breaking.
Therefore, as soon as the spin-rotation symmetry has been broken, when h # 0, all
fluctuations are thermodynamically normal. And above T., where the symmetry
is not broken, one has n = h/2T, hence A%(M,)/N = 1/4, which is again finite
for any h.

When some symmetry in a system is broken, the mathematically correct
definition of statistical averages is understood in the sense of the Bogolubov
quasiaverages [16]. Then, as is well known, one has, first, to accomplish the
thermodynamic limit, with N — oo and, only after this, to consider the limit
h — 0. In that sense, there is no any thermodynamically anomalous fluctuations.

Note that real magnetic systems always possess magnetic anisotropy. This
can be small, but never exactly zero, which corresponds to the presence of
a finite h. Consequently, in real equilibrium magnetic systems, there are no
thermodynamically anomalous fluctuations. And there are no thermodynamically
anomalous fluctuations in any equilibrium system with the spontaneous breaking
of any continuous symmetry. In the other case, such a system would be unstable
and could not be in equilibrium.

11. NONGROUND-STATE CONDENSATES

11.1. Coherent Modes. First of all, it is necessary to concretize what is meant
under nonground-state condensates. The stationary equation (335) for the conden-
sate function can be treated as an eigenproblem. Generally, an eigenproblem can
yield a spectrum of possible eigenvalues and a set of the related eigenfunctions.
So, generally, the eigenproblem, corresponding to Eq. (335), can be represented
in the form

o U e+

2m
+ o [[10 (1) P10 (1) + 291 (£) 75 (x) + 01 (x)175, (1) + £(x)] = Epna(r), (591)
in which the minimal eigenvalue defines the chemical potential

to = min E,,. (592)

When E,, = po, Eq. (591) corresponds to the standard ground-state Bose—Einstein
condensate, while, for higher eigenvalues F,,, this equation corresponds to non-
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ground-state condensates. The values of p;(r), o1(r), and £(r) depend on the
index n, but for short, this dependence is not shown explicitly.

The condensate function describes the coherent part of the system. In the
limit of asymptotically weak interactions ($¢y — 0) and low temperature (7" — 0),
when the whole system is in the coherent state, Eq. (591) reduces to the nonlinear
Schrodinger equation

2
= o+ U0 )+ Dol (0P 1) = Bua(6). (599
In the particular case, for E,, = pyo, it is called the Gross—Pitaevskii equation.
The condensate function 7, (r) is normalized to the number of condensed
particles, as in Eq.(52). It is convenient to introduce the function ¢, (r) by the
relation
nn(r) = v/ No pn(r), (594)

so that ¢, (r) be normalized to one,

/ lon (r)|?dr = 1. (595)
Then Eq. (591) transforms into
v2
[—% + U(r)] on(r)+
T &, [Nom(r)mon(r) T 201 (F)on (1) + 01 (0)05 (1) + j(—ﬁ) — Bopu(r),
(596)
while Eq. (593), into
v2
{—% + U(r)] ¢n(r) + oNolpn (r)*en(r) = Enpn(r).  (597)

The solutions to Egs. (591) and (596) define the coherent modes in the gen-
eral case [66]; and Egs.(593) and (597), the coherent modes for asymptotically
weak interactions and temperature [186]. These coherent modes, first introduced
in [186], correspond to nonground-state condensates. The properties of such co-
herent modes and the methods of their generation have been studied in a series of
papers [66, 186-215]. A dipole coherent mode was excited in experiment [216].
These coherent modes are also called topological, since the nonground-state con-
densates, corresponding to different coherent modes, describe particle densities
with different spatial topology.
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11.2. Trap Modulation. There are several requirements that are necessary
for creating a nonground-state condensate. First of all, it is clear that such a
condensate cannot be equilibrium. Hence, its creation requires the action of
external time-dependent fields. Second, the system of Bose particles has to
possess a discrete spectrum in order that it would be possible to distinguish the
usual ground-state Bose—Einstein condensate from a nonground-state condensate.
This means that the system is to be placed inside a trapping potential. And,
third, to transfer particles from their ground-state to a chosen excited state, it is
necessary, either to employ a resonant field or to use rather strong pumping.

A straightforward way of imposing external alternating fields is by modulating
the trapping potential. Let the confining potential be composed of two parts,

U(r,t) =U(r) + V(r,t), (598)
in which the first term is a trapping potential and the second term
V(r,t) = Vi(r) coswt + Va(r) sin wt (599)

realizes the modulation of this potential with frequency w.

There exists one limitation on the spatial dependence of the modulated trap-
ping potential (598). In [206,207], the shape-conservation theorem has been
proved, showing that the trap modulation moves the whole condensate without
changing its shape if and only if the trapping potential U (r) is harmonic, while the
modulation term (599) is linear with respect to the spatial variables. In that case,
the trap modulation would not be able to produce excited coherent modes. So, to
generate these modes, one has to avoid this particular case of spatial dependence.

Suppose that at the initial time ¢ = 0 the system has been completely con-
densed, being in the energy state Fy = po. Then, to transfer the system to an
energy state F,, one has to use the alternating field with a frequency w close to
the transition frequency w,, = E,, — pg. Under this resonance condition

Aw

- <1 (Aw = w — wy), (600)

it is sufficient to invoke the pumping fields of small amplitudes.
The time-dependent equation (323) for the condensate function, after the
substitution of the relation

n(rvt) = NO (P(r, t)7 (601)
similar to Eq. (594), transforms into
.0 \v&
iy #08) = |5 4 U(0,0) = o plrt)+
£(r,t)
VN

+ @y {Nopo(r, t)o(r, t) + 2p1(r, t)(r, t) + o1 (r, t)p*(r, t) + (602)
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We can look for the solution to this equation represented [66, 186, 187, 198]
as an expansion over the coherent modes,

p(r,t) =Y Cult)pn(r)e ™, (603)

so that the coefficient function C,,(¢) be slow as compared to the fast oscillating

exponential functions:
1

Wn

dci,

dt

Let us introduce the matrix elements corresponding to particle interactions,

< 1. (604)

o = 0o [ [on P 2lon)F = lon@P] dr (605)
and to the action of the modulating field,
B = [ 1) a(x) = 1Va(w)] o0 . (606)
Also, let us define the expression

en(t) = apn—

() (r
_(I)O/SO:L(I') |:20§”) (r)(pn (I‘) — 2p1 (r’ t)(pn (I‘) + Ug’ﬂ) (r)(p:l (I‘) + g\/]%o) dI‘,
(607)

in which the functions with the upper index n correspond to the stationary solu-
tions characterized by the condensate function ¢, (r) and where

Apn = PoNg / |<pn(r)|4 dr.

The trap modulation produces not only the required coherent mode but it
also destroys the condensate by transferring particles from the condensate to the
fraction of uncondensed particles. Therefore, the generation of the coherent mode
can be effectively done only during a finite depletion time t4cp, When the transfer
from the condensate to the uncondensed fraction is yet negligible. During this
time, the variation of quantity (607) is small, such that

t de,

RS o)-
@ < (t < taep) (608)

It is convenient to make the change

Cp(t) = cn(t) exp [—ien (t)t], (609)
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in which €, = e,(t) is treated as a slow function of time, in the sense of
inequality (608). We may notice that in the limit of a completely coherent
system, when the fraction of uncondensed particles is negligibly small, Eq. (607)
does not depend on time.

Then, we substitute expansion (603) into Eq. (602), employ the above nota-
tions, and invoke the averaging techniques [114,117,119,121,217-219], based
on the existence of different time scales [220,221]. As initial conditions, we
assume nonzero c,(0) and ¢o(0), while all other coefficient functions ¢;(0) = 0
for j # 0,n. This procedure yields [66, 186, 195] the equations

d 1 ,
Z% = a0n|cn|2CO + §ﬂ0ncn ezAwt’
p (610)
n 1 ;
z% = anolcol®en + §ﬂ8‘nco e IAwWE,
Solving these equations gives the fractional mode populations
pa(t) = |ea(t)?. (611)

As a concluding remark to this section, it is worth emphasizing that expansion
(603) corresponds to the diabatic representation [66, 215], and one should not
confuse it with the adiabatic representation [222], which is not suitable for the
studied resonant process.

11.3. Interaction Modulation. Another way of exciting the cloud of particles
confined inside a trap is by varying the particle interactions by means of the
Feshbach-resonance techniques [1-3,5,34,223]. This method can also be used
for generating the coherent modes, as has been mentioned in [206,207,210], and
analyzed in detail in [214,215].

Let the scattering length be modulated so that the particle interaction becomes
time-dependent according to the law

D(t) = g + Py cos (wt) + Pg sin(wt). (612)

Following the same procedure as in the case of the trap modulation and introduc-
ing the notation

T = No(1 = i) [ G50 ()P (1), (613)
in which n is fixed and m = 0,7, we get the equations
,dC 1 i 1 * % —i1Aw
i—2 = aoalcal?co + ( Yolcol® + ZAnlenl? ) cn €29t + Sagch eTIAVE
dt 2 2
(614)
den * 1 * —iAw 1 * iAw
i = anolcol?en + (%an + §Wo|00|2> coe AVt 4 §7nc0c%e Awt
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Both these ways of modulating either the trapping potential or particle inter-
actions can be used for generating excited coherent modes.

Nonequilibrium systems with the generated coherent modes, representing
nonground-state condensates, possess a variety of interesting properties. We
can mention the following effects: interference patterns and interference cur-
rents [194,195, 198], mode locking [186, 198, 199], dynamical phase transitions
and critical phenomena [190, 194,195, 198], chaotic motion [206,207], atomic
squeezing [198,201,202], Ramsey fringes [211-213], and entanglement produc-
tion [224-226] that can be quantified by a general measure of entanglement
production [227-229].

The above-mentioned effects can be realized by resonant alternating fields
of rather low amplitudes. When increasing the amplitude of the pumping field,
it becomes feasible to generate the excited coherent modes with the frequencies
of the alternating fields, which are not exactly in resonance with the transition
frequencies. Thus, the transition between the coherent modes, characterized by
the transition frequency wis, can be done by means of the harmonic generation
and parametric conversion [206,207].

Harmonic generation occurs, when the driving frequency w satisfies the con-
dition

nw = w1z n=1,2,...). (615)

Parametric conversion requires the use of two alternating fields, with the driving
frequencies w; and ws, such that

w1 + Wy = W12. (616)

In the case of two pumping fields, there exists the combined resonance under the
condition

Nniwi + Nows = W12 (nz =41,£2,.. ) (617)

And, generally, the application of several external alternating fields, with the
driving frequencies w;, can generate coherent modes under the condition of gen-
eralized resonance, when

D niwi =wip (ng=£1,£2,..). (618)

The amplitudes of external alternating fields can be made arbitrarily strong.
Therefore, all these effects can be realized in experiments. The particle interac-
tions can also be varied in a wide range. For instance, employing the Feshbach
resonance techniques, it is possible to tune the interactions of “Li atoms over
seven orders of magnitude [230]. Hence, the generation of nonground-state con-
densates can be done by the interaction modulation as well.
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11.4. Turbulent Superfluid. As follows from the previous sections, increas-
ing the modulation amplitude results in the generation of more and more coherent
modes, whose excitation becomes more and more easy, especially when several
alternating fields are involved. This is because it is sufficient that the frequencies
of the modulating fields be such that one of the above conditions be approximately
satisfied. As soon as this happens, the related coherent modes become excited.
Intensive field modulation generates simultaneously several coherent modes.

When alternating fields are applied creating an oscillating anisotropy, with
local rotation moments, then the prevailing coherent modes will be quantum vor-
tices. An important feature of the vortex creation by means of the anisotropic trap
modulation, contrary to the vortex creation by means of rotation, is the genera-
tion of vortices as well as antivortices, that is, the generation of the vortices with
opposite rotation velocities. The oppositely rotating vortices repel each other and
diffuse in space, separating from each other. In the beginning, when the ampli-
tude modulation is not yet too strong, there should arise just a small number of
vortices having the standard properties [1-3,231,232], except that vortices and
antivortices both are present. In the case, when the whole system is uniformly
rotated, the increased rotation frequency induces a vortex lattice [231,232]. Con-
trary to this, when the trapped system is subject to the action of alternating fields,
nonuniformly and anisotropically shaking the trapped particle cloud, the created
vortices possess different axes of rotation and different rotation velocities. There-
fore no vortex lattice is possible. Then, increasing the amplitude of the alternating
fields produces a large number of vortices with randomly distributed vorticities.
Such a tangle of quantized vortices forms what is called quantum turbulence, and
the whole system is said to be in the state of turbulent superfluid.

The problem of turbulent superfluid has been addressed in a number of
works. The related literature has been reviewed in articles [233-237] (see also
recent [238-240]). There are plenty of experiments observing quantum turbulence
in liquid ®He and *He. Quantum turbulence in trapped gases has also been
observed [241]. The description of turbulent superfluids as continuous vortex
mixtures has been advanced [237].

11.5. Heterophase Fluid. Increasing further the amplitude of the alternating
field breaks the turbulent superfluid into spatially separated pieces, with Bose-
condensed droplets separated by normal, nonsuperfluid, spatial regions. Such a
state reminds the Bose glass, or granular condensate, considered in Subsec.9.5.
But now it is a highly nonequilibrium state. This state is analogous to heterophase
mixtures consisting of several randomly intermixed phases [54]. Thence, it is
called heterophase fluid.

An external modulating field acts on the system similarly to the action of a
spatial random potential [110], such as treated in Sec.9. The possibility of map-
ping the system with a time-dependent modulation to the system with a spatially
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random potential is very important, since it allows us to understand the behav-
ior of modulated nonequilibrium systems by comparing them with equilibrium
random systems. The proof of this mapping is as follows.

Let the system Hamiltonian

H(t) = Hy+ V(t) (619)
consist of the usual term Hj, containing no time-dependent fields, and a term
(o) = [ Ve, (620)

with an external potential depending on time. The characteristic variation time
tmoa of the modulating potential V' (r,t) is assumed to be much longer than the
local-equilibrium time #),c, but much shorter than the time of experiment fcxp,

tioc K tmod K texp~ (621)

The modulating potential pumps energy into the system that can be associated

with the effective temperature
v (t)
ot

If the pumping potential is periodically oscillating with a frequency w and period
tmod = 27/w, then

texp

1
T = —
v [

0

dt. (622)

vV (t) - 2

L =WV (t) = V(t).
G = eV = v
In this case, the effective temperature (622) is
texp
2w ~
T = V(t))|dt. 623
v [ o) (623)
0

Denoting the amplitude of the modulating potential V(r,¢) as Vio4, we have
[V (£))] = NVinod-

Therefore, the effective temperature (623) becomes

tex
T* 27rt L. VA (624)

mod
One may notice that the effective temperature depends on .y, though this de-
pendence is week, in the sense that
oT*
8texp

¢
g mod o,

texp

tmod
T*
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Under the slow modulation, such that ¢,,0q > tjoc, the system, at each
moment of time, is in quasi-equilibrium. Consequently, one can define the local
in time thermodynamic potential

Q) =-T"InTrexp{—p*H(t)}, (625)

where 0* = 1/T*. Because fexp > tmod, We are interested not in the local
potential (625) but in the coarse-grained potential

tmod

L [ owar, (626)

tmod
0

Q:

averaged over oscillations that are fast as compared to fexp.
At each moment of time ¢ the potential V' (r, ) describes a spatial potential.
This can be characterized by the relation

Vir,t) = £(r), (627)

which defines the functional
t=t[(r)]. (628)

Equations (627) and (628) symbolize the fact that for each time ¢ there corresponds
a spatial potential £(r) and vice versa, a potential £(r) is ascribed to time ¢. The
relation between the interval [0, tmo04] and the topological space {£(r)}, without
much loss of generality, can be taken as homeomorphic.

The variation of time is equivalent to the variation of the spatial potential, so

. Stle(w)]
r
dt = SE(r) 0&(r).
With relation (628), Hamiltonian (619) becomes the functional
HI¢w) = Ho+ [ 6 0)ée)iw) de (629)

of the spatial field £(r). Therefore, the averaged thermodynamic potential (626)
takes the form

Q= —T*/ln Trexp {—F"H[{(r)]} DE(x). (630)

The latter is equivalent to the thermodynamic potential of an equilibrium system
in a random external field.

If the external alternating field has an amplitude V;,0q4 and the whole trapped
system is subject to the modulation, then the modulation amplitude Vi,0q plays
the role of the correlation amplitude Vi and the effective trap length [y, of the
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correlation length Iz in Eq.(459). The effective trap length Iy = 1/,/mwy and
the effective trap frequency wq are defined in Eq. (532).

More strictly, the system state, produced by the trap modulation, depends
not merely on the modulation amplitude V},,q, but on the amount of the total
energy pumped into the system, playing the role of the effective temperature
in the nonequilibrium system [237]. For an alternating field, with the driving
frequency w and the related period t,,0q = 27/w, acting on the system during the
total time of experiment Z.xp,, the pumped energy is associated with the effective
temperature (624). This energy should be treated as the effective modulation
amplitude. Thus, instead of the localization length (460), we get

ht hwo \ 2
loe = ——— = [ =2 ) 1o, 631
T m2V213 <V0> 0 (©31)

where, for clarity, the Planck constant is restored.
Depending on the relation between the localization length (631) and the trap
length [y, there can exist the following states:

lhoc > 1o (superfluid),
a < lioe <l (heterophase fluid), (632)
lioc < a (chaotic fluid).

The superfluid state here includes all types of superfluids, the regular superfluid
having no vortices, the vortex superfluid with a small number of vortices, and the
turbulent superfluid with a random tangle of many vortices. This classification,
in terms of the pumped energy, reads as follows:

Vo < hwg (superfluid),
hwo < Vo < hwo/lo/a (heterophase fluid), (633)
Vo = hwo/lo/a (chaotic fluid).

Chaotic fluid is a strongly fluctuating system having neither long-range order
nor even local order. It resembles the state of weak turbulence [242] or the
chaotic state [243]. Qualitatively, the overall scheme, representing the sequence
of states arising under the action of an alternating field, with respect to the amount
of the pumped energy Vj, is shown [237] in the Figure.

After the external modulation field is switched off, a finite quantum system
relaxes to its equilibrium state during the relaxation time defined by particle col-
lisions, the trap size, and trap shape [244]. The relaxation time becomes quite
long for quasi-one-dimensional traps, where it may last, without equilibration for
thousands of collisions between the oscillating Bose-condensed droplets [245].
This is because the one-dimensional system with local interactions is the in-
tegrable Lieb—Liniger system [246,247]. And quasi-one-dimensional systems,
approaching integrability, display very long equilibration times.
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Vok

Chaotic fluid

Heterophase fluid

Turbulent superfluid

Vortex superfluid

Regular superfluid .
0

Scheme of the sequence of states for a trapped Bose-condensed system subject to the
action of an alternating external field, with the increasing pumped energy Vp

In a quasi-one-dimensional trap, collisions, restricted to the motion of par-
ticles in the axial direction, with the particles remaining in the same transverse
ground state, are not accompanied by energy change, hence, do not lead to ther-
malization. For such two-body collisions, equilibration and thermalization occur
only under transverse excitations. The corresponding rate of populating the radi-
ally excited modes by pairwise collisions, can be estimated from the Fermi golden
rule that, at low temperature T' < w, gives [248, 249] the rate

I'y ~ 28w, (exp (—2w, /T), (634)

where the dimensionless parameter

2
C=pra>
Ly

is expressed through the three-dimensional scattering length ag, transverse oscil-

lator length [, , and the one-dimensional density

2
= pnl| = —.
P1d = PTL] 20,
At temperature tending to zero, this rate is exponentially suppressed. However,
it can be essential for finite temperatures.
For quasi-one-dimensional traps at low temperatures, the three-body collision
rate [249] can become important,

I3~ 6.9Cw, . (635)
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The states, described above, have been experimentally realized by means of
the trap modulation [241,250]. The whole diagram, showing the dependence of
the produced states on the modulation amplitude and modulation time has been
presented [250], starting from the regular superfluid, through vortex superfluid,
to turbulent superfluid, and to heterophase fluid.

CONCLUSIONS

In this review, the basic theoretical problems have been considered, arising
in the description of systems with Bose—FEinstein condensate. The solutions to
these problems are elucidated. The main conclusions can be briefly summarized
as follows.

(i) The global gauge symmetry breaking is the necessary and sufficient con-
dition for Bose-Einstein condensation. This is an exact mathematical fact. The
symmetry breaking results in the appearance of both, the condensate fraction and
the anomalous averages. The latter cannot be neglected without destroying the
theory self-consistency. Omitting the anomalous averages is principally wrong,
yielding unreliable and often unreasonable results.

(i) The Hohenberg—Martin dilemma of conserving versus gapless theories
is resolved by introducing two Lagrange multipliers guaranteeing the validity of
two normalization conditions, for the numbers of condensed and uncondensed
particles. The use of these two Lagrange multipliers is necessary as soon as the
global gauge symmetry has been broken.

(iii) Bose—Einstein condensed systems in strong spatially random potentials
can be described by means of the method of stochastic decoupling. Perturbation
theory with respect to the strength of disorder can fail, leading to incorrect
conclusions.

(iv) Thermodynamically anomalous fluctuations of any observable quantities
are strictly prohibited in all equilibrium statistical systems, irrespectively of the
used representative statistical ensemble. Thermodynamically anomalous particle
fluctuations, of either condensed or uncondensed particles, cannot exist in Bose-
condensed systems. The occurrence of thermodynamically anomalous fluctuations
can be due only to calculational mistakes.

(v) The method has been suggested of generating nonground-state conden-
sates of trapped particles. The method can be realized by applying alternating
external fields modulating either the trapping potential or particle interactions.
This makes it possible to create different types on nonground-state condensates,
such as coherent modes, turbulent superfluids, and heterophase fluids.
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