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The review is devoted to the elucidation of the basic problems arising in the theoretical in-
vestigation of systems with BoseÄEinstein condensate. Understanding these challenging problems is
necessary for the correct description of Bose-condensed systems. The principal problems considered
in the review are as follows: (i) What is the relation between BoseÄEinstein condensation and global
gauge symmetry breaking? (ii) How to resolve the HohenbergÄMartin dilemma of conserving versus
gapless theories? (iii) How to describe Bose-condensed systems in strong spatially random potentials?
(iv) Whether thermodynamically anomalous �uctuations in Bose systems are admissible? (v) How
to create nonground-state condensates? Detailed answers to these questions are given in the review.
As examples of nonequilibrium condensates, three cases are described: coherent modes, turbulent
super�uids, and heterophase �uids.

�¡§μ· ¶μ¸¢ÖÐ¥´ · §ÑÖ¸´¥´¨Õ μ¸´μ¢´ÒÌ ¶·μ¡²¥³, ¢μ§´¨± ÕÐ¨Ì ¢ É¥μ·¥É¨Î¥¸±¨Ì ¨¸¸²¥¤μ¢ -
´¨ÖÌ ¸¨¸É¥³ ¸ ¡μ§¥-Ô°´ÏÉ¥°´μ¢¸±¨³ ±μ´¤¥´¸ Éμ³. �μ´¨³ ´¨¥ ÔÉ¨Ì ±· ¥Ê£μ²Ó´ÒÌ ¶·μ¡²¥³ ´¥μ¡-
Ìμ¤¨³μ ¤²Ö ¶· ¢¨²Ó´μ£μ μ¶¨¸ ´¨Ö ¡μ§¥-±μ´¤¥´¸¨·μ¢ ´´ÒÌ ¸¨¸É¥³. � ¸¸³ É·¨¢ ÕÉ¸Ö ¸²¥¤ÊÕÐ¨¥
μ¸´μ¢´Ò¥ ¶·μ¡²¥³Ò: (i) ± ±μ¢  ¸¢Ö§Ó ³¥¦¤Ê ¸ÊÐ¥¸É¢μ¢ ´¨¥³ ¡μ§¥-Ô°´ÏÉ¥°´μ¢¸±μ£μ ±μ´¤¥´¸ É 
¨ ´ ·ÊÏ¥´¨¥³ £²μ¡ ²Ó´μ° ± ²¨¡·μ¢μÎ´μ° ¸¨³³¥É·¨¨; (ii) ± ± · §·¥Ï¨ÉÓ ¤¨²¥³³Ê •μÌ¥´¡¥·£ Ä
Œ ·É¨´ , ÊÉ¢¥·¦¤ ÕÐÊÕ, ÎÉμ É¥μ·¨¨ ¡μ§¥-±μ´¤¥´¸¨·μ¢ ´´ÒÌ ¸¨¸É¥³ ²¨¡μ Ê¤μ¢²¥É¢μ·ÖÕÉ § ±μ-
´ ³ ¸μÌ· ´¥´¨Ö, ²¨¡μ ¨³¥ÕÉ ¡¥¸Ð¥²¥¢μ° ¸¶¥±É·; (iii) ± ± μ¶¨¸Ò¢ ÉÓ ¡μ§¥-±μ´¤¥´¸¨·μ¢ ´´Ò¥ ¸¨-
¸É¥³Ò ¢ ¸¨²Ó´μ ¸²ÊÎ °´ÒÌ ¶·μ¸É· ´¸É¢¥´´ÒÌ ¶μÉ¥´Í¨ ² Ì; (iv) ¤μ¶Ê¸É¨³Ò ²¨ É¥·³μ¤¨´ ³¨Î¥¸±¨
 ´μ³ ²Ó´Ò¥ Ë²Ê±ÉÊ Í¨¨ ¢ ¡μ§¥-¸¨¸É¥³ Ì; (v) ± ± ³μ¦´μ ¸μ§¤ ¢ ÉÓ ´¥· ¢´μ¢¥¸´Ò¥ ¢μ§¡Ê¦¤¥´´Ò¥
±μ´¤¥´¸ ÉÒ. „ ÕÉ¸Ö ¤¥É ²Ó´Ò¥ μÉ¢¥ÉÒ ´  ÔÉ¨ ¢μ¶·μ¸Ò. Š ± ¶·¨³¥·Ò ´¥· ¢´μ¢¥¸´ÒÌ ±μ´¤¥´-
¸ Éμ¢ · ¸¸³ É·¨¢ ÕÉ¸Ö É·¨ ¸²ÊÎ Ö: ±μ£¥·¥´É´Ò¥ ³μ¤Ò, ÉÊ·¡Ê²¥´É´Ò¥ ¸¢¥·ÌÉ¥±ÊÎ¨¥ ¦¨¤±μ¸É¨ ¨
£¥É¥·μË §´Ò¥ ¦¨¤±μ¸É¨.

PACS: 03.75.Hh; 03.75.Kk; 03.75.Nt; 05.30.Ch; 05.30.Jp; 67.85.Bc; 67.85.De;
67.85.Jk

1. PRINCIPAL THEORETICAL PROBLEMS

In recent years, the topic of BoseÄEinstein condensation has been attracting
very high attention. There have been published the books [1, 2] and a number
of review articles (e.g., [3Ä12]). This great attention is mainly due to a series
of beautiful experiments with trapped atoms, accomplished in many laboratories
of different countries and promising a variety of interesting applications. The
interpretation of experiments requires the development of theory. It is well known
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that there is nothing more practical than a good theory. Only a correct theory
allows for the proper understanding of experiments and can suggest appropriate
and realistic technical applications.

The theory of real systems with BoseÄEinstein condensate was advanced by
Bogolubov [13Ä16] who considered uniform weakly nonideal low-temperature
Bose gas. Extensions to nonuniform zero-temperature weakly interacting gas are
due to Gross [17Ä19], Ginzburg and Pitaevskii [20], and Pitaevskii [21]. This
approach has been the main tool for describing Bose-condensed systems, since
the majority of initial experiments with trapped atoms had been accomplished
with weakly interacting Bose gases at low temperatures, using the techniques of
cooling and trapping [22].

Since London [23], it is assumed that super�uidity in 4He is accompanied
by BoseÄEinstein condensation, although detecting the condensate fraction in
helium is a rather difˇcult experimental task. The existence in liquid helium
of BoseÄEinstein condensate with zero momentum has not been directly proved,
without model assumptions, though the majority of experiments are in agreement
with the existence of condensate fraction of about 10% [24]. The possibility
that super�uidity is accompanied by mid-range atomic correlations [25Ä27] or
that it is due to the appearance in super�uid helium of a condensate with a
ˇnite modulus of momentum [28Ä31] has also been discussed. In his works on
super�uid helium, Landau [32] has never assumed the condensate existence. That
is why the direct observation of BoseÄEinstein condensation of trapped atoms has
become so important and intensively studied phenomenon [1Ä12].

The trapped Bose gases are dilute and can be cooled down to very low
temperatures. Usually, they also are weakly interacting. Thus, cold trapped
atomic gases have become the ideal object for the application of the Bogolubov
theory [13Ä16].

However, by employing the Feshbach resonance techniques [33, 34] it is
possible to vary atomic interactions, making them arbitrarily strong. In addition,
the properties of trapped gases at nonzero temperature have also to be properly
described. But the Bogolubov approximation, designed for weakly interacting
low-temperature systems, cannot be applied for Bose systems at ˇnite interactions
and temperature.

Attempts to use the HartreeÄFockÄBogolubov approximation resulted in the
appearance of an unphysical gap in the spectrum [35, 36]. While there should
be no gap according to the HugenholtzÄPines [37] and Bogolubov [16] theo-
rems. This gap cannot be removed without loosing the self-consistency of theory,
which would lead to the distortion of conservation laws and thermodynamic rela-
tions [16]. The situation was carefully analyzed by Hohenberg and Martin [38],
who showed that, as soon as the global gauge symmetry, associated with the
BoseÄEinstein condensation, is broken, any theory, in the frame of the grand
canonical ensemble, becomes either nonconserving or acquires a gap in the spec-
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trum. This dramatic conclusion is known as the HohenbergÄMartin dilemma of
conserving versus gapless theories. In this review, it is shown how a correct
self-consistent theory has to be developed, being both conserving and gapless,
and being valid for ˇnite temperatures and arbitrary interactions.

In the Bogolubov approach, the global gauge symmetry U(1) is broken,
which yields BoseÄEinstein condensation. Hence, this gauge symmetry breaking
is a sufˇcient condition for condensation. But maybe it is not necessary? Some
researchers state that BoseÄEinstein condensation does not require any symmetry
breaking. This delusion is explained in the review, where it is emphasized that
the gauge symmetry breaking is the necessary and sufˇcient condition for BoseÄ
Einstein condensation.

In recent literature on Bose systems, there often happens a very unfortunate
mistake, when one omits anomalous averages, arising because of the gauge sym-
metry breaking. But it is straightforward to show that this omission is principally
wrong from the precise mathematical point of view. To get an excuse for the
unjustiˇed omission of anomalous averages, one ascribes such an omission to
Popov, terming this trick ®Popov approximation¯. Popov, however, has never
suggested such an incorrect trick, which can be easily inferred from his original
works [39, 40].

The general self-consistent theory, presented in the review, is based on the
Bogolubov shift of ˇeld operators, which explicitly breaks the gauge symmetry.
The theory is valid for arbitrary interacting Bose systems, whether equilibrium or
nonequilibrium, uniform or nonuniform, in the presence of any external potentials,
and at any temperature. External potentials of a special type are spatially random
potentials. For treating the latter, one often uses perturbation theory with respect
to disorder. However, it is possible to show that such perturbation theory can be
misleading, yielding wrong results. In this review, a method is described that can
be used for disorder potentials of any strength.

One of the most confusing problems, widely discussed in recent literature,
is the occurrence of thermodynamically anomalous particle �uctuations in Bose-
condensed systems. In the review, a detailed explanation is given that such
anomalous �uctuations cannot arise in any real system, since their presence would
make the system unstable, thus, precluding its very existence. The appearance of
such anomalous �uctuations in some theoretical calculations is caused by technical
mistakes.

The usual BoseÄEinstein condensate corresponds to the accumulation of par-
ticles on the ground-state level. An important problem, considered in the review,
is whether it would be admissible to create nonground-state condensates. A pos-
itive answer is given and it is explained how this could be done and what would
be the features of such condensates.

Throughout the paper, the system of units is employed, where the Planck
constant � = 1 and the Boltzmann constant kB = 1.
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2. CRITERIA OF BOSEÄEINSTEIN CONDENSATION

2.1. Einstein Criterion. BoseÄEinstein condensation implies macroscopic
accumulation of particles on the ground-state level of a Bose system. This
means that, if the number of condensed particles is N0 and the total number of
particles in the system is N , then BoseÄEinstein condensation occurs, when N0

is proportional to N . To formulate this criterion in a more precise way, it is
necessary to invoke the notion of the thermodynamic limit, when the number of
particles N , as well as the system volume V , tend to inˇnity, with their ratio
remaining ˇnite:

N → ∞, V → ∞,
N

V
→ const. (1)

Then the Einstein criterion is formulated as the limiting property

lim
N→∞

N0

N
> 0, (2)

where the thermodynamic limit (1) is assumed. This is a very general criterion
that, however, does not hint on how the condensate particle number N0 should
be found.

2.2. Yang Criterion. The Yang criterion [41] is related to the notion of the
off-diagonal long-range order related to the behavior of reduced density matri-
ces [42]. The ˇrst-order reduced density matrix ρ(r, r′) deˇnes the limit

lim
r→∞

ρ(r, 0) = lim
N→∞

N0

V
, (3)

in which r ≡ |r|. One says that this matrix displays the off-diagonal long-range
order and BoseÄEinstein condensation occurs, when

lim
r→∞

ρ(r, 0) > 0. (4)

The Yang criterion can be useful for uniform systems, but is not suitable for
conˇned systems, where the limit of ρ(r, 0), as r → ∞, is always zero, while
condensation can happen [3, 9].

2.3. PenroseÄOnsager Criterion. Penrose and Onsager [43] showed that
the occurrence of condensation is re�ected in the eigenvalue spectrum of the
single-particle density matrix. For the latter, the eigenproblem∫

ρ(r, r′)ϕk(r′)dr′ = nkϕk(r) (5)

deˇnes the eigenfunctions ϕk(r) and eigenvalues nk, labelled by a quantum
multi-index k. The largest eigenvalue

N0 ≡ sup
k

nk (6)
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gives the number of condensed particles N0. That is, condensation occurs, when

lim
N→∞

sup
k

nk

N
> 0. (7)

This criterion is quite general and can be used for uniform as well as for nonuni-
form systems.

2.4. Order Indices. A convenient criterion can be formulated by means of
the order indices for reduced density matrices [44Ä47]. Order indices can be
introduced for any operators possessing a norm and a trace [48]. Let Â be such
an operator. Then the operator order index is deˇned [48] as

ω(Â) ≡ log ||Â||
log |Tr Â|

, (8)

where the logarithm can be taken to any base. Considering ρ̂1 ≡ [ρ(r, r′)] as a
matrix with respect to the spatial variables results in the order index

ω(ρ̂1) ≡
log ||ρ̂1||
log |Tr ρ1|

. (9)

Using the expressions

||ρ̂1|| = sup
k

nk = N0, Tr ρ̂1 = N,

yields the order index for the density matrix

ω(ρ̂1) =
log N0

log N
. (10)

This order index makes it possible to give the classiˇcation of different types of
order:

ω(ρ̂1) � 0 (no order),
0 < ω(ρ̂1) < 1 (mid-range order), (11)

ω(ρ̂1) = 1 (long-range order).

The latter corresponds to BoseÄEinstein condensation, when

lim
N→∞

ω(ρ̂1) = 1, (12)

in agreement with the previous criteria. Generally, there can exist Bose sys-
tems with mid-range order [45Ä48]. In such systems there is no BoseÄEinstein
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condensate but there happens a quasi-ordered state that can be called quasi-
condensate [39].

The order indices are useful in studying conˇned systems. But for conˇned
systems, the notion of thermodynamic limit is to be generalized. For this purpose,
one has to consider extensive observable quantities [49, 50]. Let AN be such an
observable quantity for a system of N particles. The most general form of the
thermodynamic limit can be given [12, 51] as the limiting condition

N → ∞, AN → ∞,
AN

N
→ const. (13)

Similar conditions with respect to the system ground-state energy imply the system
thermodynamic stability [52].

2.5. Condensate Existence. The condensation criteria show that BoseÄ
Einstein condensation imposes the following restriction on the behavior of the
density-matrix eigenvalues nk. Recall that, by its deˇnition, nk means the parti-
cle distribution over the quantum multi-indices k. According to Eqs. (6) and (7),
one has

1
supk nk

∝ 1
N

→ 0 (N → ∞). (14)

If condensation occurs into the state labelled by the multi-index k0, so that

sup
k

nk = nk0 ,

then the condensation condition [12] is valid:

lim
k→k0

1
nk

= 0 (N → ∞). (15)

Writing N → ∞ implies, as usual, the thermodynamic limit in one of the forms,
either as in Eq. (1) or as in Eq. (13).

3. GAUGE SYMMETRY BREAKING

3.1. Gauge Symmetry. The global gauge symmetry U(1) for a Hamiltonian
H [ψ], which is a functional of the ˇeld operator ψ, means that this Hamiltonian
is invariant under the gauge transformation

ψ(r) → ψ(r) eiα, (16)

where α is a real number. That is,

H [ψ eiα] = H [ψ]. (17)
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Here and in what follows, the time dependence of ˇeld operators is assumed but
is not shown explicitly, when it is not important and cannot lead to confusion.

The ˇeld operator can always be decomposed into an expansion

ψ(r) =
∑

k

akϕk(r) (18)

over an orthonormal complete basis. Though, in general, the basis can be ar-
bitrary, for what follows, it is important to choose the natural basis, composed
of natural orbitals [42]. By deˇnition, the basis is natural if and only if it is
composed of the eigenfunctions of the single-particle density matrix, deˇned by
the eigenproblem (5). Then the eigenvalues nk describe the particle distribution
over the quantum indices k.

BoseÄEinstein condensation can occur not to any state but only into one of
the states of the natural basis, that is, into one of the natural orbitals. Denoting
the related natural orbital by ϕ0(r), one can write

ψ(r) = ψ0(r) + ψ1(r), (19)

separating the part corresponding to condensate,

ψ0(r) ≡ a0ϕ0(r), (20)

from the part related to uncondensed particles,

ψ1(r) =
∑
k �=0

akϕk(r). (21)

By construction, the condensate part is orthogonal to that of uncondensed
particles: ∫

ψ†
0(r)ψ1(r) dr = 0, (22)

which follows from the orthogonality of natural orbitals. And by the deˇnition
of the natural orbitals as eigenfunctions of the single-particle density matrix, the
quantum-number conservation condition

〈akap〉 = δkp〈a†
kak〉 (23)

is valid. Because of the latter, one has the particular form of the quantum
conservation condition

〈ψ†
0(r)ψ1(r)〉 = 0. (24)

The number-operator for condensed particles is

N̂0 ≡
∫

ψ†
0(r)ψ0(r) dr = a†

0a0. (25)
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And the number-operator for uncondensed particles is

N̂1 ≡
∫

ψ†
1(r)ψ1(r) dr =

∑
k �=0

a†
kak. (26)

So, the total number-operator reads as

N̂ = N̂0 + N̂1. (27)

The number of condensed particles is the statistical average

N0 ≡ 〈N̂0〉 = 〈a†
0a0〉. (28)

According to the condensation criteria, BoseÄEinstein condensate appears when

lim
N→∞

〈a†
0a0〉
N

> 0. (29)

Till now, no symmetry breaking has been involved in the consideration.
Because of this, one could naively think that no symmetry breaking is necessary
for treating Bose condensation. However, the above consideration is yet nothing
but a set of deˇnitions. To understand whether gauge symmetry breaking is
compulsory for treating Bose condensation, one has to analyze the properties of
the deˇned quantities.

3.2. Symmetry Breaking. There are several ways how the Hamiltonian sym-
metry could be broken. The oldest method is by incorporating in the description
of the system an order parameter with a prescribed properties corresponding to
a thermodynamic phase with the broken symmetry, as is done in mean-ˇeld ap-
proximations [32]. Another traditional way, advanced by Bogolubov [15, 16], is
by adding to the Hamiltonian symmetry-breaking terms, getting

Hε[ψ] ≡ H [ψ] + εΓ[ψ], (30)

where 〈Γ[ψ]〉ε ∝ N and ε is a small number. The statistical averages, with
Hamiltonian (30), are denoted as 〈· · ·〉ε. Upon calculating such an average,
one should take, ˇrst, the thermodynamic limit N → ∞, after which the limit
ε → 0. The so-deˇned averages are called quasiaverages. It is also possible
to combine these two limits in one, prescribing to ε a dependence on N and
taking the sole thermodynamic limit. The latter procedure deˇnes thermodynamic
quasiaverages [53]. Other methods of symmetry breaking are described in the
review [54]. Here, for concreteness, the standard way of symmetry breaking by
means of the Bogolubov quasiaverages will be used.

Spontaneous breaking of gauge symmetry occurs when

lim
ε→0

lim
N→∞

1
N

∫
|〈ψ0(r)〉ε|2dr > 0. (31)
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This can also be rewritten as

lim
ε→0

lim
N→∞

|〈a0〉ε|2
N

> 0. (32)

By the CauchyÄSchwarz inequality,

|〈a0〉ε|2 � 〈a†
0a0〉ε (33)

for any ε. This means that gauge symmetry breaking yields Bose condensation.

Theorem 1. When gauge symmetry is spontaneously broken, then there exists
BoseÄEinstein condensate.

Proof. Spontaneous breaking of gauge symmetry corresponds to Eq. (32). In
view of the Schwarz inequality (33), it follows that

lim
ε→0

lim
N→∞

〈a†
0a0〉ε
N

> 0, (34)

which implies BoseÄEinstein condensation.

3.3. Ginibre Theorem. The Hamiltonian of a Bose system is a functional
of the ˇeld operator ψ that can always be represented as the sum (19) of two
terms (20) and (21). Thus, Hamiltonian (30) is Hε[ψ] = Hε[ψ0, ψ1]. For an
equilibrium system, this Hamiltonian deˇnes the grand thermodynamic potential

Ωε ≡ −T ln Tr exp {−βHε[ψ0, ψ1]}, (35)

where T is temperature and β ≡ 1/T . Let us replace the operator term ψ0 by a
nonoperator quantity η, getting

Ωηε ≡ −T ln Tr exp {−βHε[η, ψ1]} (36)

and assuming that this thermodynamic potential is minimized with respect to η,
so that

Ωηε = inf
x

Ωxε. (37)

Ginibre [55] proved the following proposition.

Theorem 2. In thermodynamic limit, the thermodynamic potentials (35)
and (36) coincide:

lim
N→∞

Ωε

N
= lim

N→∞

Ωηε

N
. (38)

This theorem holds true irrespective of whether there is Bose condensation or
not. But if, when minimizing potential (36), one gets a nonzero η, then, according
to condition (31), there is spontaneous gauge symmetry breaking. Hence, because
of Theorem 1, Bose condensation occurs.
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3.4. Bogolubov Theorem. Let

Cε(ψ0, ψ1) ≡ 〈. . . ψ†
0 . . . ψ†

1 . . . ψ0 . . . ψ1〉ε (39)

be a class of correlation functions being the averages, with respect to the Hamil-
tonian Hε[ψ0, ψ1], of the normal products of the ˇeld operators (20) and (21).
And let

Cε(η, ψ1) ≡ 〈. . . η∗ . . . ψ†
1 . . . η . . . ψ1〉ηε (40)

be a class of correlation functions being the averages, with respect to the Hamil-
tonian Hε[η, ψ1], of the normal products of the ˇeld-operator terms, where the
operators ψ0 have been replaced by a nonoperator quantity η that minimizes the
thermodynamic potential (36). Then the Bogolubov theorem [16] holds.

Theorem 3. In thermodynamic limit, the corresponding correlation functions
from classes (39) and (40) coincide:

lim
N→∞

Cε(ψ0, ψ1) = lim
N→∞

Cε(η, ψ1). (41)

As particular consequences from this theorem, it follows that

lim
ε→0

lim
N→∞

1
N

∫
〈ψ†

0(r)ψ0(r)〉εdr = lim
N→∞

1
N

∫
|η(r)|2 dr,

lim
ε→0

lim
N→∞

〈ψ0(r)〉ε = η(r). (42)

Invoking the conservation condition (24) yields

lim
ε→0

lim
N→∞

〈ψ1(r)〉ε = 0,

(43)
lim
ε→0

lim
N→∞

〈ψ(r)〉ε = η(r).

Hence, if η is not zero, the spontaneous gauge symmetry breaking takes place.
Respectively, Bose condensation occurs. This important consequence of the
Bogolubov theorem can be formulated as the following proposition.

Theorem 4. Spontaneous gauge symmetry breaking implies BoseÄEinstein
condensation:

lim
ε→0

lim
N→∞

|〈a0〉ε|2
N

= lim
ε→0

lim
N→∞

〈a†
0a0〉ε
N

. (44)

3.5. Roepstorff Theorem. The above theorems show that spontaneous gauge
symmetry breaking is a sufˇcient condition for BoseÄEinstein condensation. The
fact that the former is also the necessary condition for the latter was, ˇrst, proved
by Roepstorff [56] and recently the proof was polished in [57, 58].
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Theorem 5. BoseÄEinstein condensation implies spontaneous gauge symme-
try breaking:

lim
N→∞

〈a†
0a0〉
N

� lim
ε→0

lim
N→∞

|〈a0〉ε|2
N

. (45)

In the left-hand side of inequality (45), the average is taken without explicitly
breaking the gauge symmetry. Combining theorems 4 and 5 leads to the following
conclusion:

Conclusion. Spontaneous gauge symmetry breaking is the necessary and
sufˇcient condition for BoseÄEinstein condensation.

4. GENERAL SELF-CONSISTENT APPROACH

4.1. Representative Ensembles. A statistical ensemble is a pair {F , ρ̂} of
the space of microstates F and a statistical operator ρ̂. Deˇning the statistical
operator, it is necessary to take into account all conditions and constraints that
uniquely describe the considered statistical system. This requirement was empha-
sized by Gibbs [59, 60] and Ter Haar [61, 62]. Such an ensemble is termed a
representative ensemble. The general formulation of the representative ensembles
and their properties has been given in [54, 63, 64].

Constraints, imposed on the system, can be represented as the statistical
averages of condition operators Ĉi, with i = 1, 2, . . . being the index enumerating
the condition operators. This gives the set of statistical conditions

〈Ĉi〉 = Ci. (46)

Taking into account the latter deˇnes the grand Hamiltonian

H = Ĥ +
∑

i

λiĈi, (47)

in which Ĥ is the energy operator and λi are Lagrange multipliers guaranteeing
the validity of conditions (46).

4.2. Bogolubov Shift. The most convenient way of gauge symmetry breaking
for Bose systems is by means of the Bogolubov shift [16] of the ˇeld operator,
when the ˇeld operator ψ of a system without condensate is replaced by the ˇeld
operator

ψ̂(r) = η(r) + ψ1(r), (48)

in which η(r) is the condensate wave function and the second term is the ˇeld
operator of uncondensed particles. The latter is a Bose operator, with the standard
commutation relations [

ψ1(r), ψ
†
1(r)
]

= δ(r − r′).
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It is important to remember that the Fock space F(ψ), generated by the operator
ψ, is orthogonal to the Fock space F(ψ1), generated by the operator ψ1, so
that after the Bogolubov shift (48) it is necessary to work in the space F(ψ1).
Mathematical details can be found in [65].

Similarly to property (22), the condensate wave function is orthogonal to the
ˇeld operator of uncondensed particles:∫

η∗(r)ψ1(r) dr = 0. (49)

The quantum-number conservation condition, analogous to Eqs. (24) and (43),
takes the form

〈ψ1(r)〉 = 0. (50)

Then Eq. (48) yields
〈ψ̂(r)〉 = η(r), (51)

which shows that the condensate function plays the role of an order parameter.
The condensate function is normalized to the number of condensed particles

N0 =
∫

|η(r)|2dr. (52)

The number of uncondensed particles gives another normalization condition

N1 = 〈N̂1〉, (53)

where the number operator N̂1 is as in Eq. (26). The total number operator

N̂ ≡
∫

ψ̂†(r)ψ̂(r) dr = N0 + N̂1 (54)

deˇnes the total number of particles

N = 〈N̂〉 = N0 + N1. (55)

In the Bogolubov representation of the ˇeld operator (48), the condensate
function and the ˇeld operator of uncondensed particles are two independent
variables, orthogonal to each other.

4.3. Grand Hamiltonian. The general self-consistent theory to be presented
in this and in the following sections, is based on [63Ä71], where all details can
be found.

In order to deˇne a representative ensemble, one has to keep in mind the
normalization conditions (52) and (53). The quantum-number conservation con-
dition (50) is another restriction that is necessary to take into account. The
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latter equation can be rewritten in the standard form of a statistical condition by
introducing the operator

Λ̂ ≡
∫ [

λ(r)ψ†
1(r) + λ∗(r)ψ1(r)

]
dr, (56)

in which λ(r) is a complex function that accomplishes the role of a Lagrange mul-
tiplier guaranteeing the validity of the conservation condition (50). For this pur-
pose, it is sufˇcient [71] to choose λ(r) such that to kill in the grand Hamiltonian
the terms linear in ψ1(r). The conservation condition (50) can be represented as

〈Λ̂〉 = 0. (57)

Taking into account the given statistical conditions (52), (53), and (57) pre-
scribes the form of the grand Hamiltonian

H = Ĥ − μ0N0 − μ1N̂1 − Λ̂, (58)

in which μ0 and μ1 are the related Lagrange multipliers and Ĥ = Ĥ [η, ψ1] is the
energy operator. The multiplier μ0 has the meaning of the condensate chemical
potential and μ1 can be called the chemical potential of uncondensed particles.

The Hamiltonian average can be represented as

〈H〉 = 〈Ĥ〉 − μN, (59)

with μ being the system chemical potential. Then, from Eq. (58), it follows that
the chemical potential is

μ = μ0n0 + μ1n1, (60)

where the fractions of condensed and uncondensed particles,

n0 ≡ N0

N
, n1 ≡ N1

N
, (61)

are introduced.
It is necessary to stress that the number of Lagrange multipliers in the grand

Hamiltonian has to be equal to the number of imposed statistical conditions.
Only then the statistical ensemble will be representative. In other case, the system
would not be uniquely deˇned. Here, there are three conditions, the normalization
conditions (52) and (53) and the conservation condition (57).

It is easy to show that the multipliers μ0 and μ1 do not need to coincide.
To this end, let us consider the thermodynamic stability condition requiring the
extremization of the system free energy F = F (T, V, N0, N1), that is, δF = 0.
This gives

δF =
∂F

∂N0
δN0 +

∂F

∂N1
δN1 = 0. (62)
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Substituting here

μ0 =
∂F

∂N0
, μ1 =

∂F

∂N1
(63)

transforms Eq. (62) to the equation

μ0δN0 + μ1δN1 = 0. (64)

The total number of particles N = N0 + N1 is assumed to be ˇxed, so that
δN = 0 and δN0 = −δN1. Then Eq. (64) reduces to the relation

(μ0 − μ1)δN1 = 0. (65)

If N1 were arbitrary, then one would have the equivalence of the multipliers μ0

and μ1. However, the number of uncondensed particles N1 is ˇxed for each ˇxed
T , V , and N . That is, δN1 = 0 and Eq. (65) is satisˇed for any multipliers.
Hence the multipliers μ0 and μ1 do not have to be equal.

It would be possible to say that N0 is ˇxed for each given T, V, N . But,
clearly, this is the same as to say that N1 is ˇxed. In any case, there always
exist two normalization conditions requiring to introduce two related Lagrange
multipliers.

The Hamiltonian energy operator is

Ĥ =
∫

ψ̂†(r)
(
−∇2

2m
+ U

)
ψ̂(r) dr+

+
1
2

∫
ψ̂†(r)ψ̂†(r′)Φ(r − r′)ψ̂(r′)ψ̂(r) dr dr′, (66)

where Φ(−r) = Φ(r) is a pair-interaction potential and U = U(r, t) is an external
potential that, generally, can depend on time t.

Substituting into the grand Hamiltonian (58) the shifted operator (48) results
in the form

H =
4∑

n=0

H(n), (67)

whose terms are classiˇed according to the order of the products of the ˇeld
operators ψ1. The zero-order term

H(0) =
∫

η∗(r)
(
−∇2

2m
+ U − μ0

)
η(r) dr+

+
1
2

∫
Φ(r − r′)|η(r′)|2|η(r)|2dr dr′ (68)
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does not contain the operators ψ1. The ˇrst-order term

H(1) = 0 (69)

is zero because of the conservation condition (57). The second-order term is

H(2) =
∫

ψ†
1(r)

(
−∇2

2m
+ U − μ1

)
ψ1(r) dr+

+
∫

Φ(r − r′)
[
|η(r)|2ψ†

1(r
′)ψ1(r′) + η∗(r)η(r′)ψ†

1(r
′)ψ1(r)+

+
1
2

η∗(r)η∗(r′)ψ1(r′)ψ1(r) +
1
2

η(r)η(r′)ψ†
1(r

′)ψ†
1(r)
]

dr dr′. (70)

Respectively, one has the third-order term

H(3) =
∫

Φ(r − r′)
[
η∗(r)ψ†

1(r
′)ψ1(r′)ψ1(r) + ψ†

1(r)ψ
†
1(r

′)ψ1(r′)η(r)
]
dr dr′

(71)
and the fourth-order term

H(4) =
1
2

∫
ψ†

1(r)ψ
†
1(r

′)Φ(r − r′)ψ1(r′)ψ1(r) dr dr′. (72)

4.4. Variational Principle. In the Heisenberg representation, ˇeld operators
satisfy the Heisenberg equation involving a commutator of the operator with the
system Hamiltonian. At the same time, in quantum ˇeld theory, one usually gets
the equations for the ˇeld operators by extremizing an action functional [72, 73],
which reduces to the variation of the Hamiltonian. Conditions, when these two
methods are equivalent, are clariˇed in the following propositions.

Theorem 6. Let a ˇeld operator ψ(r) be either Bose or Fermi operator
satisfying, respectively, the commutation or anticommutation relations[

ψ(r), ψ†(r′)
]
∓ = δ(r − r′), [ψ(r), ψ(r′)]∓ = 0, (73)

with the upper sign index being for Bose statistics; while the lower, for Fermi
statistics. Then for the products

Pmn ≡ P+
mPn, P+

m ≡
m∏

i=1

ψ†(ri), Pn ≡
n∏

i=1

ψ(r′i), (74)

where m and n are real integers, one has the commutators

[ψ(r), Pmn] =
δPmn

δψ†(r)
+
[
(±1)m+n − 1

]
Pmnψ(r). (75)
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Proof. Using the variational derivative

δψ†(ri)
δψ†(r)

= δ(r − ri),

it is straightforward to ˇnd

δP+
1

δψ†(r)
= δ(r − r1),

δP+
2

δψ†(r)
= δ(r − r1)ψ†(r2) ± δ(r − r2)ψ†(r1),

δP+
3

δψ†(r)
= δ(r−r1)ψ†(r2)ψ†(r3)±δ(r−r2)ψ†(r1)ψ†(r3)+δ(r−r3)ψ†(r1)ψ†(r2),

and so on. By induction, it follows that

δP+
m

δψ†(r)
=

m∑
j=1

(±1)j+1δ(r − rj)
m∏

i( �=j)

ψ†(ri). (76)

Using the commutator[
ψ(r), ψ†(r′)

]
= δ(r − r′) + (±1 − 1)ψ†(r′)ψ(r),

we derive[
ψ(r), P+

1

]
= δ(r − r1) + (±1 − 1)P+

1 ψ(r),[
ψ(r), P+

2

]
= δ(r − r1)ψ†(r2) ± δ(r − r2)ψ†(r1),[

ψ(r), P+
3

]
= δ(r − r1)ψ†(r2)ψ†(r3) ± δ(r − r2)ψ†(r1)ψ†(r3)+

+ δ(r − r3)ψ†(r1)ψ†(r2) + (±1 − 1)P+
3 ψ(r),

and so on. From here, using Eq. (76), by induction, we get

[
ψ(r), P+

m

]
=

δP+
m

δψ†(r)
+ [(±1)m − 1]P+

mψ(r). (77)

Also, it is easy to check that

[ψ(r), Pn] = [(±1)n − 1]Pnψ(r). (78)

Then, taking into account that, for any three operators Â, B̂, Ĉ, the equality

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

is valid, we have

[ψ(r), Pmn] =
[
ψ(r), P+

m

]
Pn + P+

m [ψ(r), Pn].

Substituting here Eqs. (77) and (78) gives the required Eq. (75).
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Theorem 7. Let F̂ [Pmn] be a linear functional of the products deˇned
in Eq. (74). And let the linear combination

F̂ =
∑
mn

cmnF̂ [Pmn] (79)

contain only such functionals for which, in the case of Bose statistics, m and n
are arbitrary while, for the case of Fermi statistics, m + n is even. Then

[ψ(r), F̂ ] =
δF̂

δψ†(r)
. (80)

Proof. The proof is straightforward, following immediately from Eq. (75).
The latter theorem shows that for a large class of functionals the commutator

with the ˇeld operator is equivalent to the variational derivative. The operators of
observable quantities are in this class, as well as Hamiltonians. This is because
for Fermi systems, the ˇeld operators enter the observables always in pairs,
which is necessary for spin conservation. This is why the Heisenberg equations
for the ˇeld operators can be written in two equivalent ways, in the form of a
commutator, as in the left-hand side of Eq. (80), or in the form of a variational
derivative, as in the right-hand side of that equation. Note that the standard
form of many phenomenological evolution equations also involves variational
derivatives [74, 75].

4.5. Evolution Equations. With the grand Hamiltonian (58), the evolution
equations for the ˇeld variables η and ψ1 read as

i
∂

∂t
η(r, t) =

δH

δη∗(r, t)
, (81)

for the condensate function, and as

i
∂

∂t
ψ1(r, t) =

δH

δψ†
1(r, t)

, (82)

for the ˇeld operator of uncondensed particles. Recall that, in view of Theorem 7,

δH

δψ†
1(r, t)

= [ψi(r, t), H ].

Invoking expression (67) of the grand Hamiltonian gives the equation

i
∂

∂t
η(r, t) =

(
−∇2

2m
+ U − μ0

)
η(r, t)+

+
∫

Φ(r − r′)[X̂0(r, r′) + X̂(r, r′)] dr′, (83)
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in which the notations are introduced:

X̂0(r, r′) ≡ η∗(r′)η(r′)η(r),

X̂(r, r′) ≡ ψ†
1(r

′)ψ1(r′)η(r) + ψ†
1(r

′)η(r′)ψ1(r)+

+ η∗(r′)ψ1(r′)ψ1(r) + ψ†
1(r

′)ψ1(r′)ψ1(r). (84)

In these expressions, for brevity, the explicit dependence on time is not shown.
Equation (82) yields the equation for the ˇeld operator of uncondensed par-

ticles:

i
∂

∂t
ψ1(r, t) =

(
−∇2

2m
+ U − μ1

)
ψ1(r, t)+

+
∫

Φ(r − r′)[X̂1(r, r′) + X̂(r, r′)]dr′, (85)

where

X̂1(r, r′) ≡ η∗(r′)η(r′)ψ1(r) + η∗(r′)ψ1(r′)η(r) + ψ†
1(r

′)η(r′)η(r). (86)

An equation for the condensate function follows from averaging Eq. (81),
with the standard notation for a statistical average of an operator Â as

〈Â(t)〉 ≡ Tr ρ̂(0)Â(t),

where ρ̂(0) is the statistical operator at the initial time t = 0, so that the
condensate-function equation is

i
∂

∂t
η(r, t) =

〈
δH

δη∗(r, t)

〉
. (87)

Averaging the right-hand side of Eq. (83), we shall need the notations for the
single-particle density matrix

ρ1(r, r′) ≡ 〈ψ†
1(r

′)ψ1(r)〉 (88)

and the anomalous density matrix

σ1(r, r′) ≡ 〈ψ1(r′)ψ1(r)〉. (89)

The density of condensed particles is

ρ0(r) ≡ |η(r)|2, (90)
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while the density of uncondensed particles is

ρ1(r) ≡ ρ1(r, r′) = 〈ψ†
1(r)ψ1(r)〉. (91)

The diagonal element of the anomalous density matrix,

σ1(r) ≡ σ1(r, r) = 〈ψ1(r)ψ1(r)〉, (92)

deˇnes the density of pair-correlated particles as |σ1(r)|. The total density of
particles in the system is the sum

ρ(r) = ρ0(r) + ρ1(r). (93)

Also, we shall need the notation for the anomalous triple correlator

ξ(r, r′) ≡ 〈ψ†
1(r

′)ψ1(r′)ψ1(r)〉. (94)

Employing these notations gives

X̂0(r, r′) = ρ0(r′)η(r),

〈X̂(r, r′)〉 = ρ1(r′)η(r) + ρ1(r, r′)η(r′) + σ1(r, r′)η∗(r′) + ξ(r, r′).

Finally, Eqs. (83) and (87) result in the equation for the condensate function

i
∂

∂t
η(r, t) =

(
−∇2

2m
+ U − μ0

)
η(r, t)+

+
∫

Φ(r − r′) [ρ(r′)η(r) + ρ1(r, r′)η(r′) + σ1(r, r′)η∗(r′) + ξ(r, r′)] dr′. (95)

Equations for the densities can be obtained from the above equations, with
introducing the condensate density of current

j0(r, t) ≡ − i

2m
[η∗(r)∇η(r) − η(r)∇η∗(r)] (96)

and the current density of uncondensed particles

j1(r, t) ≡ − i

2m

〈
ψ†

1(r)∇ψ1(r) −
[
∇ψ†

1(r)
]
ψ1(r)

〉
. (97)

And let us also deˇne the source term

Γ(r, t) ≡ i

∫
Φ(r − r′) [Ξ∗(r, r′) − Ξ(r, r′)] dr′, (98)

with the anomalous correlation function

Ξ(r, r′) ≡ η∗(r) [η∗(r′)σ1(r, r′) + ξ(r, r′)] .
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Then we get the continuity equations for the condensate,

∂

∂t
ρ0(r, t) + ∇ · j0(r, t) = Γ(r, t), (99)

and for uncondensed particles,

∂

∂t
ρ1(r, t) + ∇ · j1(r, t) = −Γ(r, t). (100)

The total density (93) satisˇes the continuity equation

∂

∂t
ρ(r, t) + ∇ · j(r, t) = 0, (101)

with the total density of current

j(r, t) = j0(r, t) + j1(r, t). (102)

For the anomalous diagonal average (92), we ˇnd the equation

i
∂

∂t
σ1(r, t) = 2K(r, t)+2(U−μ1)σ1(r, t)+2

∫
Φ(r−r′)S(r, r′, t) dr′, (103)

where the average anomalous kinetic-energy density is deˇned as

K(r, t) = −1
2

〈
∇2ψ1(r)

2m
ψ1(r) + ψ1(r)

∇2ψ1(r)
2m

〉
(104)

and where we use the notation

S(r, r′, t) = η(r)η(r′)ρ1(r, r′) + η∗(r′)η(r)σ1(r, r′) + η∗(r′)η(r′)σ1(r)+

+ η(r)ξ(r, r′) + η(r′)〈ψ†
1(r

′)ψ1(r)ψ1(r)〉+
+ η∗(r′)〈ψ1(r′)ψ1(r)ψ1(r)〉 + 〈ψ†

1(r
′)ψ1(r′)ψ1(r)ψ1(r)〉+

+ [η2(r) + σ1(r)]δ(r − r′). (105)

5. SUPERFLUIDITY IN QUANTUM SYSTEMS

5.1. Super�uid Fraction. One of the most important features of Bose-
condensed systems is super�uidity. Therefore it is necessary to have a general
deˇnition for calculating the super�uid fraction. Probably, the most general such
a deˇnition is by identifying the super�uid fraction as the fraction of particles
nontrivially responding to a velocity boost.
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The systems Hamiltonian H = H [ψ̂] is a functional of the ˇeld operator ψ̂.
The operator of momentum is

P̂ ≡
∫

ψ̂†(r)p̂ψ̂(r) dr, (106)

where p̂ ≡ −i∇.
Boosting the system with a velocity v leads to the Galilean transformation

of the ˇeld operators in the laboratory frame

ψ̂v(r, t) = ψ̂(r − vt) exp
{

i

(
mv · r − mv2

2
t

)}
, (107)

expressed through the ˇeld operators ψ̂ in the frame accompanying the moving
system. Then the operator of momentum in the frame at rest,

P̂v ≡
∫

ψ†
v(r)p̂ψ̂v(r) dr, (108)

transforms into

P̂v =
∫

ψ̂†(r)(p + mv)ψ̂(r) dr = P̂ + mvN̂ . (109)

Since
(p̂ + mv)2

2m
=

p̂2

2m
+ v · p̂ +

mv2

2
,

the Hamiltonian Hv = H [ψ̂v] for the moving system becomes

Hv = H +
∫

ψ̂†(r)
(
v · p̂ +

mv2

2

)
ψ̂(r) dr. (110)

The generalized super�uid fraction is deˇned through the ratio

ns(v) ≡ ∂/∂v · 〈P̂v〉v
〈∂/∂v · P̂v〉v

, (111)

in which the statistical averages 〈· · · 〉v are determined for the moving system
with the Hamiltonian Hv, given in Eq. (110). This deˇnition is valid for any
system, including nonequilibrium and nonuniform systems of arbitrary statistics.

One usually deˇnes the super�uid fraction for a system at rest, which gives

ns ≡ lim
v→0

ns(v). (112)
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For equilibrium systems, the statistical averages are given by the expressions

〈Â〉v ≡ Tr Â exp (−βHv)
Tr exp (−βHv)

, (113)

for the moving system, and by

〈Â〉 ≡ TrÂ e−βH

Tr e−βH
= lim

v→0
〈Â〉v, (114)

for the system at rest.
In the case of equilibrium systems, the derivatives over parameters can be

calculated according to the formulas of [76]. Thus, we have

∂

∂v
· 〈P̂v〉v =

〈
∂

∂v
· P̂v

〉
v

− β cov
(
P̂v,

∂Hv

∂v

)
, (115)

where the covariance of any two operators, Â and B̂, is

cov(Â, B̂) ≡ 1
2
〈ÂB̂ + B̂Â〉v − 〈Â〉v〈B̂〉v.

From Eqs. (109) and (110), one has

∂

∂v
· P̂v = 3mN̂,

∂Hv

∂v
= P̂v.

Consequently, fraction (111) becomes

ns(v) = 1 − Δ2(P̂v)
3mNT

, (116)

where the notation for an operator dispersion

Δ2(Âv) ≡ 〈Â2
v〉v − 〈Âv〉2v

is used. Therefore, for fraction (112), Eq. (116) yields

ns = 1 − Δ2(P̂)
3mNT

, (117)

with the dispersion given as

Δ2(Â) ≡ 〈Â2〉 − 〈Â〉2.

The quantity

Q ≡ Δ2(P̂)
2mN

(118)
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describes the heat dissipated in the considered quantum system. While the dissi-
pated heat in the classical case reads as

Q0 ≡ 3
2
T. (119)

Hence, the super�uid fraction (117) can be represented by the expression

ns = 1 − Q

Q0
. (120)

For an immovable system, the average momentum 〈P̂〉 is zero; then

Δ2(P̂) = 〈P̂2〉 (〈P̂〉 = 0).

And the dissipated heat reduces to

Q =
〈P̂2〉
2mN

. (121)

5.2. Moment of Inertia. Another way of deˇning the super�uid fraction is
through the system response to rotation. The latter is connected with the angular
momentum operator

L̂ ≡
∫

ψ̂†(r)(r × p̂)ψ̂(r) dr. (122)

When the system is rotated with the angular velocity ω, the related linear
velocity is

vω ≡ ω × r. (123)

Then, in the laboratory frame, the angular momentum operator takes the form

L̂ω =
∫

ψ̂†(r) [r × (p̂ + mvω)] ψ̂(r) dr. (124)

This, using the equality

r × (ω × r) = r2ω − (ω · r)r,

gives

L̂ω = L̂ + m

∫
ψ̂†(r)

[
r2ω − (ω · r)r

]
ψ̂(r) dr. (125)

The energy Hamiltonian of an immovable system can be written as the sum

Ĥ = K̂ + V̂ (126)
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of the kinetic energy operator

K̂ ≡
∫

ψ̂†(r)
p̂2

2m
ψ̂(r) dr (127)

and the potential energy part V̂ , respectively.
Under rotation, the potential energy part does not change, but only the kinetic

part varies, so that the energy Hamiltonian of a rotating system, in the laboratory
frame, becomes

Ĥω = K̂ω + V̂ , (128)

with the same potential energy operator V̂ . The kinetic energy operator, in the
laboratory frame, can be represented [77, 78] by the formula

K̂ω =
∫

ψ̂†(r)
(p̂ + mvω)2

2m
ψ̂(r) dr. (129)

In the rotating frame, where the system is at rest, the kinetic energy operator can
be obtained from Eq. (129) with replacing ω by −ω and, respectively, replacing
vω by −vω. Using the relations

(ω × r)2 = ω2r2 − (ω · r)2, (ω × r) · p̂ = ω · (r × p̂)

allows us to represent the kinetic energy operator (129) as

K̂ω = K̂ + ω · L̂ +
m

2

∫
ψ̂(r)

[
ω2r2 − (ω · r)2

]
ψ̂(r) dr. (130)

Thus, the energy Hamiltonian (128), in the laboratory frame, takes the form

Ĥω = Ĥ + ω · L̂ +
m

2

∫
ψ̂(r)

[
ω2r2 − (ω · r)2

]
ψ̂(r) dr. (131)

Rotating systems are characterized by the inertia tensor

Îαβ ≡ ∂L̂α
ω

∂ωβ
(132)

that, in view of Eq. (125), reads as

Îαβ = m

∫
ψ̂†(r)

(
r2δαβ − rαrβ

)
ψ̂(r) dr. (133)

If one chooses the axis z in the direction of the angular velocity, so that

ω = ωez, (134)
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then the angular momentum (125) is given by the expression

L̂z
ω = L̂z + ωÎzz , (135)

with the inertia tensor

Îzz = m

∫
ψ̂†(r)

(
x2 + y2

)
ψ̂(r) dr, (136)

where the relation r2 − z2 = x2 + y2 is used. The energy Hamiltonian (128),
characterizing the system energy in the laboratory frame, can be represented as

Ĥω = Ĥ + ωL̂z +
ω2

2
Îzz , (137)

with Ĥ from Eq. (126).
The generalized super�uid fraction is deˇned as

ns(ω) ≡ ∂/∂ω〈L̂z
ω〉ω〈

∂/∂ω L̂z
ω

〉
ω

. (138)

For an equilibrium system, we can again employ the formulas of differentia-
tion over parameters [76], leading to the derivative

∂

∂ω
〈L̂z

ω〉ω =
〈

∂

∂ω
L̂z

ω

〉
ω

− β cov

(
L̂z

ω,
∂Ĥω

∂ω

)
. (139)

Substituting here
∂L̂z

ω

∂ω
= Îzz ,

∂Ĥω

∂ω
= L̂z

ω,

we come to the expression

ns(ω) = 1 − Δ2(L̂z
ω)

T 〈Îzz〉ω
. (140)

Considering the super�uid fraction in the nonrotating limit

ns ≡ lim
ω→0

ns(ω), (141)

and using the notation

Izz ≡ lim
ω→0

〈Îzz〉ω = m

∫ (
x2 + y2

)
ρ(r) dr, (142)
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we obtain the super�uid fraction in the form

ns = 1 − Δ2(L̂z)
TIzz

. (143)

The dispersion of L̂z is calculated with the Hamiltonian for a nonrotating system.
Introducing the notation

Ieff ≡ βΔ2(L̂z) (144)

allows us to represent the super�uid fraction (143) as

ns = 1 − Ieff

Izz
. (145)

For a nonrotating system, one has

Δ2(L̂z) = 〈L̂2
z〉 (〈L̂z〉 = 0).

Hence Ieff = β〈L̂2
z〉.

5.3. Equivalence of Deˇnitions. The deˇnitions of the super�uid fraction,
considered in Subsecs. 5.1 and 5.2, are equivalent with each other. To show this,
one can take a cylindrical annulus of radius R, width δ, and length L, such that
δ 	 R. The volume of this annulus is V 
 2πRLδ. Then the classical inertia
tensor (142) is Izz 
 mNR2. The angular momentum (122) can be written as

L̂z =
∫

ψ̂†(r)
(
−i

∂

∂ϕ

)
ψ̂(r) dr, (146)

where ϕ is the angle of the cylindrical system of coordinates.
For the annulus of large radius R, making the round along the annulus

circumference, one has the path element δl = Rδϕ. Therefore, the angular
momentum (146) can be represented as

L̂z = RP̂l, (147)

being proportional to the momentum

P̂l ≡
∫

ψ̂†(r)
(
−i

∂

∂l

)
ψ̂(r) dr. (148)

Then the super�uid fraction (143) becomes

ns = 1 − Δ2(P̂l)
mNT

. (149)

The same formula follows from the consideration of Subsec. 5.1 if one takes the
velocity boost along the annulus circumference.
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5.4. Local Super�uidity. In some cases, it is important to know the spatial
distribution of the super�uid fraction that would be given by the spatial depen-
dence ns(r). This can be necessary, when one considers equilibrium nonuniform
systems or systems in local equilibrium [79, 80].

To describe local super�uidity, we can consider the momentum density

P̂(r) ≡ ψ̂†(r)p̂ψ̂(r). (150)

Following Subsec. 5.1, we introduce a velocity boost, which leads to the momen-
tum density

P̂v(r) ≡ ψ̂†(r)(p̂ + mv)ψ̂(r) (151)

in the laboratory frame. The local super�uid fraction is deˇned as

ns(r) ≡ lim
v→0

∂/∂v · 〈P̂v(r)〉v〈
∂/∂v · P̂v(r)

〉
v

. (152)

Because of form (151), one has

∂

∂v
· P̂v(r) = 3mψ̂†(r)ψ̂(r).

Then the local super�uid fraction (152) reduces to

ns(r) = 1 − cov(P̂(r), P̂)
3mρ(r)T

. (153)

Owing to the relation

ρs(r) = ns(r)ρ(r), (154)

we get the local super�uid density

ρs(r) = ρ(r) − cov (P̂(r), P̂)
3mT

. (155)

Integrating the above equation over r and considering the average fraction

ns =
1
N

∫
ρs(r)dr

would bring us back to formula (117).
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5.5. Super�uidity and Condensation. Usually, BoseÄEinstein condensation
is accompanied by super�uidity. However, there is no straightforward relation be-
tween these phenomena and the related fractions [3, 12]. Thus, in two-dimensional
systems at ˇnite temperature, there is no Bose condensation, but there can exist
super�uidity. And in spatially random systems, there can happen local Bose
condensation without super�uidity.

The relation between Bose condensation and super�uidity depends on the
type of the effective particle spectrum and system dimensionality. To illustrate
this, let us consider a d-dimensional Bose gas with an effective particle spectrum

ωk = Akn − μ, (156)

where A and n are positive parameters and k is d-dimensional momentum. For
the d-dimensional case, the super�uid fraction (117) takes the form

ns = 1 − 〈P̂2〉
NmTd

. (157)

The integration over the d-dimensional momenta involves the relation

dk
(2π)d

→ 2kd−1dk

(4π)d/2Γ(d/2)
,

in which Γ(x) is the gamma function.
For the condensation temperature, we ˇnd

Tc = A

[
(4π)d/2Γ(d/2)nρ

2Γ(d/n)ζ(d/n)

]n/d

, (158)

where ζ(x) is the Riemann zeta function. The latter can be represented in several
forms:

ζ(x) =
∞∑

j=1

1
jx

=
1

Γ(x)

∞∫
0

tx−1

et − 1
dt, (159)

when Rex > 1, and

ζ(x) =
1

(1 − 21−x)Γ(x)

∞∫
0

ux−1

eu + 1
du, (160)

if Re x > 0.
Taking into account that Γ(x) > 0 for x > 0 and ζ(x) < 0 in the interval

0 < x < 1 tells us that there is no condensation for d < n. When d = n, then
Tc = 0. And Tc > 0 for d > n.
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For d > n, the condensate fraction below Tc is given by the expression

n0 = 1 −
(

T

Tc

)d/n

(T � Tc), (161)

while the super�uid fraction, under μ = 0, is

ns = 1 − Bζ

(
d + 2 − n

n

)
T (d+2−n)/n, (162)

where

B ≡
2(d + 2 − n)Γ

(
d + 2 − n

n

)
(4π)d/2Γ (d/2)A(d+2)/nmρn2d

. (163)

If there is no condensate, then μ is deˇned by the equation

ρ =
2Γ(d/n)gd/n(z)T d/n

(4π)d/2Γ(d/2)nAd/n
, (164)

in which z ≡ eβμ is fugacity and

gn(z) ≡ 1
Γ(n)

∞∫
0

zun−1

eu − z
du

is the Bose function. The super�uid fraction, in the absence of condensate, is

ns = 1 − Bg(d+2−n)/n(z)T (d+2−n)/n. (165)

Generally speaking, BoseÄEinstein condensation is neither necessary nor suf-
ˇcient for super�uidity. These phenomena are connected with different system
features. Bose condensation implies the appearance of coherence in the system,
while super�uidity is related to the presence of sufˇciently strong pair correla-
tions. Thus, there can occur four possibilities, depending on the values of the
condensate and super�uid fractions:

(i) incoherent normal �uid

n0 = 0, ns = 0;

(ii) coherent normal �uid

n0 > 0, ns = 0;

(iii) incoherent super�uid

n0 = 0, ns > 0;
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(iv) coherent super�uid

n0 > 0, ns > 0.

In this classiˇcation, we do not take into account that the system can form a
solid [12].

6. EQUILIBRIUM UNIFORM SYSTEMS

6.1. Information Functional. The deˇnition of statistical averages involves
the use of a statistical operator. The form of the latter, in the case of an equi-
librium system, can be found from the principle of minimal information. This
principle requires that, composing an information functional, one has to take into
account all conditions and constraints that uniquely deˇne the considered sys-
tem [81]. Only then the corresponding statistical ensemble will be representative
and will correctly describe the system. In the other case, if not all necessary con-
straints have been taken into account, so that the system is not uniquely described,
the ensemble is not representative and cannot correctly characterize the system.
In such a case, one confronts different problems, for instance, the occurrence of
thermodynamic instability or nonequivalence of ensembles. However, all those
problems are caused by the use of nonrepresentative ensembles and have nothing
to do with physics. A detailed discussion of these problems can be found in [63].
The construction of representative ensembles for Bose-condensed systems is given
in [64, 71].

A statistical operator ρ̂ of an equilibrium system should be the minimizer
of the Shannon information ρ̂ ln ρ̂, under given statistical conditions. The ˇrst
evident condition is the normalization

〈1̂〉 ≡ Tr ρ̂ = 1, (166)

with 1̂ being the unity operator. Then, one deˇnes the internal energy E through
the average

〈Ĥ〉 ≡ Tr ρ̂Ĥ = E. (167)

The normalization condition (52) for the condensate function can also be presented
in the standard form of a statistical condition as

〈N̂0〉 ≡ Tr ρ̂N̂0 = N0, (168)

where N̂0 ≡ N01̂. Normalization (53), for the number of uncondensed particles,
can be written as

〈N̂1〉 ≡ Tr ρ̂N̂1 = N1. (169)
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Finally, the conservation condition (57) reads as

〈Λ̂〉 ≡ Tr ρ̂Λ̂ = 0. (170)

Note that, in general, the conditional operators do not need to be necessarily
commutative with the energy operator [80]. For instance, here the operator N̂0

does commute with Ĥ , but Λ̂ does not have to commute with the latter.
It is also worth stressing that the average quantities, involved in the statistical

conditions, do not need to be directly prescribed, but they have to be uniquely
deˇned by ˇxing other thermodynamic parameters. Thus, internal energy is not
prescribed directly in either canonical or grand canonical ensembles, but it is
uniquely deˇned through the ˇxed temperature, the number of particles in the
system, and volume. Similarly, the number of condensed particles may be not
directly given, but it is uniquely deˇned, and can be measured, by ˇxing other
thermodynamic parameters, temperature, total number of particles, and volume.
For conˇned systems, instead of volume, the external potential is given.

The information functional, under the above conditions, takes the form

I[ρ̂] = Tr ρ̂ ln ρ̂ + λ0(Tr ρ̂ − 1) + β(Tr ρ̂Ĥ − E)−
− βμ0(Tr ρ̂N̂0 − N0) − βμ1(Tr ρ̂N̂1 − N1) − β Tr ρ̂ Λ̂, (171)

in which the corresponding Lagrange multipliers are introduced. Minimizing this
functional with respect to ρ̂ yields the statistical operator

ρ̂ =
e−βH

Tr e−βH
, (172)

with the same grand Hamiltonian (58).

6.2. Momentum Representation. For a uniform system, it is convenient
to pass to the momentum representation by means of the Fourier transformation
with plane waves. This is because the plane waves are the natural orbitals for
a uniform system, which implies that they are the eigenfunctions of the density
matrix in the sense of eigenproblem (5).

The ˇeld operator of uncondensed particles transforms as

ψ1(r) =
1√
V

∑
k �=0

ak eik·r, ak =
1√
V

∫
ψ1(r) e−ik·r dr. (173)

We assume that the pair interaction potential is Fourier transformable,

Φ(r) =
1
V

∑
k

Φk eik·r, Φk =
∫

Φ(r) e−ik·rdr. (174)
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The condensate function η(r), for a uniform system, is a constant η, such
that

ρ0(r) = |η|2 = ρ0. (175)

These transformations are substituted into the grand Hamiltonian (67). Then
the zero-order term (68) becomes

H(0) =
(

1
2
ρ0Φ0 − μ0

)
N0. (176)

The ˇrst-order term H1 is automatically zero, as in Eq. (69). The second-order
term (70) reads as

H(2) =
∑
k �=0

[
k2

2m
+ ρ0(Φ0 + Φk) − μ1

]
a†

kak+

+
1
2

∑
k �=0

ρ0Φk

(
a†

ka†
−k + a−kak

)
. (177)

The third-order term (71) is

H(3) =
√

ρ0

V

∑
kp

′
Φp

(
a†

kak+pa−p + a†
−pa

†
k+pak

)
, (178)

where in the sum
k �= 0, p �= 0, k + p �= 0.

The fourth-order term (72) takes the form

H(4) =
1

2V

∑
q

∑
kp

′
Φqa

†
ka†

pap+qak−q, (179)

where
k �= 0, p �= 0, p + q �= 0, k − q �= 0.

6.3. Condensate Function. In the case of an equilibrium system, the con-
densate function does not depend on time,

∂

∂t
η(r, t) = 0. (180)

Therefore, Eq. (95) reduces to the eigenvalue problem[
−∇2

2m
+ U(r)

]
η(r)+

+
∫

Φ(r−r′)[ρ(r′)η(r)+ρ1(r, r′)η(r′)+σ1(r, r′)η∗(r′)+ξ(r, r′)]dr = μ0η(r).

(181)
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A uniform system presupposes the absence of a nonuniform external potential.
Hence, one can set U = 0. The average densities ρ0 and ρ1 are constant. The
total particle density is

ρ = ρ(r) = ρ0 + ρ1. (182)

Then Eq. (181) gives

μ0 = ρΦ0 +
∫

Φ(r)
[
ρ1(r, 0) + σ1(r, 0) +

ξ(r, 0)
√

ρ0

]
dr. (183)

The normal density matrix is written as

ρ1(r, r′) =
1
V

∑
k �=0

nk eik·(r−r′), (184)

where
nk ≡ 〈a†

kak〉. (185)

And the anomalous average

σ1(r, r′) =
1
V

∑
k �=0

σk eik·(r−r′) (186)

is expressed through
σk ≡ 〈aka−k〉. (187)

The triple anomalous correlator (94) can be represented as

ξ(r, r′) =
1
V

∑
k �=0

ξk eik·(r−r′), (188)

with

ξk =
1√
V

∑
p�=0

〈akapa−k−p〉. (189)

The diagonal element of Eq. (184) gives the density of uncondensed particles

ρ1 = ρ1(r, r) =
1
V

∑
k �=0

nk. (190)

The diagonal element of the anomalous average (186) is

σ1 = σ1(r, r) =
1
V

∑
k �=0

σk. (191)
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And the triple correlator (188) leads to

ξ = ξ(r, r) =
1
V

∑
k �=0

ξk. (192)

The condensate chemical potential (183) can be rewritten in the form

μ0 = ρΦ0 +
1
V

∑
k �=0

(
nk + σk +

ξk√
ρ0

)
Φk. (193)

6.4. Green Functions. There are several types of Green functions. Here, we
shall deal with the causal Green functions [81, 82] that are called propagators.
The set {rj, tj} of the spatial variable rj and time tj will be denoted, for brevity,
just as j. If there are other internal variables, they can also be included in the
notation j.

For a Bose-condensed system, one considers four types of Green functions:

G11(12) = −i〈T̂ψ1(1)ψ†
1(2)〉, G12(12) = −i〈T̂ψ1(1)ψ1(2)〉,

(194)
G21(12) = −i〈T̂ψ†

1(1)ψ†
1(2)〉, G22(12) = −i〈T̂ψ†

1(1)ψ1(2)〉,

in which T̂ is chronological operator. It is convenient [83] to introduce the
retarded interaction

Φ(12) ≡ Φ(r1 − r2)δ(t1 − t2 + 0). (195)

Also, one deˇnes the inverse propagators

G−1
11 (12) =

[
i

∂

∂t1
+

∇2
1

2m
− U(1) + μ1

]
δ(12) − Σ11(12),

G−1
12 (12) = −Σ12(12), G−1

21 (12) = −Σ21(12), (196)

G−1
22 (12) =

[
−i

∂

∂t1
+

∇2
1

2m
− U(1) + μ1

]
δ(12) − Σ22(12),

where Σαβ(12) is self-energy. Using these, one can write the equations of motion
in the matrix form

G−1
11 G11 + G−1

12 G21 = 1̂, G−1
11 G12 + G−1

12 G22 = 0,

G−1
21 G11 + G−1

22 G21 = 0, G−1
21 G12 + G−1

22 G22 = 1̂. (197)

For a uniform system, when U = 0, one passes to the Fourier transforms of
the Green functions Gαβ(k, ω), inverse propagators G−1

αβ(k, ω), and self-energies
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Σαβ(k, ω). The inverse propagators (196) transform into

G−1
11 (k, ω) = ω − k2

2m
+ μ1 − Σ11(k, ω), G−1

12 (k, ω) = −Σ12(k, ω),

G−1
21 (k, ω) = −Σ21(k, ω), G−1

22 (k, ω) = −ω − k2

2m
+ μ1 − Σ22(k, ω). (198)

The Green functions enjoy the properties

Gαβ(−k, ω) = Gαβ(k, ω), G11(k,−ω) = G22(k, ω),
(199)

G12(k,−ω) = G21(k, ω) = G12(k, ω).

And the self-energies also share the same properties

Σαβ(−k, ω) = Σαβ(k, ω), Σ11(k,−ω) = Σ22(k, ω),

Σ12(k,−ω) = Σ21(k, ω) = Σ12(k, ω). (200)

Equations (197) yield

G11(k, ω) =
ω + k2/2m− μ1 + Σ11(k, ω)

D(k, ω)
, G12(k, ω) = −Σ12(k, ω)

D(k, ω)
,

(201)
with the denominator

D(k, ω) = Σ2
12(k, ω) − G−1

11 (k, ω)G−1
22 (k, ω). (202)

6.5. HugenholtzÄPines Relation. Hugenholtz and Pines [37], using perturba-
tion theory at zero temperature, found the relation

μ1 = Σ11(0, 0) − Σ12(0, 0). (203)

The most general proof of this relation, for any temperature, was given by
Bogolubov [16]. He proved the theorem, according to which

|G11(k, 0)| � mn0

2k2
, (204)

where n0 is the condensate fraction, and

|G11(k, 0) − G12(k, 0)| � mn0

k2
. (205)

From inequality (204), one has

lim
k→0

lim
ω→0

D(k, ω) = 0. (206)
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And from inequality (205), it follows that∣∣∣∣ k2

2m
− μ1 + Σ11(k, 0) − Σ12(k, 0)

∣∣∣∣ � k2

mn0
. (207)

The latter inequality leads to the HugenholtzÄPines relation (203).
It is important to stress that the expression for μ1, given by Eq. (203), is

exact and, generally, it differs from the exact value of μ0 in Eq. (183).
The HugenholtzÄPines relation is equivalent to the fact that the particle spec-

trum is gapless, which follows from the following.
The spectrum εk is given by the zeroes of the Green-function denominator:

D(k, εk) = 0, (208)

which gives the equation

εk =
1
2

[Σ11(k, εk) − Σ22(k, εk)] +
√

ω2
k − Σ2

12(k, εk), (209)

where

ωk ≡ k2

2m
+

1
2

[Σ11(k, εk) + Σ22(k, εk)] − μ1. (210)

In view of condition (206), the limit

lim
k→0

εk = 0 (211)

is valid, that is, the spectrum is gapless.
To ˇnd the long-wave spectrum behavior, keeping in mind that the spectrum

is uniquely deˇned by Eq. (209), we can use the expansion

Σαβ(k, εk) 
 Σαβ(0, 0) + Σ′
αβk2, (212)

in which k → 0 and

Σ′
αβ ≡ lim

k→0

∂

∂k2
Σαβ(k, εk).

Then, deˇning the sound velocity

c ≡
√

1
m∗Σ12(0, 0) (213)

and the effective mass

m∗ ≡ m

1 + m (Σ′
11 + Σ′

22 − 2Σ′
12)

, (214)
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we get the acoustic spectrum

εk 
 ck (k → 0). (215)

Equation (213), characterizing the general feature of the long-wave spec-
trum, has been obtained without approximations, assuming only the validity of
expansion (212). Therefore, in a Bose-condensed system, the anomalous self-
energy Σ12(0, 0) must be nonzero in order to deˇne a meaningful nonzero sound
velocity. The zero sound velocity would mean the system instability. Since
expression (213) involves no perturbation theory and no approximations, the con-
dition

Σ12(0, 0) �= 0

is general, as soon as expansion (212) is valid.

7. HARTREEÄFOCKÄBOGOLUBOV APPROXIMATION

7.1. Nonuniform Matter. To realize practical calculations, it is necessary
to resort to some approximation. The Bogolubov approximation [13, 14] is valid
for low temperatures and asymptotically weak interactions. The more general ap-
proximation, that would be valid for all temperatures and any interaction strength,
is the HartreeÄFockÄBogolubov (HFB) approximation. Early works [35, 36],
employing this approximation, confronted the inconsistency problem discussed
in Sec. 1, because of a gap in the particle spectrum. This happened as a re-
sult of the use of a nonrepresentative ensemble. Employing the representative
ensemble of Sec. 4 yields no gap and no any other problems. The HFB approxi-
mation, applied in the frame of the self-consistent theory of Sec. 4, is gapless and
conserving [63Ä71].

The HFB approximation simpliˇes the general Hamiltonian (67). For gener-
ality, we consider, ˇrst, the nonuniform case.

The third-order term (71) in the HFB approximation is zero. And in the
fourth-order term (72), the HFB approximation gives

ψ†
1(r)ψ

†
1(r

′)ψ1(r′)ψ1(r) =

= ρ1(r)ψ
†
1(r

′)ψ1(r′) + ρ1(r′)ψ
†
1(r)ψ1(r) + ρ1(r′, r)ψ

†
1(r

′)ψ1(r)+

+ ρ1(r, r′)ψ
†
1(r)ψ1(r′) + σ1(r, r′)ψ

†
1(r)ψ1(r′)+

+ σ∗
1(r′, r)ψ†

1(r
′)ψ1(r) − ρ1(r)ρ1(r′) − |ρ1(r, r′)|2 − |σ1(r, r′)|2. (216)

In what follows, it is convenient to use the notation for the total single-particle
density matrix

ρ(r, r′) ≡ η(r)η∗(r′) + ρ1(r, r′) (217)
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and for the total anomalous average

σ(r, r′) ≡ η(r)η(r′) + σ1(r, r′) . (218)

These equations reduce the grand Hamiltonian (67) to the HFB form

HHFB = EHFB +
∫

ψ†
1(r)

(
−∇2

2m
+ U − μ1

)
ψ1(r)dr+

+
∫

Φ(r − r′)
[
ρ(r′)ψ†

1(r)ψ1(r) + ρ(r′, r)ψ†
1(r

′)ψ1(r)+

+
1
2
σ(r, r′)ψ†

1(r
′)ψ†

1(r) +
1
2
σ∗(r, r′)ψ1(r′)ψ1(r)

]
dr dr′, (219)

in which the nonoperator term is

EHFB = H(0) − 1
2

∫
Φ(r − r′)

[
ρ1(r)ρ1(r′) + |ρ1(r, r′)|2 + |σ1(r, r′)|2

]
dr dr′.

(220)
The condensate-function equation (95) becomes

i
∂

∂t
η(r, t) =

(
−∇2

2m
+ U − μ0

)
η(r)+

+
∫

Φ(r − r′) [ρ(r′)η(r) + ρ1(r, r′)η(r′) + σ1(r, r′)η∗(r′)] dr′. (221)

And the equation of motion (85) for the operator of uncondensed particles now
reads as

i
∂

∂t
ψ1(r, t) =

(
−∇2

2m
+ U − μ1

)
ψ1(r)+

+
∫

Φ(r − r′)
[
ρ(r′)ψ1(r) + ρ(r, r′)ψ1(r′) + σ(r, r′)ψ†

1(r
′)
]
dr′. (222)

In the case of an equilibrium system, Eq. (221) reduces to the eigenproblem(
−∇2

2m
+ U

)
η(r)+

+
∫

Φ(r − r′) [ρ(r′)η(r) + ρ1(r, r′)η(r′) + σ1(r, r′)η∗(r′)] dr′ = μ0η(r)

(223)

deˇning the condensate function and the the condensate chemical potential

μ0 =
1

N0

∫
η∗(r)

[
−∇2

2m
+ U(r)

]
η(r)dr +

1
N0

∫
Φ(r − r′)

[
ρ0(r)ρ(r′)+

+ ρ1(r, r′)η∗(r)η(r′) + σ1(r, r′)η∗(r)η∗(r′)
]
dr dr′. (224)
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7.2. Bogolubov Transformations. The HFB Hamiltonian (219) is a quadratic
form with respect to the operators ψ1. As any quadratic form, it can be diag-
onalized by means of the Bogolubov canonical transformations, whose general
properties are described in detail in the book [84]. In the present case, the
Bogoliubov transformations read as

ψ1(r) =
∑

k

[
uk(r)bk + v∗k(r)b†k

]
, bk =

∫ [
u∗

k(r)ψ1(r) − v∗k(r)ψ†
1(r)
]
dr.

(225)
Since ψ1 is a Bose operator, it should be:∑

k

[uk(r)u∗
k(r′) − v∗k(r)vk(r′)] = δ(r − r′),

(226)∑
k

[uk(r)v∗k(r′) − v∗k(r)uk(r′)] = 0.

And, the condition that bk is also a Bose operator leads to the relations∫
[u∗

k(r)up(r) − v∗k(r)vp(r)] dr = δkp,

∫
[uk(r)vp(r) − vk(r)up(r)] dr = 0.

(227)
The coefˇcient functions uk and vk are to be deˇned by the requirement of the
Hamiltonian diagonalization, under conditions (226) and (227).

Let us introduce the notations

ω(r, r′) ≡
[
−∇2

2m
+ U(r) − μ1 +

∫
Φ(r − r′)ρ(r′) dr′

]
δ(r − r′)+

+ Φ(r − r′)ρ(r, r′) (228)

and
Δ(r, r′) ≡ Φ(r − r′)σ(r, r′). (229)

Then the Hamiltonian diagonalization leads to the Bogolubov equations∫
[ω(r, r′)uk(r′) + Δ(r, r′)vk(r′)]dr′ = εkuk(r),

(230)∫
[ω∗(r, r′)vk(r′) + Δ∗(r, r′)uk(r′)]dr′ = −εkvk(r).

This is the eigenproblem for the Bogolubov functions uk and vk and the Bogol-
ubov spectrum εk.

The resulting diagonal Hamiltonian is

HB = EB +
∑

k

εkb†kbk, (231)
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with the nonoperator term

EB = EHFB −
∑

k

εk

∫
|vk(r)|2dr. (232)

The quasiparticles, described by the operators bk, are called bogolons. Their
quantum-number distribution is easily calculated, giving

πk ≡ 〈b†kbk〉 =
(
eβεk − 1

)−1
, (233)

which can also be represented as

πk =
1
2

[
coth

( εk

2T

)
− 1
]
. (234)

The normal density matrix (88) takes the form

ρ1(r, r′) =
∑

k

[πkuk(r)u∗
k(r′) + (1 + πk)v∗k(r)vk(r′)], (235)

while the anomalous average (89) becomes

σ1(r, r′) =
∑

k

[πkuk(r)v∗k(r′) + (1 + πk)v∗k(r)uk(r′)]. (236)

The density of uncondensed particles (91) is

ρ1(r) =
∑

k

[
πk|uk(r)|2 + (1 + πk)|vk(r)|2

]
(237)

and the diagonal anomalous average (92) is

σ1(r) =
∑

k

(1 + 2πk)uk(r)v∗k(r). (238)

The grand thermodynamic potential

Ω ≡ −T ln Tr e−βH , (239)

under Hamiltonian (231), reads as

Ω = EB + T
∑

k

ln
(
1 − e−βεk

)
, (240)

where the ˇrst term, deˇned in Eq. (232), gives

EB = −1
2

∫
Φ(r − r′) [ρ0(r)ρ0(r′)+

+ 2ρ0(r)ρ1(r′) + 2η∗(r)η(r′)ρ1(r, r′) + 2η∗(r)η∗(r′)σ1(r, r′)+

+ ρ1(r)ρ1(r′) + |ρ1(r, r′)|2 + |σ1(r, r′)|2
]
dr dr′ −

∑
k

εk

∫
|vk(r)|2dr. (241)
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The above equations are valid for any nonuniform matter, with an arbitrary
external potential U(r).

7.3. Uniform Matter. The previous equations simplify for a uniform case,
when there is no external potential. Setting U = 0, we can use the Fourier
transformation (173) and follow the way of Sec. 6.

Instead of expressions (228) and (229), we now have

ωk ≡ k2

2m
+ ρΦ0 + ρ0Φk +

1
V

∑
p�=0

npΦk+p − μ1 (242)

and

Δk ≡ ρ0Φk +
1
V

∑
p�=0

σpΦk+p. (243)

The HFB Hamiltonian (219) reduces to

HHFB = EHFB +
∑
k �=0

ωka†
kak +

1
2

∑
k �=0

Δk

(
a†

ka†
−k + a−kak

)
, (244)

with the nonoperator term

EHFB = H(0) − 1
2
ρ2
1Φ0V − 1

2V

∑
kp

′
Φk+p(nknp + σkσp), (245)

in which k �= 0,p �= 0.
Instead of the Bogolubov canonical transformations (225), one has

ak = ukbk + v∗−kb†−k, bk = u∗
kak − v∗ka†

−k. (246)

And the Bogolubov equations (230) become

(ωk − εk)uk + Δkvk = 0, Δkuk + (ωk + εk)vk = 0. (247)

The Bogolubov Hamiltonian (231) has the same form, but with

EB = EHFB +
1
2

∑
k �=0

(εk − ωk), (248)

instead of Eq. (232).
The coefˇcient functions uk and vk are deˇned by the Bogolubov equa-

tions (247), under conditions

|uk|2 − |v−k|2 = 1, ukv∗k − v∗−ku−k = 0, (249)



BASICS OF BOSEÄEINSTEIN CONDENSATION 927

replacing conditions (226) and (227). These functions, due to the system unifor-
mity and isotropy, are real and symmetric with respect to the momentum inversion
k → −k. As a result, one has

u2
k − v2

k = 1, u2
k + v2

k =
ωk

εk
, ukvk = −Δk

2εk
,

(250)

u2
k =

ωk + εk

2εk
, v2

k =
ωk − εk

2εk
.

The Bogolubov spectrum becomes

εk =
√

ω2
k − Δ2

k. (251)

As is known from Sec. 6, the spectrum has to be gapless, which gives

μ1 = ρΦ0 +
1
V

∑
k �=0

(nk − σk)Φk. (252)

This differs form the condensate chemical potential (224) that is

μ0 = ρΦ0 +
1
V

∑
k �=0

(nk + σk)Φk. (253)

With μ1 from Eq. (252), expression (242) is

ωk =
k2

2m
+ ρ0Φk +

1
V

∑
p�=0

(npΦk+p − npΦp + σpΦp). (254)

In the long-wave limit, the Bogolubov spectrum (251) is of acoustic form (215),
with the sound velocity

c =

√
Δ
m∗ , (255)

in which

Δ ≡ lim
k→0

Δk = ρ0Φ0 +
1
V

∑
p�=0

σpΦp (256)

and the effective mass is

m∗ ≡ m

1 +
2m

V

∑
p�=0

(np − σp)Φ′
p

, (257)

where

Φ′
p ≡ ∂

∂p2
Φp.
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From Eqs. (255) and (256), we have

Δ ≡ m∗c2 = ρ0Φ0 +
1
V

∑
p�=0

σpΦp. (258)

Hence, expression (254) can be written as

ωk = m∗c2 +
k2

2m
+ ρ0(Φk − Φ0) +

1
V

∑
p�=0

np(Φk+p − Φp). (259)

Comparing Eqs. (213) and (255) yields

Σ12(0, 0) = ρ0Φ0 +
1
V

∑
p�=0

σpΦp. (260)

And from the HugenholtzÄPines relation (203), with μ1 from Eq. (252), we get

Σ11(0, 0) = (ρ + ρ0)Φ0 +
1
V

∑
p�=0

npΦp. (261)

Of course, the same Eqs. (260) and (261) can be derived directly from the Green
function equations.

The condensate chemical potential (253) can be written as

μ0 = Σ11(0, 0) + Σ12(0, 0) − 2ρ0Φ0. (262)

The difference between Eqs. (252) and (253) takes the form

μ0 − μ1 = 2 [Σ12(0, 0) − ρ0Φ0] , (263)

which again tells us that these chemical potentials are different. They coincide
only in the Bogolubov approximation [13, 14], when Σ12(0, 0) equals ρ0Φ0. Then
μ0 and μ1 both are also equal to ρ0Φ0 and, hence, to each other.

The momentum distribution (185) is

nk =
ωk

2εk
coth

( εk

2T

)
− 1

2
, (264)

while the anomalous average (187) reads as

σk = − Δk

2εk
coth

( εk

2T

)
. (265)
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The grand potential (239) enjoys the same form (240), but with

EB = −V

2

∫
Φ(r)

[
ρ2 + 2ρ0ρ1(r, 0) + 2ρ0σ1(r, 0)+

+ |ρ1(r, 0)|2 + |σ1(r, 0)|2
]
dr +

1
2

∑
k

(εk − ωk), (266)

which can be transformed to

EB = −N

2
ρΦ0 − ρ0

∑
p

(np + σp)Φp−

− 1
2V

∑
kp

(nknp + σkσp)Φk+p +
1
2

∑
k

(εk − ωk). (267)

7.4. Local-Density Approximation. When there exists an external potential
U(r) and the system is nonuniform, one can use the equations from Subsec. 7.2.
It is also possible to resort to the local-density approximation [1Ä3]. The local-
density, or semiclassical, approximation [85, 86] is applicable when the external
potential is sufˇciently smooth, such that∣∣∣∣ l0

U0

∂U(r)
∂r

∣∣∣∣	 1, (268)

where U0 and l0 are the characteristic depth and length of the potential, respec-
tively.

In this approximation, one looks for the solutions of the Bogolubov equa-
tions (230), represented as

uk(r) = u(k, r)
eik·r
√

V
, vk(r) = v(k, r)

eik·r
√

V
, (269)

where the functions u(k, r) and v(k, r) are assumed to be slowly varying as
compared to the exponentials, so that

|∇u(k, r)| 	 k|u(k, r)|, |∇v(k, r)| 	 k|v(k, r)|. (270)

Then, using the notations

ω(k, r) ≡ k2

2m
+ U(r) + 2Φ0ρ(r) − μ1(r) (271)

and
Δ(r) ≡ [ρ0(r) + σ1(r)]Φ0 , (272)
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one reduces the Bogolubov equations (230) to the form

[ω(k, r) − ε(k, r)]u(k, r) + Δ(r)v(k, r) = 0,
(273)

Δ∗(r)u(k, r) + [ω∗(k, r) + ε(k, r)]v(k, r) = 0,

in which
Φ0 ≡

∫
Φ(r)dr. (274)

The following procedure is analogous to the uniform case. For the coefˇcient
functions, we have

u2(k, r) − v2(k, r) = 1, u2(k, r) + v2(k, r) =
ω(k, r)
ε(k, r)

,

u(k, r)v(k, r) = − Δ(r)
2ε(k, r)

, (275)

u2(k, r) =
ω(k, r) + ε(k, r)

2ε(k, r)
, v2(k, r) =

ω(k, r) − ε(k, r)
2ε(k, r)

.

The local Bogolubov spectrum is

ε(k, r) =
√

ω2(k, r) − Δ2(r). (276)

From the requirement that the spectrum be gapless,

lim
k→0

ε(k, r) = 0, (277)

we ˇnd
μ1(r) = U(r) + [ρ0(r) + 2ρ1(r) − σ1(r)]Φ0. (278)

Denoting
Δ(r) ≡ mc2(r), (279)

from Eq. (272), we get

mc2(r) = [ρ0(r) + σ1(r)]Φ0. (280)

Then Eq. (271) becomes

ω(k, r) = mc2(r) +
k2

2m
. (281)

The local Bogolubov spectrum (276) takes the form

ε(k, r) =

√
c2(r)k2 +

(
k2

2m

)2

. (282)

This shows that c(r) is the local sound velocity.
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With spectrum (282), the bogolon momentum distribution (234) reads as

π(k, r) =
1
2

[
coth

{
ε(k, r)

2T

}
− 1
]

. (283)

In view of the system isotropy, the symmetry properties

ε(−k, r) = ε(k, r), π(−k, r) = π(k, r) (284)

are valid.
The single-particle density matrix (235) now transforms into

ρ1(r, r′) =
1
V

∑
k

n(k, r) eik·(r−r′), (285)

while the anomalous average (236) becomes

σ1(r, r′) =
1
V

∑
k

σ(k, r) eik·(r−r′). (286)

Here the particle local momentum distribution, replacing Eq. (264), is

n(k, r) =
ω(k, r)
2ε(k, r)

coth
[
ε(k, r)

2T

]
− 1

2
(287)

and, instead of the anomalous average (265), one has

σ(k, r) = − mc2(r)
2ε(k, r)

coth
[
ε(k, r)

2T

]
. (288)

The density of uncondensed particles (237) gives

ρ1(r) =
1
V

∑
k

n(k, r) (289)

and the anomalous average (238) is

σ1(r) =
1
V

∑
k

σ(k, r). (290)

The grand potential (239) reads as

Ω = EB + T

∫
ln [1 − exp {−βε(k, r)}] dk

(2π)3
dr. (291)
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Here the ˇrst term, after the dimensional regularization of the expression∫
[ε(k, r) − ω(k, r)]

dk
(2π)3

=
16m4

15π2
c5(r), (292)

takes the form

EB = −Φ0

2

∫ [
ρ2(r) + 2ρ0(r)ρ1(r) + 2ρ0(r)σ1(r) + ρ2

1(r) + σ2
1(r)
]
dr+

+
8m4

15π2

∫
c5(r)dr. (293)

When the system is constrained inside a ˇxed volume V , then the grand
potential Ω = −PV deˇnes the system pressure P = −Ω/V , irrespectively of
whether the system is uniform or not. But, when a nonuniform system is conˇned
inside a trapping potential that does not have rigid boundaries constraining the
system inside a given volume, then the system pressure cannot be deˇned as
−Ω/V . It is possible, being based on the generalized deˇnition of thermodynamic
limit (13), to introduce an effective volume and effective pressure. However,
these quantities are different for different potentials and, moreover, they are not
uniquely deˇned even for a given potential, hence, they would have no physical
meaning.

What is well deˇned for any nonuniform system is the local pressure p(r)
that enters the grand potential through the equality

Ω = −
∫

p(r) dr. (294)

For the grand potential (291), the local pressure is

p(r) = −T

∫
ln [1 − exp {−βε(k, r)}] dk

(2π)3
+

+
Φ0

2
[
ρ2(r) + 2ρ0(r)ρ1(r) + 2ρ0(r)σ1(r) + ρ2

1(r) + σ2
1(r)
]
− 8m4

15π2
c5(r).

(295)

Equation (295) can be represented as the sum

p(r) = p0(r) + pT (r),

in which

p0(r) =
[
ρ2(r) − ρ2

0(r)
]
Φ0 +

m2c4(r)
2Φ0

− 8m4

15π2
c5(r)
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and

pT (r) = −T

∫
ln[1 − exp {−βε(k, r)}] dk

(2π)3
.

The latter term, when temperature decreases, tends to zero as

pT (r) 
 T 4

2π2c3(r)
(T → 0).

For asymptotically weak interactions, when Φ0 → 0, Eq. (280), deˇning the
local sound velocity, reduces to

mc2(r) 
 ρ0(r)Φ0.

In that case, the local pressure (295) simpliˇes to

p(r) =
1
2
ρ2(r)Φ0 − T

∫
ln[1 − exp {−βε(k, r)}] dk

(2π)3
,

with the local Bogolubov spectrum

ε(k, r) =

√
ρ0(r)Φ0

k2

m
+
(

k2

2m

)2

.

Such local thermodynamic quantities are common for nonuniform systems,
both equilibrium [87] and quasi-equilibrium [88, 89].

7.5. Particle Densities. In the local-density approximation, it is straightfor-
ward to ˇnd the densities of particles. Thus, the condensate density is

ρ0(r) = |η(r)|2. (296)

For an equilibrium system, the condensate function is real. Equation (223) for
the condensate function, in the local-density approximation, becomes[

− ∇2

2m
+ U(r)

]
η(r) + Φ0[ρ0(r) + 2ρ1(r) + σ1(r)]η(r) = μ0η(r). (297)

The simplest way of solving this equation is by means of the ThomasÄFermi
approximation, when one neglects the spatial derivative, which yields

ρTF (r) =
μ0 − U(r)

Φ0
− 2ρ1(r) − σ1(r). (298)

In the case of cylindrical symmetry, one can introduce the ThomasÄFermi volume
VTF = πR2L, with the ThomasÄFermi radius R and the ThomasÄFermi length L
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deˇned by the equations

μ0 = U(R, 0) + Φ0[2ρ1(R, 0) + σ1(R, 0)],
(299)

μ0 = U

(
0,

L

2

)
+ Φ0

[
2ρ1

(
0,

L

2

)
+ σ1

(
0,

L

2

)]
.

In the ThomasÄFermi approximation, the condensate density is nonzero only
inside the ThomasÄFermi volume, where

ρ0(r) = ρTF(r)Θ(R − r)Θ
(

L

2
− |z|

)
, (300)

with Θ(·) being the unit step function. Of course, more correctly, the condensate
function should be calculated by directly solving Eq. (297).

The density of uncondensed particles (289) can be written as

ρ1(r) =
1
2

∫ [
ω(k, r)
ε(k, r)

− 1
]

dk
(2π)3

+
1
2

∫
ω(k, r)
ε(k, r)

{
coth

[
ε(k, r)

2T

]
− 1
}

dk
(2π)3

.

(301)
And the anomalous average (290) is

σ1(r) = −1
2

∫
mc2(r)
ε(k, r)

coth
[
ε(k, r)

2T

]
dk

(2π)3
. (302)

At zero temperature, the anomalous average becomes

σ0(r) = −1
2

∫
mc2(r)
ε(k, r)

dk
(2π)3

. (303)

This integral diverges. It can be regularized invoking the dimensional regular-
ization that is well deˇned for asymptotically weak interactions [4]. Employing
the dimensional regularization for ˇnite interactions requires that the limiting
condition

σ0(r) → 0 (ρ0 → 0) (304)

be satisˇed [12, 66, 67, 69Ä71]. This condition takes into account that the anom-
alous averages and Bose condensate always exist together, both being due to the
common reason of gauge symmetry breaking. As soon as the condensate density
is nonzero, the anomalous average is also nonzero. And, conversely, when the
condensate density becomes zero, the anomalous averages have also to disappear.

Another limiting condition is

σ0(r) → 0 (Φ0 → 0). (305)
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This condition takes into account that the anomalous average nulliˇes for the
ideal Bose gas [12, 66, 67, 69Ä71].

Under conditions (304) and (305), the dimensional regularization gives∫
1

ε(k, r)
dk

(2π)3
= −2m

π2

√
mΦ0ρ0(r).

Then Eq. (303) reduces to

σ0(r) =
m2c2(r)

π2

√
mΦ0ρ0(r). (306)

Thus, at temperatures outside the critical region, the anomalous average (302)
can be represented in the form

σ1(r) = σ0 −
1
2

∫
mc2(r)
ε(k, r)

{
coth

[
ε(k, r)

2T

]
− 1
}

dk
(2π)3

. (307)

This form can also be used even in the critical region, provided that interactions
are weak. Strictly speaking, form (307) is valid when one of the following
conditions holds true:

T

Tc
	 1,

ρΦ0

Tc
	 1, (308)

where Tc is the critical temperature.
In the vicinity of the transition point Tc, where c(r) → 0, the anomalous

average (302) behaves as

σ1(r) 
 −m2T

2π
c(r) (T → Tc). (309)

This behavior guarantees that the Bose condensation transition is of second order
for any interaction strength [12, 69Ä71].

For the convenience of calculations, the density (301) of uncondensed parti-
cles can be transformed into

ρ1(r) =
m3c3(r)

3π2

⎧⎨⎩1 +
3

2
√

2

∞∫
0

(√
1 + x2 − 1

)1/2
(
coth

[
mc2(r)

2T
x

]
− 1
)

dx

⎫⎬⎭;

(310)
and the anomalous average (307), into

σ1(r) = σ0(r) −
m3c3(r)
2
√

2π2

∞∫
0

(√
1 + x2 − 1

)1/2

√
1 + x2

(
coth

[
mc2(r)

2T
x

]
− 1
)

dx.

(311)
The sound velocity here is deˇned by Eq. (280).
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The local super�uid density has been introduced in Eq. (155). In the local-
density approximation, for an equilibrium system, we have

ρs(r) = ρ(r) − 2Q(r)
3T

, (312)

with the local dissipated heat

Q(r) =
∫

k2

2m

[
n(k, r) + n2(k, r) − σ2(k, r)

] dk
(2π)3

. (313)

In view of Eqs. (287) and (288), this yields

Q(r) =
1

(4π)2m

∞∫
0

k4dk

sinh2[ε(k, r)/2T ]
,

which can be transformed into

Q(r) =
m4c5(r)
(2π)2

√
2

∞∫
0

(√
1 + x2 − 1

)3/2
xdx√

1 + x2 sinh2[mc2(r)x/2T ]
. (314)

It is necessary to stress the importance of taking account of the anomalous
average. If in Eq. (313) one would omit this anomalous average, then the dissi-
pated heat would be inˇnite, hence the super�uid density would not exist at all.
But, taking the anomalous average into account renders the dissipated heat (314)
a well deˇned ˇnite quantity. The fact that the anomalous average is crucially im-
portant for describing super�uidity should be apparent remembering that |σ1(r)|
is the density of pair-correlated particles. These pair correlations are, actually,
responsible for the existence of super�uidity as such. Therefore, when there are
no pair correlations, there is no supe�uidity.

Having all particle densities deˇned makes it possible to study their spatial
distributions and to calculate the average condensate, n0, and super�uid, ns, frac-
tions, as well as the fraction n1 of uncondensed particles, given by the equations

n0 =
1
N

∫
ρ0(r) dr, ns =

1
N

∫
ρs(r) dr,

(315)
n1 =

1
N

∫
ρ1(r) dr, n0 + n1 = 1.

8. LOCAL INTERACTION POTENTIAL

8.1. Grand Hamiltonian. Till now, the consideration, for generality, has been
accomplished for any type of the symmetric interaction potential Φ(−r) = Φ(r),
with the sole restriction that this potential be integrable, such that integral (274),
deˇning Φ0, be ˇnite.
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When particles interact with each other through a potential, whose effective
interaction radius r0 is much shorter than the mean interparticle distance a, then
this potential can be represented in the local form

Φ(r) = Φ0δ(r), Φ0 ≡ 4π
as

m
, (316)

in which the interaction strength Φ0 is expressed through s-wave scattering length
as and mass m. For uniform systems, the potential is called stable [90] when
Φ0 is positive. For trapped atoms, a ˇnite system can be stable also for negative
interactions [1Ä3, 91].

The grand Hamiltonian (67), for the local interaction potential (316), contains
the following terms. The zero-order term (68) reads as

H(0) =
∫

η∗(r)
(
−∇2

2m
+ U − μ0

)
η(r) dr +

Φ0

2

∫
|η(r)|4dr. (317)

The ˇrst-order term, as always, is zero. The second-order term (70) is

H(2) =
∫

ψ†
1(r)

(
−∇2

2m
+ U − μ1

)
ψ1(r) drΦ0×

×
∫ [

2|η(r)|2ψ†
1(r)ψ1(r) +

1
2
(η∗(r))2ψ1(r)ψ(r) +

1
2
(η(r))2ψ†

1(r)ψ
†
1(r)
]

dr.

(318)

The third-order term (71) becomes

H(3) = Φ0

∫ [
η∗(r)ψ†

1(r)ψ1(r)ψ1(r) + ψ†
1(r)ψ

†
1(r)ψ1(r)η(r)

]
dr. (319)

And the fourth-order term (72) reduces to

H(4) =
Φ0

2

∫
ψ†

1(r)ψ
†
1(r)ψ1(r)ψ1(r) dr. (320)

8.2. Evolution Equations. Evolution equations, derived in Subsec. 4.5, sim-
plify for the local potential (316). The same notations (90) to (93) can be used.
But, instead of (94), we deˇne

ξ(r) ≡ 〈ψ†
1(r)ψ1(r)ψ1(r)〉. (321)

In addition, we shall employ the notation

ξ1(r) ≡ 〈ψ1(r)ψ1(r)ψ1(r)〉. (322)
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Equation (95) for the condensate function yields

i
∂

∂t
η(r) =

(
−∇2

2m
+ U − μ0

)
η(r)+

+ Φ0 [ρ0(r)η(r) + 2ρ1(r)η(r) + σ1(r)η∗(r) + ξ(r)] . (323)

The continuity equations (99) to (101) have the same form, but with the source
term

Γ(r, t) = iΦ0 [Ξ∗(r) − Ξ(r)] , (324)

with the anomalous correlation function

Ξ(r) = η∗(r)[η∗(r)σ1(r) + ξ(r)].

Equation (85) for the operator of uncondensed particles changes to

i
∂

∂t
ψ1(r, t) =

(
−∇2

2m
+ U − μ1

)
ψ1(r, t) + Φ0

[
X̂1(r, r) + X̂(r, r)

]
. (325)

Equation (103) for the anomalous average becomes

i
∂

∂t
σ1(r, t) = 2K(r) + 2(U − μ1)σ1(r)+

+ 2Φ0

[
η2(r)ρ1(r) + 2ρ0(r)σ1(r) + 2η(r)ξ(r) + η∗(r)ξ1(r)+

+ 〈ψ†
1(r)ψ1(r)ψ1(r)ψ1(r)〉

]
+ 2
[
η2(r) + σ1(r)

]
Φ(0). (326)

The quantity Φ(0), under the local potential (316), is not deˇned and requires to
be speciˇed by additional constraints.

A straightforward formal way of giving some meaning to this quantity would
be by remembering that the delta potential (316) is the limiting form of a potential
with a ˇnite interaction range r0, such that r0 	 a. For instance, potential (316)
could be treated as the limiting form of the potential

Φ(r) = A exp
(
−3r2

2r2
0

)
, (327)

where r0 → 0, so that the integral

Φ0 ≡
∫

Φ(r) dr

is ˇxed as in Eq. (316). The interaction radius is deˇned as

r2
0 ≡ 1

Φ0

∫
r2Φ(r) dr. (328)
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These requirements give

A =
(

3
2π

)3/2 Φ0

r3
0

.

Then, for potential (327), the quantity Φ(0) should be deˇned as

Φ(0) = A = 3

√
6
π

as

mr3
0

. (329)

However, we have to always remember that the local interaction poten-
tial (316) is an effective potential modeling particle interactions for the processes
occurring at the interparticle distance much larger than the interaction radius. In
order to characterize the processes at short distance, one has to use a different
effective potential that takes into account particle correlations [5, 81, 83]. The
latter, in particular, show that two particles cannot exist at the same spatial point.
This is equivalent to saying that Φ(0) must be set to zero.

The four-operator term can be simpliˇed as

〈ψ†
1(r)ψ1(r)ψ1(r)ψ1(r)〉 = 3ρ1(r)σ1(r), (330)

while the three-operator terms are left untouched.
Then the evolution equation (103) for the anomalous average leads to

i
∂

∂t
σ1(r) = 2K(r) + 2(U − μ1)σ1(r)+

+ 2Φ0

[
η2(r)ρ1(r) + 2ρ0(r)σ1(r) + 3ρ1(r)σ1(r) + 2η(r)ξ(r) + η∗(r)ξ1(r)

]
,

(331)

with the anomalous kinetic-energy density K(r) given by Eq. (104) and with Φ(0)
set to zero.

The derived evolution equations can be used for studying the initiation of
BoseÄEinstein condensation and also the decoherence processes in systems with
spontaneous symmetry breaking. For ˇnite systems, with N degrees of freedom,
coherence can persist [92Ä95] during the time not longer than that of order N/T .

8.3. Equilibrium Systems. Considering equilibrium systems, we follow
Secs. 6 and 7, substituting in the corresponding equations the local potential (316).
The grand Hamiltonian (219), in the HFB approximation, reads as

HHFB = EHFB +
∫

ψ†
1(r)

(
−∇2

2m
+ U − μ1

)
ψ1(r) dr+

+ Φ0

∫ [
2ρ(r)ψ†

1(r)ψ1(r) +
1
2
σ(r)ψ†

1(r)ψ
†
1(r) +

1
2
σ∗(r)ψ1(r)ψ1(r)

]
dr,

(332)
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where the nonoperator term is

EHFB = H(0) − Φ0

2

∫ [
2ρ2

1(r) + σ2
1(r)
]
dr, (333)

and the notation

ρ(r) ≡ ρ0(r) + ρ1(r), σ(r) ≡ η2(r) + σ1(r) (334)

is used. The condensate-function equation (223) becomes(
−∇2

2m
+ U

)
η(r)+Φ0 [ρ0(r)η(r) + 2ρ1(r)η(r) + σ1(r)η∗(r) + ξ(r)] = μ0η(r).

(335)
For the condensate chemical potential (224), we have

μ0 =
1

N0

∫
η∗(r)

(
−∇2

2m
+ U

)
η(r) dr+

+
Φ0

N0

∫ [
ρ2
0(r) + 2ρ0(r)ρ1(r) + (η∗(r))2 σ1(r)

]
dr. (336)

Employing the Bogolubov transformations (225) yields the Bogolubov equa-
tions

ω̂(r)uk(r) + Δ(r)vk(r) = εkuk(r), ω̂(r)vk(r) + Δ∗(r)uk(r) = −εkvk(r)
(337)

replacing Eqs. (230), with the operator

ω̂(r) ≡ −∇2

2m
+ U(r) − μ1 + 2Φ0ρ(r), (338)

instead of Eq. (228), and with

Δ(r) ≡ Φ0

[
η2(r) + σ1(r)

]
, (339)

instead of Eq. (229). The chemical potential μ1 is deˇned by the requirement that
the spectrum εk be gapless.

The grand potential has the same form (240), with

EB =−Φ0

2

∫ [
ρ2
0(r) + 4ρ0(r)ρ1(r) + 2ρ2

1(r) + 2 (η∗(r))2 σ1(r) + σ2
1(r)
]
dr−

−
∑

k

∫
εk|vk(r)|2dr, (340)

in agreement with Eq. (241).
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8.4. Uniform Systems. Resorting to the Fourier transformation (173) gives
the following terms of the grand Hamiltonian (67). The zero-order term (317) is

H(0) =
(

1
2
ρ2Φ0 − μ0ρ0

)
V. (341)

The ˇrst-order term is, as always, zero. The second-order term (318) reads as

H(2) =
∑
k �=0

(
k2

2m
+ 2ρ0Φ0 − μ1

)
a†

kak +
1
2
ρ0Φ0

∑
k �=0

(
a†

ka†
−k + a−kak

)
. (342)

The third-order term (319) yields

H(3) =
√

ρ0

V
Φ0

∑
kp

′ (
a†

kak+pa−p + a†
−pa

†
k+pak

)
, (343)

where
k �= 0, k + p �= 0, p �= 0.

And the fourth-order term (320) becomes

H(4) =
Φ0

2V

∑
q

∑
kp

′
a†

ka†
pap+qak−q, (344)

in which
k �= 0, p �= 0, p + q �= 0, k − q �= 0.

Equation (183) deˇnes the condensate chemical potential

μ0 = ρΦ0 +
Φ0

V

∑
k �=0

(
nk + σk +

ξk√
ρ0

)
. (345)

The grand Hamiltonian (332) in the HFB approximation transforms to

HHFB = EHFB +
∑
k �=0

ωka†
kak +

Δ
2

∑
k �=0

(
a†

ka†
−k + a−kak

)
, (346)

where the nonoperator term (333) is given by the expression

EHFB

V
=

Φ0

2
(
ρ2
0 − 2ρ2

1 + σ2
1

)
− μ0ρ0. (347)

Also, here the notation

ωk =
k2

2m
− μ1 + 2ρΦ0 (348)
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is used, and, instead of Eq. (339), we have

Δ = Φ0(ρ0 + σ1). (349)

The diagonalization of Hamiltonian (346) is done by the Bogolubov canonical
transformations (246), resulting in the Hamiltonian of the Bogolubov form (231).

The condensate chemical potential (253), or (336), reads as

μ0 = Φ0(ρ0 + 2ρ1 + σ1). (350)

And the chemical potential (252) becomes

μ1 = Φ0(ρ0 + 2ρ1 − σ1). (351)

Using the latter in Eq. (348) gives

ωk =
k2

2m
+ Φ0(ρ0 + σ1). (352)

The long-wave spectrum is acoustic,

εk 
 ck (k → 0), (353)

with the sound velocity

c ≡
√

Δ
m

, (354)

which is deˇned by the equation

mc2 = Φ0(ρ0 + σ1). (355)

Combining Eqs. (352) and (355) yields

ωk = mc2 +
k2

2m
. (356)

The solution to the Bogolubov equations (247) results in the Bogolubov
spectrum

εk =

√
(ck)2 +

(
k2

2m

)2

. (357)

Calculating Eq. (340), we resort to the dimensional regularization giving∫
(εk − ωk)

dk
(2π)3

=
16m4c5

15π2
.
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Then Eq. (340) reduces to

EB

V
= − Φ0

2
[
ρ2 + 2ρ0(ρ1 + σ1) + ρ2

1 + σ2
1

]
+

8m4c5

15π2
. (358)

The system pressure can be expressed through the grand potential (240),
which gives

p ≡ −Ω
V

= −EB

V
− T

∫
ln
(
1 − e−βεk

) dk
(2π)3

. (359)

The integral in Eq. (359) corresponds to thermal pressure. It can be calculated by
transforming it to the form∫

ln
(
1 − e−βεk

) dk
(2π)3

=

=
(mc)3

2
√

2π2

∞∫
0

ln
[
1 − exp

(
−mc2

T
x

)] (√
1 + x2 − 1

)1/2
xdx√

1 + x2
.

At low temperatures, such that T 	 mc2, one can expand the integral as∫
ln
(
1 − e−βεk

) dk
(2π)3


 − (mc)3

2π2

[(
T

mc2

)3

− 15
2

(
T

mc2

)5
]

.

Therefore, the zero-temperature pressure is

p = −EB

V
(T = 0). (360)

The internal energy is given by the expression

E ≡ 〈H〉 + μN, (361)

in which the average of the grand Hamiltonian is as in Eq. (59) and the sys-
tem chemical potential is deˇned in Eq. (60). At zero temperature, the internal
energy (361) yields the ground-state energy

E0 = EB + μN (T = 0), (362)

where we take into account that

〈H〉 = 〈HB〉 = EB (T = 0).

Then the ground-state energy is given by the equation

E0

N
=

2πas

mρ

(
ρ2 + ρ2

1 − 2ρ1σ1 − σ2
1

)
+

8m4c5

15π2ρ
. (363)
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For convenience, let us introduce the dimensionless ground-state energy

e0 ≡ 2mE

Nρ3/2
(364)

and the dimensionless gas parameter

γ ≡ ρ1/3as. (365)

The ground-state energy (364) at weak interactions, when γ 	 1, allows [69, 70]
for the expansion

e0 
 4πγ +
512
15

√
πγ5/2 +

512
9

γ4. (366)

The ˇrst two terms here reproduce the LeeÄHuangÄYang result [96Ä98]. When
particle interactions are strong, so that γ 
 1, then [69] one has

e0 
 8πγ +
6
5
(
9π4
)1/3 − 3

4
(
3π5
)1/3 1

γ
+

1
64
(
3π8
)1/3 1

γ4
. (367)

8.5. Atomic Fractions. For the local interaction potential (316), it is straight-
forward to calculate all atomic densities and fractions. The condensate density

ρ0 = ρ − ρ1 (368)

is expressed through the density of uncondensed particles

ρ1 =
∫

nk
dk

(2π)3
=
∫ [

ωk

2εk
coth

( εk

2T

)
− 1

2

]
dk

(2π)3
(369)

that can be rewritten as

ρ1 =
1
2

∫ (
ωk

εk
− 1
)

dk
(2π)3

+
∫

ωk

2εk

[
coth

( εk

2T

)
− 1
] dk

(2π)3
. (370)

The anomalous average

σ1 =
∫

σk
dk

(2π)3
= −

∫
mc2

2εk
coth

( εk

2T

) dk
(2π)3

(371)

can be treated as in Sec. 7, by separating the term

σ0 ≡ −
∫

mc2

2εk

dk
(2π)3

, (372)

which gives

σ1 = σ0 −
∫

mc2

2εk

[
coth

( εk

2T

)
− 1
] dk

(2π)3
. (373)
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Expression (372) diverges, but can be regularized invoking the dimensional
regularization, as in Sec. 7, resulting in∫

1
εK

dk
(2π)3

= −2m

π2

√
mρ0Φ0.

Then Eq. (372) becomes

σ0 =
(mc

π

)2√
mρ0Φ0. (374)

The anomalous average (373), with the separated term (374), is valid if at least
one of conditions (308) is satisˇed.

In the vicinity of the condensation temperature Tc, it is necessary to use the
anomalous average in the form

σ1 
 −mc2T

2π
(T → Tc), (375)

which follows from Eq. (371) and guarantees the second-order phase transition.
The density of uncondensed particles (370) can be represented as

ρ1 =
m3c3

3π2

⎧⎨⎩1 +
3

2
√

2

∞∫
0

(√
1 + x2 − 1

)1/2
[
coth

(
mc2

2T
x

)
− 1
]

dx

⎫⎬⎭ ,

(376)
and the anomalous average (373), as

σ1 = σ0 −
m3c3

2
√

2π2

∞∫
0

(√
1 + x2 − 1

)1/2

√
1 + x2

[
coth

(
mc2

2T
x

)
− 1
]

dx. (377)

The super�uid fraction

ns = 1 − 2Q

3T
(378)

is expressed through the dissipated heat

Q =
Δ2(P̂)
2mN

=
〈P̂2〉
2mN

. (379)

In the HFB approximation, we get

Q =
1
ρ

∫
k2

2m

(
nk + n2

k − σ2
k

) dk
(2π)3

, (380)
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which reduces to

Q =
1

(4π)2mρ

∞∫
0

k4dk
sinh2(εk/2T )

. (381)

The super�uid fraction (378) leads to the super�uid density

ρs = ρ − (mc)5

6
√

2π2mT

∞∫
0

(√
1 + x2 − 1

)3/2
xdx√

1 + x2 sinh2(mc2x/2T )
. (382)

The particle densities are related to particle fractions

n0 ≡ ρ0

ρ
= 1 − n1, n1 ≡ ρ1

ρ
, ns ≡ ρs

ρ
. (383)

Also, let us deˇne the dimensionless anomalous average

σ ≡ σ1

ρ
(384)

and the dimensionless sound velocity

s ≡ mc

ρ1/3
. (385)

At zero temperature, we have

n0 = 1 − s3

3π2
, n1 =

s3

3π2
, ns = 1,

(386)

σ =
2s2

π3/2

√
γn0 (T = 0).

When interactions are weak, such that γ 	 1, then the following expansions are
valid for the condensate fraction

n0 
 1 − 8
3
√

π
γ3/2 − 64

3π
γ3 − 640

9π3/2
γ9/2, (387)

sound velocity

s 
 2
√

πγ1/2 +
16
3

γ2 +
32

9
√

π
γ7/2 − 3904

27π
γ5, (388)

and the anomalous average

σ 
 8√
π

γ3/2 +
32
π

γ3 − 64
π3/2

γ9/2. (389)
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As is seen, the anomalous average is three times larger than the normal fraction
of uncondensed particles:

σ

n1

 3 (γ 	 1). (390)

This emphasizes again that the anomalous average in no way can be neglected
for a Bose-condensed system.

For strong interactions, when γ 
 1, we ˇnd the following expansions for
the condensate fraction:

n0 
 π

64
1
γ3

− 1
512

(
π5

9

)1/3 1
γ5

, (391)

sound velocity

s 

(
3π2
)1/3 − 1

64

(
π5

9

)1/3 1
γ3

+
1

1536

(
π7

3

)1/3 1
γ5

, (392)

and the anomalous average

σ 
 (9π)1/3

4
1
γ
− π

64
1
γ3

− 1
128

(
π4

3

)1/3 1
γ4

+
1

512

(
π5

9

)1/3 1
γ5

. (393)

Though now the anomalous average is smaller than n1, but it is much larger than
the condensate fraction:

σ

n0

 15.516γ2 (γ 
 1). (394)

Thus, the anomalous average is always of crucial importance and can never be
neglected.

At low temperatures, such that

T

mc2
	 1, (395)

we ˇnd [69Ä71] the fraction of uncondensed particles

n1 
 (mc)3

3π2ρ
+

(mc)3

12ρ

(
T

mc2

)2

, (396)

anomalous average

σ 
 σ0

ρ
− (mc)3

12ρ

(
T

mc2

)2

, (397)
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condensate fraction

n0 
 1 − (mc)3

3π2ρ
− (mc)3

12ρ

(
T

mc2

)2

, (398)

and the super�uid fraction

ns 
 1 − 2π2(mc)3

45ρ

(
T

mc2

)4

. (399)

Notice that the temperature corrections for σ are the same as for n1 and n0.
BoseÄEinstein condensation happens at the temperature

Tc =
2π

m

[
ρ

ζ(3/2)

]2/3

. (400)

In the critical region, where T → Tc, so that

mc2

T
	 1, (401)

we ˇnd [69Ä71] the expansions

n1 

(

T

Tc

)3/2

+
(mc)3

3π2ρ
, σ 
 −m2cT

2πρ
, n0 
 1 −

(
T

Tc

)3/2

− (mc)3

3π2ρ
,

(402)

ns 
 1 −
(

T

Tc

)3/2

+
ζ(1/2)
ζ(3/2)

(
T

Tc

)1/2
mc2

Tc
.

The super�uid fraction disappears together with the condensate fraction.
Passing to dimensionless quantities, it is convenient to consider the tempera-

ture deviation

τ ≡ 1 − T

Tc
(T � Tc) (403)

from the dimensionless transition temperature

tc ≡ mTc

ρ1/3
=

2π

[ζ(3/2)]2/3
= 3.312498. (404)

Then we obtain

s 
 3π

tc
τ +

9π

4tc

(
1 − 2π

γt2c

)
τ2, n1 
 1 − 3

2
τ +

3
8
τ2,

σ 
 −3
2
τ +

3
8

(
1 +

6π

γt2c

)
τ2, n0 
 3

2
τ − 3

8
τ2, (405)

ns 
 3
2
τ − 3

8

(
1 +

132.411
t3c

)
τ2.
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As is evident, though the anomalous average tends to zero, as T → Tc, but
it is of the same order as the condensate fraction, hence, again the anomalous
average cannot be omitted. If it were neglected, the transition would become of
ˇrst order, which is principally incorrect [67, 71]. While accurate taking account
of the anomalous average renders the BoseÄEinstein condensation the correct
second-order transition, as is obvious from expansions (405).

9. DISORDERED BOSE SYSTEMS

9.1. Random Potentials. The properties of Bose systems can be essentially
changed by imposing external spatially random potentials. In this section, the
theory is presented for the case when such random potentials are imposed on a
uniform system. There is vast literature studying Bose systems inside randomly
perturbed periodic lattices (see the review article [12] and recent works [99Ä101],
where further references can be found). But this is a different problem that is not
touched in the present section. In several papers (e.g., [102Ä106]) the in�uence
of weak disorder on a uniform Bose-condensed system has been studied. Strong
disorder can be treated by means of numerical Monte Carlo simulations [107]. In
the present section, the analytical theory is described, which is valid for arbitrarily
strong disorder. The consideration below is based on [108Ä110].

The system is described by the grand Hamiltonian

H = Ĥ − μ0N0 − μ1N̂1 − Λ̂, (406)

with the energy Hamiltonian

Ĥ =
∫

ψ̂†(r)
[
−∇2

2m
+ U(r) + ξ(r)

]
ψ̂(r)dr +

Φ0

2

∫
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r)dr

(407)
containing a random external potential ξ(r). Other notations are the same as in
the previous sections.

The random potential, without the loss of generality, can be treated as zero-
centered, such that

〈〈ξ(r)〉〉 = 0. (408)

The double brackets imply the related stochastic averaging [111]. The random-
potential correlations are characterized by the correlation function

〈〈ξ(r)ξ(r′)〉〉 = R(r − r′). (409)
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One can use the Fourier transformations

ξ(r) =
1√
V

∑
k

ξk eik·r, ξk =
1√
V

∫
ξ(r) e−ik·rdr,

(410)

R(r) =
1
V

∑
k

Rk eik·r, Rk =
∫

R(r) e−ik·rdr.

Then Eq. (409) yields the correlators

〈〈ξ∗kξp〉〉 = δkpRk, 〈〈ξkξp〉〉 = δ−kpRk. (411)

The quantum statistical averaging, involving a Hamiltonian H , for an operator
Â, is denoted as

〈Â〉H ≡ TrÂ e−βH

Tr e−βH
. (412)

The total averaging, including both the quantum and stochastic averagings, is
denoted as

〈Â〉 ≡ 〈〈(〈Â〉H)〉〉. (413)

The grand thermodynamic potential is given by the expression

Ω ≡ −T 〈〈lnTr e−βH〉〉, (414)

corresponding to the frozen disorder.
In addition to the particle densities, considered in the previous sections, for a

random system, it is necessary to introduce one more density. This is the glassy
density [108]

ρG ≡ 1
V

∫
〈〈|〈ψ1(r)〉H |2〉〉dr. (415)

With the Fourier transform

ψ1(r) =
1√
V

∑
k �=0

ak eik·r,

we come to

ρG =
1
V

∑
k �=0

〈〈|αk|2〉〉, (416)

where
αk ≡ 〈ak〉H . (417)

Because of condition (50), we have

〈〈αk〉〉 = 〈ak〉 = 0. (418)
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However, quantity (417) is not zero. The glassy fraction is given by

nG ≡ ρG

ρ
=

1
N

∫
〈〈|〈ψ1(r)〉H |2〉〉 dr, (419)

which can be represented as

nG =
1
N

∑
k �=0

〈〈|αk|2〉〉. (420)

To better illustrate the idea of the approach we aim at developing, let us
set U = 0. This will simplify the consideration. Then the grand Hamiltonian
writes as

H =
4∑

n=0

H(n) + Hξ, (421)

where the ˇrst sum consists of terms (341) to (344), while the last part

Hξ = ρ0ξ0

√
V +

√
ρ0

∑
k �=0

(
a†

kξk + ξ∗kak

)
+

1√
V

∑
kp( �=0)

a†
kapξk−p (422)

is due to the presence of the random potential.

9.2. Stochastic Decoupling. The sum in Hamiltonian (421) can be treated
in the standard way by resorting to the HFB approximation, as in the previous
sections. But the part (422), characterizing the action on particles of the random
potential, has to be treated with caution. If one would apply to this part the
simple HFB-type approximation

a†
kapξk−p → 〈a†

kap〉ξk−p + a†
kap〈ξk−p〉 − 〈a†

kap〉〈ξk−p〉,

then the in�uence of this part, because of Eq. (408), would reduce to the trivial
mean-ˇeld form

1
N

∑
kp( �=0)

a†
kapξk−p → ρ1ξ0

√
V ,

containing no nontrivial information on the action of the random potential on
particles.

In order not to loose the information on the in�uence of the random potential,
we employ the idea of stochastic decoupling that has been used earlier for taking
into account stochastic effects in different systems, such as resonant atoms [112Ä
115] and spin assemblies [116Ä121].

In the present case, the idea is that the simpliˇcation of the third-order
expression in the last term of Eq. (422) should include only the quantum statistical
averaging, but not the stochastic averaging, thus retaining undisturbed stochastic
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correlations. This idea can be represented in several equivalent ways. We can
write

〈a†
kapξk−p〉 = 〈〈α∗

kαpξk−p〉〉, (423)

which is equivalent to

〈a†
kapξk−p〉H = α∗

kαpξk−p. (424)

In turn, the latter is equivalent to the decoupling

a†
kap = a†

kαp + α∗
kap − α∗

kαp. (425)

Then, we introduce [108Ä110] the nonuniform canonical transformation

ak = ukbk + v∗−kb†−k + wkϕk, (426)

whose coefˇcient functions are deˇned so that to diagonalize the grand Hamil-
tonian (421) in terms of the operators bk. The latter are treated as quantum
variables with the condition

〈bk〉H = 0. (427)

The variables ϕk represent stochastic ˇelds. In view of Eqs. (426) and (427), we
have

αk ≡ 〈ak〉H = wkϕk. (428)

Diagonalizing Hamiltonian (421) results in the relations

u2
k =

ωk + εk

2εk
, v2

k =
ωk − εk

2εk
,

(429)

ukvk = −mc2

2εk
, wk = − 1

2ωk + mc2
,

in which

ωk =
k2

2m
+ mc2. (430)

The Bogolubov spectrum

εk =

√
(ck)2 +

(
k2

2m

)2

(431)

has the standard form, with the sound velocity deˇned by the equation

mc2 =
(

n0 +
σ1

ρ

)
ρΦ0. (432)
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The stochastic ˇeld satisˇes the Fredholm equation

ϕk =
√

ρ0ξk − 1√
V

∑
p

ξk−pϕp

ωp + mc2
. (433)

Hamiltonian (421) acquires the diagonal form

H = EB +
∑

k

εkb†kbk + Hran, (434)

where the last term
Hran ≡ ϕ0

√
N0 (435)

characterizes the explicit in�uence of the random potential on the system energy.
For the particle momentum distribution (185), we get

nk =
ωk

2εk
coth

( εk

2T

)
− 1

2
+ 〈〈|αk|2〉〉; (436)

and for the anomalous average (187),

σk = −mc2

2εk
coth

( εk

2T

)
+ 〈〈|αk|2〉〉. (437)

Expressions (436) and (437) possess, as compared with Eqs. (264) and (265),
additional terms caused by the random potential. From Eqs. (428) and (429), it
follows that

〈〈|αk|2〉〉 =
〈〈|ϕk|2〉〉

(ωk + mc2)2
. (438)

The partial chemical potentials (350) and (351) are of the same form

μ0 = (ρ + ρ1 + σ1)Φ0, μ1 = (ρ + ρ1 − σ1)Φ0. (439)

But the quantities

ρ1 =
1
V

∑
k �=0

nk, σ1 =
1
V

∑
k �=0

σk

entering them are now different. The density of uncondensed particles becomes
the sum of two terms,

ρ1 = ρN + ρG. (440)

The ˇrst term is the normal density

ρN =
1
2

∫ [
ωk

εk
coth

( εk

2T

)
− 1
]

dk
(2π)3

(441)
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that, as earlier, is due to ˇnite temperature and interactions, while the second
term,

ρG =
∫ 〈〈|ϕk|2〉〉

(ωk + mc2)2
dk

(2π)3
, (442)

is the glassy density produced by the random potential.
The anomalous average is also the sum of two terms,

σ1 = σN + ρG. (443)

The ˇrst term is
σN = −1

2

∫
mc2

εk
coth

( εk

2T

) dk
(2π)3

, (444)

while the second term, caused by the presence of the random potential, coincides
with the glassy density (442).

The partial chemical potentials (439), with expressions (440) and (443), be-
come

μ0 = (ρ + ρN + σN + 2ρG)Φ0, μ1 = (ρ + ρN − σN )Φ0, (445)

essentially differing from each other.
The super�uid density (378) requires the knowledge of the dissipated heat (379).

The latter also reduces to the two-term sum

Q = QN + QG. (446)

The ˇrst term is analogous to Eq. (380) giving

QN =
1

8mρ2

∫
k2

sinh2(εk/2T )
dk

(2π)3
. (447)

And the second term

QG =
1

2mρ

∫
k2〈〈|ϕk|2〉〉

εk(ωk + mc2)
coth

( εk

2T

) dk
(2π)3

(448)

is the heat dissipated by the glassy fraction. Thus, the super�uid density (378)
takes the form

ns = 1 − 2QN

3T
− 2QG

3T
. (449)

9.3. Perturbation-Theory Failure. Considering the case of weak disorder,
it is tempting to resort to perturbation theory with respect to disorder strength.
In doing this, one has to keep in mind that such a perturbation theory can fail.
Therefore, the results derived by means of perturbation theory may be not reliable.
To illustrate this, let us consider the average energy

Eran ≡ 〈Hran〉 = 〈〈ϕ0〉〉
√

N0, (450)

related to the random term (435).
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Assuming that disorder is weak, one could think that Eq. (433) could be
treated perturbatively, by means of the iteration procedure starting with

ϕ
(0)
k =

√
ρ0ξk.

The ˇrst iteration gives

ϕ
(1)
k =

√
ρ0ξk −

√
ρ0

V

∑
p

ξk−pξp

ωp + mc2
.

Using this in Eq. (450) yields

E(1)
ran = −ρ0

∑
p

〈〈|ξp|2〉〉
ωp + mc2

.

In view of correlators (411), one gets

E(1)
ran = −

∫
N0Rp

ωp + mc2

dp
(2π)3

. (451)

That is, the direct in�uence of the random potential would lead to the decrease
of the system energy. It is exactly this expression (451) that has been obtained
by several authors (see, e.g., [122]) employing perturbation theory.

However, from Eqs. (418) and (428), involving no perturbation theory, it is
seen that

〈〈αk〉〉 = 0, 〈〈ϕk〉〉 = 0.

Consequently, the random energy (450) is exactly zero:

Eran ≡ 〈Hran〉 = 0. (452)

Also, using perturbation theory in calculating sound velocity, some authors
(e.g., [122]) ˇnd that the speed of sound would increase due to the random po-
tential. Contrary to this, in our theory [108Ä110], the sound velocity decreases,
which looks more natural and is in agreement with other [105] calculations. Re-
ally, it looks to be clear that the occurrence of an additional random potential
should lead to additional scattering and, hence, to the decrease of sound veloc-
ity. Some other contradictions resulting from the use of perturbation theory are
illustrated in [108, 110].

Note that all consideration above is valid for any type of disorder character-
ized by the corresponding correlation function (409).
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9.4. Local Correlations. To proceed further, let us consider local correlations,
described by the delta-correlated disorder, when the correlation function (409) is

R(r) = R0δ(r). (453)

Then Eq. (411) gives
〈〈ξ∗kξp〉〉 = δkpR0. (454)

The solution to the Fredholm equation (433) can be well approximated [108] by

ϕk =
√

ρ0ξk

1 +
1√
V

∑
p

ξp

ωp + mc2

. (455)

It is convenient to introduce [108] the disorder parameter

ζ ≡ a

lloc
=

1
ρ1/3lloc

, (456)

being the ratio of the mean interparticle distance versus the localization length

lloc ≡
4π

7m2R0
. (457)

Employing the self-similar approximation theory [123Ä132] results in

〈〈|ϕk|2〉〉 =
ρ0R0s

3/7

(s − ζ)3/7
, (458)

where s is the dimensionless sound velocity (385).
The local disorder, with the delta correlation (453), allows for more straight-

forward calculations. At the same time, it gives good understanding of the
in�uence of disorder on the system even for the general case of nonlocal disor-
der. If the random potential ξ(r) is characterized by a ˇnite strength VR, with
the correlation function (409) having a ˇnite correlation length lR, then, to pass
to that case, one should make the replacement

R0 = V 2
R l3R, (459)

which follows directly from the deˇnition of correlator (409). As a result, the
localization length (457) becomes

lloc =
4π

7m2V 2
R l3R

. (460)
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The particle fractions

n0 ≡ ρ0

ρ
, nN ≡ ρN

ρ
, nG ≡ ρG

ρ
(461)

satisfy the normalization
n0 + nN + nG = 1. (462)

Let us deˇne the dimensionless anomalous averages

σ ≡ σN

ρ
,

σ1

ρ
= σ + nG. (463)

Passing to dimensionless quantities, let us use the gas parameter γ, deˇned
in Eq. (365), dimensionless sound velocity (385), and dimensionless temperature

t ≡ mT

ρ2/3
. (464)

Then, the equation for the sound velocity (432) reads as

s2 = 4πγ(1 − nG + σ). (465)

For the normal fraction of uncondensed particles, we have

nN =
s3

3π2

⎧⎨⎩1 +
3

2
√

2

∞∫
0

(√
1 + x2 − 1

)1/2
[
coth

(
s2x

2t

)
− 1
]

dx

⎫⎬⎭ . (466)

The glassy fraction is
nG =

(1 − nN )ζ
ζ + 7s4/7(s − ζ)3/7

. (467)

And the super�uid fraction becomes

ns = 1 − 4
3
nG − s5

6
√

2π2t

∞∫
0

(√
1 + x2 − 1

)3/2
xdx√

1 + x2 sinh2(s2x/2t)
. (468)

The BoseÄEinstein condensation temperature Tc, in the presence of disorder,
decreases linearly with the increasing disorder strength, as compared to the tran-
sition temperature T 0

c , given by Eq. (400), for the system without disorder. The
relative transition temperature decrease, for ζ < 1, follows [108] the law

δTc ≡
Tc − T 0

c

T 0
c

= − 2ζ

9π
. (469)

This is in agreement with Monte Carlo simulations [107].
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Depending on the relation between the localization length lloc and the coher-
ence length

lcoh =
∫

r|s(r, 0)| dr∫
|s((r, 0)| dr , (470)

there can exist three different phases [110].
Super�uid phase exists, when the localization length is larger than the coher-

ence length:
lloc > lcoh. (471)

In this case, the disorder is yet weak and cannot destroy the system coherence.
Bose glass can occur, when the localization length becomes shorter than the

coherence length, but yet larger than the mean interparticle distance:

a < lloc < lcoh. (472)

Then a kind of granular condensate can exist, being localized in different spatial
regions that are separated from each other by the normal nonsuper�uid phase.

Normal glass appears, when the localization length is shorter than the mean
interparticle distance:

lloc < a. (473)

Therefore no coherence between particles can arise, all of them being localized
in separate regions of deep random wells.

9.5. Bose Glass. The peculiar phase of the Bose glass is the random mixture
of Bose-condensed droplets, localized in different spatial regions that are separated
from each other by the normal phase. In the Bose-condensed regions, the gauge
symmetry is locally broken, while in the regions of the normal phase, the gauge
symmetry is preserved. All these regions are randomly distributed in space and it
is even possible that they chaotically change their spatial locations. Also, they are
not necessarily compact and may be ramiˇed having fractal geometry [133, 134].

Such a randomly mixed system is a particular case of heterophase systems,
whose examples are ubiquitous in condensed matter physics. In this respect, it
is possible to mention paramagnets with local magnetic ordering revealing spin
waves [135Ä139], many ferroelectrics [140Ä143] and superconductors [144Ä149],
colossal magnetoresistant materials [150Ä152], and some other systems reviewed
in [54, 153Ä157].

The typical features of these heterophase materials are: (i) the embryos of
one phase inside another are mesoscopic, their characteristic sizes being much
larger than the mean interparticle distance but shorter than the system length;
(ii) the spatial distribution of the embryos, as well as their shapes are random;
(iii) the system, as a whole, is quasi-equilibrium, being either stable, or at least
metastable, with the lifetime essentially longer than the local equilibration time.
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Such materials, with randomly distributed mesoscopic embryos of one phase
inside another should be distinguished from systems composed of large station-
ary domains and from Gibbs mixtures of coexisting macroscopic phases [158].
For the equilibrium macroscopic phases, coexisting with each other, one has to
consider the interfacial free energy [159]. The notion of interfacial free energy
arises when one considers uniform macroscopic phases, while the mesoscopic het-
erophase inclusions are nonuniform. For quasi-equilibrium mesoscopic embryos,
the interfacial regions are not well deˇned, being often ramiˇed and nonequilib-
rium. Quasi-equilibrium embryos of competing phases are also different from
nonequilibrium nuclei arising in kinetic phase transitions [160, 161].

A general approach to treating such random heterophase mixtures has been
advanced and developed in [162Ä171], and summarized in the review artic-
les [54, 156, 157]. Here, this approach is applied for describing the Bose glass.

Assume that we aim at describing the heterophase mixture of normal un-
condensed phase and Bose-condensed phase. The condensed phase exists in the
form of mesoscopic embryos surrounded by the normal uncondensed phase. The
effective total volume, occupied by each phase is Vν , with the index ν = 1, 2
enumerating the phases. The geometric weight of each phase is

wν ≡ Vν

V
(V = V1 + V2), (474)

where V is the system volume. This weight enjoys the standard probability
properties

w1 + w2 = 1, 0 � wν � 1, (475)

because of which it can be termed the geometric probability.
The nonuniform mixture of phases, consisting of mesoscopic embryos, re-

quires the use of two types of averages, the statistical averaging over the particle
degrees of freedom and the conˇguration averaging over all admissible random
spatial phase conˇgurations. Accomplishing the conˇguration averaging over
phase conˇgurations [54, 156, 157] results in the appearance of the renormalized
Hamiltonian

H̃ = H1

⊕
H2, (476)

consisting of two terms corresponding to each of the phases. This Hamiltonian is
deˇned on the mixture space

M = H1

⊗
H2. (477)

By its mathematical structure, this space is the tensor product of the weighted
Hilbert spaces [54, 156, 157]. It can be treated as a particular case of a ˇber
bundle [172].
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The effective statistical operator for the random mixture becomes

ρ̂ = ρ̂1

⊗
ρ̂2, (478)

with ρ̂ν being the effective statistical operators for each of the phases.
Thus, after the conˇguration averaging, we come to the statistical ensemble

{ρ̂,M} that is the collection of the partial phase ensembles {ρ̂ν ,Hν}. The partial
ensembles can be called the reduced, or restricted, ensembles, since they are
deˇned on the restricted spaces of microscopic states, typical of the corresponding
phase [173Ä175]. All details are given in the reviews [54, 156, 157].

The Hamiltonians Hν are the effective phase Hamiltonians. For the Bose-
condensed phase,

H1 = Ĥ1 − μ0N0 − μ1N̂1 − Λ̂, (479)

while for the normal uncondensed phase,

H2 = Ĥ2 − μ2N̂2, (480)

where N̂2 is the number operator for the normal phase.
The energy Hamiltonian for the Bose-condensed phase reads as

Ĥ1 = w1

∫
ψ̂†(r)

[
−∇2

2m
+ U(r) + ξ(r)

]
ψ̂(r) dr+

+
w2

1

2

∫
ψ̂†(r)ψ̂†(r′)Φ(r − r′)ψ̂(r′)ψ̂(r) dr dr′, (481)

with the Bogolubov-shifted ˇeld operator

ψ̂(r) = η(r) + ψ1(r).

For the normal phase, the energy Hamiltonian is

Ĥ2 = w2

∫
ψ†

2(r)
[
−∇2

2m
+ U(r) + ξ(r)

]
ψ2(r) dr+

+
w2

2

2

∫
ψ†

2(r)ψ
†
2(r

′)Φ(r − r′)ψ2(r′)ψ2(r) dr dr′. (482)

The interaction potential here is written in the general form. But, in particular, it
can take the local form (316).

In the broken-symmetry phase, we have, as earlier, the densities of condensed
and uncondensed particles, respectively,

ρ0(r) = |η(r)|2, ρ1(r) = 〈ψ†
1(r)ψ1(r)〉. (483)
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And in the normal phase, there is only the density of normal particles

ρ2(r) = 〈ψ†
2(r)ψ2(r)〉. (484)

The numbers of particles in the whole heterophase system are written as
follows. The number of condensed particles is

N0 = w1

∫
ρ0(r) dr. (485)

Here and below, the integration is over the whole system. The number of
uncondensed particles is given by the average

N1 = 〈N̂1〉 = w1

∫
ρ1(r) dr (486)

of the number operator

N̂1 = w1

∫
ψ†

1(r)ψ1(r) dr. (487)

The number of normal particles is the average

N2 = 〈N̂2〉 = w2

∫
ρ2(r) dr (488)

of the number operator

N̂2 = w2

∫
ψ†

2(r)ψ2(r) dr. (489)

The total number of particles in the system is the sum

N = N0 + N1 + N2. (490)

The related fractions of condensed, n0, uncondensed, n1, and normal, n2, particles
satisfy the normalization

n0 + n1 + n2 = 1. (491)

The system chemical potential is

μ = μ0n0 + μ1n1 + μ2n2. (492)

From the condition of equilibrium, it follows [12] that

μ2 =
μ0n0 + μ1n1

n0 + n1
= μ. (493)
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The grand thermodynamic potential is deˇned as in the previous sections,

Ω = −T 〈〈lnTr e−β ˜H〉〉, (494)

with the double brackets implying the stochastic averaging over the random ex-
ternal potential ξ(r). The geometric weights wν are deˇned to be the minimizers
of the grand potential (494), under the normalization condition (475). The latter
can be taken into account explicitly by introducing the notation

w1 ≡ w, w2 ≡ 1 − w. (495)

Then the minimization of the grand potential (494) implies

∂Ω
∂w

= 0,
∂2Ω
∂w2

> 0. (496)

The ˇrst condition gives the equation〈〈(〈
∂H̃

∂w

〉
˜H

)〉〉
=

〈
∂H̃

∂w

〉
= 0 (497)

for the weight w, while the second, the stability condition(〈
∂2H̃

∂w2

〉)
> β

〈(
∂H̃

∂w

)2〉
. (498)

Since the right-hand side of inequality (498) is non-negative, the sufˇcient stability
condition is 〈

∂2H̃

∂w2

〉
> 0. (499)

Let us use the notation for the single-particle terms of the condensed phase,

K1 ≡
∫ 〈

ψ̂†(r)
[
−∇2

2m
+ U(r) + ξ(r)

]
ψ̂(r)

〉
dr−

− μ0

∫
ρ0(r) dr − μ1

∫
ρ1(r) dr, (500)

and the normal phase,

K2 ≡
∫ 〈

ψ†
2(r)

[
−∇2

2m
+ U(r) + ξ(r)

]
ψ2(r)

〉
dr− μ2

∫
ρ2(r) dr, (501)
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respectively. Similarly, we can deˇne the interaction terms for the condensed
phase,

Φ1 ≡
∫
〈ψ̂†(r)ψ̂†(r′)Φ(r − r′)ψ̂(r′)ψ̂(r)〉 dr dr′, (502)

and the normal phase,

Φ2 ≡
∫
〈ψ†

2(r)ψ
†
2(r

′)Φ(r − r′)ψ2(r′)ψ2(r)〉 dr dr′. (503)

In the above expressions (500) and (502), it is assumed that the linear in ψ1 terms
are omitted, being cancelled by the term Λ̂ in Hamiltonian (479).

Then Eq. (497) yields the equation for the geometric weight of the condensed
phase

w =
Φ2 + K2 − K1

Φ1 + Φ2
(504)

and the stability condition (499) results in the inequality

Φ1 + Φ2 > 0. (505)

The latter condition shows that the heterophase mixture can exist only for particles
with repulsive interactions.

10. PARTICLE FLUCTUATIONS AND STABILITY

10.1. Stability Conditions. Fluctuations of observable quantities in statistical
systems are characterized by the dispersions of self-adjoint operators correspond-
ing to observables. Let Â be the operator of an observable quantity given by
the statistical average 〈Â〉 of this operator. The �uctuations of this observable
quantity are quantiˇed by the dispersion

Δ2(Â) ≡ 〈Â2〉 − 〈Â〉2. (506)

The �uctuations of an observable quantity are called thermodynamically nor-
mal when the related dispersion is proportional to Nα, with α not larger than
one. And the �uctuations are termed thermodynamically anomalous if the cor-
responding dispersion is proportional to Nα, with α larger than one. In recent
literature on Bose systems there has appeared a number of articles claiming the
occurrence of thermodynamically anomalous �uctuations of the particle number
in Bose systems everywhere below the transition temperature.

In the papers [63, 176Ä178] and reviews [5, 9, 12], it has been explained that
the occurrence of such anomalous �uctuations contradicts the basic principles
of statistical physics and that their appearance in some theoretical works is due



964 YUKALOV V. I.

merely to incorrect calculations. Because of the importance of this problem, it is
described below, being based on [5, 9, 12, 63,176Ä178].

The ratio of the operator dispersion to its average value quantiˇes the intensity
of the system response to the variation of the considered observable. This response
has to be ˇnite in order that the system would be stable with respect to the
observable-quantity �uctuations. That is, this ratio has to satisfy the stability
condition [12, 63, 176Ä178]

0 � Δ2(Â)
|〈Â〉|

< ∞. (507)

This condition must hold for all observables and for any statistical system, in-
cluding thermodynamic limit. For extensive observables, to be considered below,
〈Â〉 ∝ N . The limiting ratio

χ(Â) ≡ lim
N→∞

Δ2(Â)
N

(508)

has the meaning of the response function related to the variation of the observ-
able represented by the operator Â, and can be called �uctuation susceptibility.
Therefore, another form of the stability condition is

0 � χ(Â) < ∞. (509)

The number of particles is the observable represented by the number operator
N̂ . Hence, the stability condition with respect to particle �uctuations is

0 � χ(N̂) < ∞. (510)

From the general relations of statistical mechanics and thermodynamics that
can be found in almost any course [49, 50, 59, 60, 62, 79, 81, 88Ä90], it is easy
to show that quantity (508) is really proportional to some physical susceptibility.
Being interested in particle �uctuations, one has to consider the dispersion Δ2(N̂).
The related physical susceptibility is the isothermal compressibility. This can be
deˇned in any statistical ensemble, as is shown below.

In the canonical ensemble, where the thermodynamic potential is the free
energy F = F (T, V, N), the isothermal compressibility is given by the derivatives

κT =
1
V

(
∂2F

∂V 2

)−1

TN

= − 1
V

(
∂P

∂V

)−1

TN

. (511)

In the Gibbs ensemble, with the Gibbs thermodynamic potential
G = G(T, P, N), the compressibility is

κT = − 1
V

(
∂2G

∂P 2

)
TN

= − 1
V

(
∂V

∂P

)
TN

. (512)
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And in the grand canonical ensemble, with the grand thermodynamic potential
Ω = Ω(T, V, μ), the compressibility becomes

κT = − 1
Nρ

(
∂2Ω
∂μ2

)
TV

=
1

Nρ

(
∂N

∂μ

)
TV

. (513)

Of course, the value of the compressibility does not depend on the used en-
semble, provided that it is correctly deˇned as a representative ensemb-
le [54, 63, 64, 71]. The fact that the compressibility is directly related to par-
ticle �uctuations is the most evident in the grand canonical ensemble, where

κT =
Δ2(N̂)
ρTN

. (514)

The importance of correctly describing the particle �uctuations is caused by
the fact that they deˇne not only the compressibility, but also are connected with
several other observable quantities, such as the hydrodynamic sound velocity sT ,

s2
T ≡ 1

m

(
∂P

∂ρ

)
T

=
1

mρκT
=

NT

mΔ2(N̂ )
, (515)

and the central structure factor

S(0) = ρTκT =
T

ms2
T

=
Δ2(N̂)

N
. (516)

As is seen, the susceptibility χ(N̂) coincides with the structure factor (516).
It is worth stressing that all expressions (511) to (516) are exact thermody-

namic relations that are valid for any stable equilibrium statistical system.
In stable statistical systems, the compressibility, as well as the structure factor,

are ˇnite. This is a very well-known experimental fact. They can be divergent
only at phase transition points, where, as is known, the system is unstable. But
everywhere outside of transition points, all these quantities must be ˇnite.

10.2. Fluctuation Theorem. The stability condition (509) is necessary in
order that the system would be stable with respect to the �uctuations of the
observable quantity represented by the operator Â. But what can be said with
regard to an observable represented by a composite operator

Â =
∑

i

Âi, (517)

given by a sum of several self-adjoint operators? How the �uctuations for the
total sum of Â are connected with partial �uctuations for Âi? To formulate this
question more precisely, let us give some deˇnitions.
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Deˇnition. Thermodynamically normal �uctuations.
Fluctuations of an observable quantity, represented by a self-adjoint opera-

tor Â, are called thermodynamically normal if and only if the stability condi-
tion (509) holds for this operator. Then the related susceptibility (508) is also
called thermodynamically normal.

Deˇnition. Thermodynamically anomalous �uctuations.
Fluctuations of an observable quantity, represented by a self-adjoint opera-

tor Â, are called thermodynamically anomalous if and only if the stability condi-
tion (509) does not hold for this operator. Then the related susceptibility (508) is
also termed thermodynamically anomalous.

The question of interest is how the total �uctuation susceptibility χ(Â) is
connected with the partial �uctuation susceptibilities χ(Âi). Or, in physical
terminology, can it happen that the total susceptibility be ˇnite, while some of
the partial susceptibilities be inˇnite? The answer to this question is given by the
following theorem on �uctuations of composite observables.

Fluctuation Theorem (Yukalov [63, 177]). Let the observable quantity be
represented by a composite operator (517) that is a sum of self-adjoint operators.
Then the dispersion of this operator is

Δ2

(∑
i

Âi

)
=
∑

i

Δ2(Âi) +
∑
i�=j

λij

√
Δ2(Âi)Δ2(Âj), (518)

where |λij | < 1, hence the total �uctuation susceptibility reads as

χ

(∑
i

Âi

)
=
∑

i

χ(Âi) +
∑
i�=j

λij

√
χ(Âi)χ(Âj). (519)

From here it follows that the total �uctuation susceptibility is normal if and
only if all partial �uctuation susceptibilities are normal. And the total �uctuation
susceptibility is anomalous if and only if at least one of the partial �uctuation
susceptibilities is anomalous.

10.3. Ideal-Gas Instability. For illustrative purpose, one often considers the
ideal Bose gas. The grand Hamiltonian for noninteracting particles is a particular
case of Hamiltonian (58), where the energy Hamiltonian is

Ĥ =
∫

ψ̂†(r)
(
−∇2

2m
+ U

)
ψ̂(r) dr. (520)

Substituting here the Bogolubov shift (48) yields the grand Hamiltonian

H =
∫

η∗(r)
(
−∇2

2m
+ U − μ0

)
η(r) dr +

∫
ψ†

1(r)
(
−∇2

2m
+ U − μ1

)
ψ1(r) dr.

(521)
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The equations of motion become

i
∂

∂t
η(r, t) =

(
−∇2

2m
+ U − μ0

)
η(r, t),

i
∂

∂t
ψ1(r, t) =

(
−∇2

2m
+ U − μ1

)
ψ1(r, t). (522)

Let us pass to the uniform gas, when there is no external potential, U = 0.
Then, in equilibrium, the condensate function is constant, η(r, t) = η = const.
The equation for the condensate function gives μ0 = 0.

In the momentum representation, Hamiltonian (521), with U = 0, reduces to

H =
∑
k �=0

(
k2

2m
− μ1

)
a†

kak. (523)

The condition of the condensate existence (15), as well as the HugenholtzÄPines
relation (203), result in μ1 = 0 for temperatures below the condensation tem-
perature

Tc =
2π

m

[
ρ

ζ(d/2)

]d/2

, (524)

written here for a d-dimensional space. Expression (524) shows that positive Tc

does not exist for d = 1, since ζ(1/2) = −1.460 and that Tc = 0 for d = 2, since
ζ(1) = ∞. Positive Tc exists only for d > 2.

For the number operator N̂ = N0 + N̂1, taking into account that
cov (N0, N̂1) = 0 and Δ2(N0) = 0, one ˇnds

Δ2(N̂) = Δ2(N̂1). (525)

Let us emphasize that the condensate fraction does not �uctuate at all and
that the total �uctuations are caused solely by the uncondensed particles. The
number operator of the latter is

N̂1 ≡
∫

ψ†
1(r)ψ1(r) dr =

∑
k �=0

a†
kak. (526)

Invoking the commutation relations and the Wick theorem, one has

〈a†
kaka†

pap〉 = 〈a†
ka†

pakap〉 + δkpnk,

〈a†
ka†

pakap〉 = nknp + δkpn
2
k,

where the momentum distribution is

nk ≡ 〈a†
kak〉 =

[
exp
(

βk2

2m

)
− 1
]−1

.
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This leads to
〈N̂2

1 〉 = N2
1 +

∑
k �=0

nk(1 + nk).

Therefore particle �uctuations are characterized by the dispersion

Δ2(N̂) = Δ2(N̂1) =
∑
k �=0

nk(1 + nk). (527)

Remark. In some works, the authors forget that BoseÄEinstein condensation
necessarily requires broken gauge symmetry. Forgetting this, one extends the
sum in Eq. (526) to k = 0. Then, separating the term with k = 0, one gets
the condensate �uctuations described by the dispersion Δ2(N0) proportional to
N2

0 . One blames the grand canonical ensemble to be guilty for this unreasonable
result, naming this ®grand canonical catastrophe¯. However, as is clear, there
is no any catastrophe here and not the grand ensemble is guilty, but the authors
doing incorrect calculations. One should not forget that, if the gauge symmetry
is not broken, then N0 ≡ 0.

Summing the right-hand side of Eq. (527) yields

Δ2(N̂1) =
(

mT

π

)2

V 4/3. (528)

This gives the �uctuation susceptibility

χ(N̂) = χ(N̂1) = lim
N→∞

(
ma2T

π

)2

N1/3 = ∞. (529)

Consequently, the stability condition (510) does not hold. This means that the
ideal uniform Bose-condensed gas is not stable. It is a pathological object that
cannot exist in reality.

10.4. Trapped Atoms. But maybe the ideal Bose-condensed gas could be
stabilized by conˇning it inside a trap formed by a trapping external potential. A
general expression for such a trapping potential is given by the power-law form

U(r) =
d∑

α=1

ωα

2

∣∣∣∣rα

lα

∣∣∣∣nα

, (530)

which is written here in the d-dimensional space. The trapping frequency ωα and
the trapping length lα are connected by the relations

ωα =
1

ml2α
, lα =

1
√

mωα
. (531)
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It is also useful to introduce the effective frequency and effective length by the
geometric averages

ω0 ≡
(

d∏
α=1

ωα

)1/d

=
1

ml20
, l0 ≡

(
d∏

α=1

lα

)1/d

=
1

√
mω0

. (532)

Let us deˇne the conˇning dimension [51]

s ≡ d

2
+

d∑
α=1

1
nα

. (533)

Passing from the trapping potential to the uniform case implies the limits

nα → ∞, l0 → L

2
,

d∏
α=1

2lα → Ld,

where L is the linear size of the system volume V = Ld. As a result, s → d/2,
that is, s becomes semidimension.

BoseÄEinstein condensation of the ideal Bose gas in the trapping poten-
tial (530) can be described employing the generalized quasi-classical approxima-
tion [51]. The condensation temperature reads as

Tc =
[

bN

gs(1)

]1/s

, (534)

where we use the notation

b ≡ πd/2

2s

d∏
α=1

ω
1/2+1/nα
α

Γ(1 + 1/nα)

and introduce the generalized Bose function

gs(z) ≡ 1
Γ(s)

∞∫
u0

zus−1

eu − z
du, (535)

in which the integration is limited from below by the value

u0 ≡ ω0

2T
. (536)

Recall that in the standard Bose function, the integration starts from zero.
The value gs(1) of the generalized function (535) is ˇnite for all s on the

complex plane, since Γ(s) �= 0, so that 1/Γ(s) is an entire function. But Γ(s) can
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be negative for s < 0, e.g., it is negative in the interval −1 < s < 0. Therefore,
gs(1) is positive and ˇnite for all s > 0. Contrary to this, the standard Bose
function would diverge for s � 1, and there would be no ˇnite condensation
temperatures for these s. While, in the case of the generalized function (535),
ˇnite condensation temperatures formally exist for any positive s. Below Tc, and
for s > 0, the condensate fraction is

n0 = 1 −
(

T

Tc

)s

(T � Tc). (537)

The most often studied trapping potential is the harmonic potential, for which
nα = 2 and s = d. Then the condensation temperatures are

Tc =
Nω0

ln(2N)
(d = 1),

(538)

Tc = ω0

[
N

ζ(d)

]1/d

(d � 2).

The condensation temperature (534) is ˇnite for any ˇnite N . But it is
necessary to check whether it is ˇnite in thermodynamic limit, when N → ∞. For
conˇned systems, the effective thermodynamic limit is deˇned [51] in Eq. (13).
As an extensive observable, we can take the internal energy that, in the present
case, below Tc, is

EN =
s

b
g1+s(1)T 1+s. (539)

Then, the thermodynamic limit (13) reads as

N → ∞, EN → ∞,
EN

N
→ const. (540)

The value g1+s is ˇnite for N → ∞ at all s > 0. Hence, Eq. (540) can be
rewritten as the limit

N → ∞, b → 0, bN → const. (541)

For the equipower traps, for which nα = n, the effective thermodynamic li-
mit (541) takes the form

N → ∞, ω0 → 0, Nωs
0 → const. (542)

Considering the thermodynamic limit for the condensation temperature (534),
we have to take into account that the generalized function (535) yields

gs(1) ∼=
1

(1 − s)Γ(s)

(
2T

ω0

)1−s

(0 < s < 1),

(543)

gs(1) ∼= ln
(

2T

ω0

)
(s = 1).
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Consequently, for the condensation temperature (534), as N → ∞, we ˇnd

Tc ∝
1

N (1−s)/s
→ 0 (0 < s < 1),

(544)

Tc ∝
1

ln N
→ 0 (s = 1), Tc → const (s > 1).

Therefore, ˇnite condensation temperatures exist only for s > 1. This implies that
for harmonic traps, for which s = d, the ˇnite condensation temperature occurs
only for d � 2. BoseÄEinstein condensation cannot happen in one-dimensional
harmonic traps at ˇnite temperature.

But this is not yet the whole story. As we know from Subsec. 10.3, a ˇnite
condensation temperature can formally occur, however, the condensed system in
reality is unstable, thus, cannot exist. To check the stability, it is necessary to
consider the system susceptibilities. Speciˇc heat for the Bose-condensed trapped
gas is ˇnite at all temperatures, displaying a jump at the transition point [51].
We need to consider the isothermic compressibility (514) that shows the system
response with respect to particle �uctuations. The dispersion for the number
operators behaves as

Δ2(N0) = 0, Δ2(N̂) = Δ2(N̂1). (545)

It is convenient to introduce the ˇnite-N susceptibility

χN ≡ Δ2(N̂)
N

, (546)

whose limit
lim

N→∞
χN = χ(N̂)

yields the susceptibility deˇned in Eq. (508). Below Tc, we obtain

χN =
gs−1(1)
gs(1)

(
T

Tc

)s

. (547)

Susceptibility (547) is negative for s < 1 and does not satisfy the stability
condition (510). For the values of s � 1, we have

χN =
2
N

(
T

Tc

)2

(s = 1),

χN =
1

(2 − s)ζ(s)Γ(s − 1)

(
2T

ω0

)2−s(
T

Tc

)2

(1 < s < 2),
(548)

χN =
1

ζ(2)

(
T

Tc

)2

ln
(

2T

ω0

)
(s = 2),

χN =
ζ(s − 1)

ζ(s)

(
T

Tc

)s

(s > 2).
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For asymptotically large N , we get

χN ∝ N (s = 1),
χN ∝ N (2−s)/s (1 < s < 2),

(549)
χN ∝ ln N (s = 2),
χN ∝ const (s > 2).

This shows that the trapped Bose gas is stable only for s > 2, when the stability
condition (510) is satisˇed, that is, when

s ≡ d

2
+

d∑
α=1

1
nα

> 2. (550)

In particular, for harmonic traps, for which s = d and b = ωd, one ˇnds

χN =
2
N

(
T

ω0

)2

(d = 1),

χN =
1
N

(
T

ω0

)2

ln
(

2T

ω0

)
(d = 2),

χN =
π2

6ζ(3)

(
T

Tc

)3

(d = 3).

For large N , this gives

χN ∝ N (d = 1),
χN ∝ ln N (d = 2),
χN ∝ const (d = 3).

Thus, the Bose-condensed gas in a harmonic trap is stable only in the three-
dimensional space, d = 3.

The above analysis demonstrates that conˇning the ideal Bose gas in a trap
may stabilize it, which, however, depends on the conˇning dimension s, deˇned
in Eq. (533). The occurrence of a formal expression for the critical temperature Tc

is not yet sufˇcient for claiming the possibility of BoseÄEinstein condensation in
a trapped gas, but it is also necessary to check the system stability. For example,
in the case of the power-law trapping potentials, the condensation temperature
formally exists for s > 1. But the trapped condensed gas can be stable only for
s > 2. One- and two-dimensional harmonic traps are not able to stabilize the
condensate. Only the three-dimensional harmonic trap is able to host the ideal
Bose-condensed gas.
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10.5. Interacting Systems. Ideal gases are, actually, rather artiˇcial objects,
since there always exist particle interactions, though, maybe, weak. Now we pass
to studying the stability of interacting systems.

To a great surprise, there have been published many papers, in which the
authors claim that interacting Bose-condensed systems, both uniform as well as
trapped, exhibit thermodynamically anomalous particle �uctuations of the same
kind as the ideal Bose gas, with the number-operator dispersion (528). By the
Bogolubov theorem, one always has Δ2(N̂0) = 0, hence, Δ2(N̂) = Δ2(N̂1).
Then the thermodynamically anomalous dispersion Δ2(N̂) ∝ N4/3 would lead
to χN ∝ N1/3 and to the divergence of χ(N̂) → ∞. In that case, the stability
condition (510) is not satisˇed, and the behavior of all physical quantities would
be rather wild. Then the isothermal compressibility (514) would diverge, the
sound velocity (515) would be zero, and the structure factor (516) would be
inˇnite. That is, the system would be absolutely unstable.

Moreover, this would mean that any system with spontaneously broken gauge
symmetry would not exist. Clearly, such a strange conclusion would contradict all
known experiments observing BoseÄEinstein condensed trapped gases. Super�uid
helium is also the system with broken gauge symmetry, hence, it also would not
be able to exist, which is evidently absurd.

In [5, 9, 12, 63, 176Ä178], it has been explained that the occurrence, in some
works, of thermodynamically anomalous �uctuations is caused by incorrect cal-
culations. One calculates the dispersion Δ2(N̂1) invoking the Bogolubov ap-
proximation that is a second-order approximation with respect to the operators of
uncondensed particles. But the expression N̂2

1 is of fourth order with respect to
these operators. Calculating the fourth-order terms in the second-order approxima-
tion, strictly speaking, is not self-consistent and can lead to unreasonable results,
such as the occurrence of thermodynamically anomalous particle �uctuations.

The correct calculation of the dispersion Δ2(N̂) and, hence, of susceptibil-
ity (546), can be done as follows. From the deˇnition of the particle dispersion
Δ2(N̂), one has the exact expression

χN = 1 +
1
N

∫
ρ(r)ρ(r′)[g(r, r′) − 1] dr dr′, (551)

which is valid for any system, whether uniform or nonuniform, equilibrium or
not [176Ä178]. Here,

ρ(r) = ρ0(r) + ρ1(r)

is the total particle density and

g(r, r′) ≡ 〈ψ̂†(r) ψ̂†(r′) ψ̂(r′) ψ̂(r)〉
ρ(r)ρ(r′)

is the pair correlation function.
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In the HFB approximation, analogously to the Bogolubov approximation, one
has to retain in Eq. (551) the terms up to the second-order with respect to the
operators of uncondensed particles. For nonuniform systems, one can employ the
local-density approximation of Subsec. 7.4. Then Eq. (551) reduces to

χN = 1 +
2
N

∫
ρ(r) lim

k→0
[n(k, r) + σ(k, r)] dr. (552)

Using the formulas of Subsec. 7.4 gives

χN =
T

mN

∫
ρ(r)
c2(r)

dr. (553)

The same Eq. (553) represents the structure factor (516). Equation (515), deˇning
the hydrodynamic sound velocity, leads to

s2
T =

[
1
N

∫
ρ(r)
c2(r)

dr
]−1

. (554)

And the isothermal compressibility (514) becomes

κT =
1

mρN

∫
ρ(r)
c2(r)

dr, (555)

provided the average density ρ is deˇned.
For a uniform system, the above formulas reduce to

χN ≡ Δ2(N̂)
N

= S(0) =
T

mc2
, sT = c, κT =

1
mρc2

. (556)

It is important to emphasize the necessity of taking into account the gauge
symmetry breaking in the above calculations. If the symmetry would not be
broken, or if the anomalous average σ would be omitted, one would get the
divergence of expressions (553) and (555), which would mean the system insta-
bility [179].

In some works on particle �uctuations, one also makes the following mistake.
One writes that, in the canonical ensemble, the condensate �uctuations are given
by Δ(N̂0) that is equal to Δ(N̂1), and one calculates the latter in the second
quantization representation. However, this representation uses the ˇeld operators
deˇned on the Fock space and, by construction, it is introduced for the grand
canonical ensemble. So, Δ(N̂1) has nothing to do with condensate �uctuations
that, by the Bogolubov theorem correspond to Δ(N̂0) = 0.

In this way, correct calculations lead to no anomalous thermodynamic par-
ticle �uctuations. The latter arise only in incorrect calculations. There are no
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anomalous �uctuations neither in correctly employed Bogolubov or HFB approx-
imations [5, 9, 12, 63, 176Ä179] nor in the renormalization group approach [180].

If thermodynamically anomalous �uctuations would not be caused by calcu-
lational defects, but would be real, then not merely equilibrium Bose-condensed
gas and super�uid helium would not exist, but the situation would be even more
dramatic. This is because the systems with gauge symmetry U(1) are just a
particular case of systems with continuous symmetry, all such systems having
general properties connected with their continuous symmetry and the symmetry
breaking [181]. Therefore all such systems exhibiting thermodynamically anom-
alous �uctuations would not exist. We mean here only equilibrium statistical
systems, since nonequilibrium systems can possess strong �uctuations making
them unstable [182Ä184].

For example, many magnetic systems exhibit continuous symmetry connected
with spin rotation. The appearance of magnetic order in such magnetic systems
implies the spontaneous breaking of the spin rotational symmetry. If the con-
tinuous symmetry breaking would lead to the appearance of thermodynamically
anomalous �uctuations of the order parameter, then, in magnetic systems, this
would mean the occurrence of thermodynamically anomalous magnetic suscep-
tibility, hence, instability. Then there would be no stable equilibrium magnetic
systems with continuous symmetry breaking, which is again absurd.

To show that the spontaneous breaking of the spin-rotation symmetry does not
lead to thermodynamically anomalous magnetic �uctuations [12], let us consider
the Hesenberg model, with the Hamiltonian

Ĥ = −
∑
i�=j

JijSi · Sj −
∑

i

B · Si, (557)

in which Si is a spin operator on the i-lattice site, Jij is an exchange interaction
potential, and B is an external magnetic ˇeld. The Hamiltonian enjoys the spin
rotation symmetry in the absence of the external ˇeld B.

The Gibbs potential is deˇned as

G = −T ln Tr e−βĤ = G(T, N,B). (558)

The system magnetic moment

M ≡ ∂G

∂B
= −

〈
∂Ĥ

∂B

〉
≡ 〈M̂〉 (559)

can be represented as the average of the magnetic-moment operator

M̂ ≡ −∂Ĥ

∂B
=
∑

i

Si. (560)
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The magnetic susceptibility tensor is given by the elements

χαβ ≡ 1
N

∂Mβ

∂Bα
= − 1

N

∂2G

∂Bα∂Bβ
. (561)

Direct calculations yield

χαβ =
1

NT
cov (M̂α, M̂β), (562)

which shows that the diagonal elements

χαα =
Δ2(M̂α)

NT
(563)

are expressed through the dispersion of the components of the magnetic-moment
operator (560).

The HFB approximation for the ˇeld operators of Bose systems is equiva-
lent to the mean-ˇeld approximation for the spin operators of magnetic systems.
Therefore, it is reasonable to resort here to the mean-ˇeld approximation, although
the results are qualitatively the same if we invoke more elaborate techniques. In
the mean-ˇeld approximation, Hamiltonian (557) reads as

Ĥ = −
∑

i

H · Si + NJ〈Si〉2, (564)

in which the notation is used for the effective ˇeld

H ≡ 2J〈Si〉 + B (565)

and the effective interaction

J ≡ 1
N

∑
i�=j

Jij . (566)

For concreteness, let us consider one-half spin. Then the Gibbs poten-
tial (558) becomes

G = −NT ln
[
2 cosh

(
H0

2T

)]
+ NJ〈Si〉2, (567)

where the ideality of the lattice is implied and

H0 ≡ |H| =
√∑

α

H2
α.
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The average spin is deˇned by the extremization condition

∂G

∂〈Si〉
= 0, (568)

which is equivalent to the equation

〈Si〉 = − 1
N

∂G

∂B
. (569)

As a result, one ˇnds

〈Si〉 =
H

2H0
tanh

(
H0

2T

)
. (570)

This deˇnes the magnetic susceptibility (561) as

χαβ =
∂

∂Bα
〈Sβ

i 〉. (571)

Let us deˇne the order parameter

η ≡ 2|〈Si〉|. (572)

In view of Eq. (570), this reads as

η = tanh
(

H0

2T

)
. (573)

Susceptibility (571) takes the form

χαβ =
η

2H0
(δαβ + 2Jχαβ)+

+
Hβ

2H2
0

(
Hα + 2J

∑
γ

χαγHγ

)(
1 − η2

2T
− η

H0

)
. (574)

Directing the external magnetic ˇeld along the axis z, so that

Bx = By = 0, Bz ≡ h, (575)

yields
Hx = Hy = 0, Hz = 2J〈Sz

i 〉 + Bz ,

which can be rewritten as

Hα = δαzH0, H0 = Hz = Jη + h. (576)
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The average spin components become

〈Sx
i 〉 = 〈Sy

i 〉 = 0, 〈Sz
i 〉 =

η

2
. (577)

The susceptibility tensor (574) leads to the equation

χαβ =
1
2
(δαβ + 2Jχαβ)

[
η

H0
+ δβz

(
1 − η2

2T
− η

H0

)]
, (578)

with the order parameter

η = tanh
(

Jη + h

2T

)
. (579)

Equation (578) shows that the nondiagonal elements are zero:

χxy = χxz = χyz = 0, (580)

while the diagonal elements give the transverse components

χxx = χyy =
η

2h
(581)

and the longitudinal component

χzz =
1 − η2

2[2T − J(1 − η2)]
. (582)

The latter, with the notation for the critical temperature Tc ≡ J/2, can be repre-
sented as

χzz =
1 − η2

4[T − Tc(1 − η2)]
. (583)

At low temperature, and h → 0, the order parameter (579) behaves as

η 
 1 − 2 exp
(
−Tc

T

)
(T 	 Tc) (584)

and susceptibility (583), as

χzz 
 1
T

exp
(
−Tc

T

)
(T 	 Tc). (585)

At high temperature, and h → 0, susceptibility (583) acquires the CurieÄWeiss
law

χzz 
 1
4(T − Tc)

(T � Tc). (586)
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The latter susceptibility diverges at the critical point Tc. However, this divergence
has nothing to do with the thermodynamically anomalous behavior, since this is
the divergence with respect to temperature T , but not with respect to the number
of particles N . In addition, the phase transition point is the point of system
instability, where the system becomes nonequilibrium and �uctuations have right
to inˇnitely rise.

One introduces the transverse susceptibility

χ⊥ ≡ χxx =
Δ2(M̂x)

NT
(587)

and the longitudinal susceptibility

χ|| ≡ χzz =
Δ2(M̂z)

NT
, (588)

where relation (563) is taken into account. In view of Eqs. (581) and (582), one
ˇnds the dispersions for the magnetic-moment operator (560), characterizing the
transverse �uctuations,

Δ2(M̂x)
N

= Tχ⊥ =
ηT

2h
, (589)

and the longitudinal �uctuations,

Δ2(M̂z)
N

= Tχ|| =
T (1 − η2)

4[T − Tc(1 − η2)]
, (590)

of the system magnetic moment.
The longitudinal �uctuations are always thermodynamically normal, if cal-

culated in a self-consistent way, as it should be, according to the stability con-
dition (509). In some papers, one ˇnds thermodynamically anomalous magnetic
�uctuations of the same type as for Bose systems, with Δ(M̂z)/N ∝ N1/3. But,
as has been explained in [5], this is due to the same mistake as one does when
dealing with Bose systems. One approximates Hamiltonian (557) by a second-
order form, with respect to small deviations from the average magnetic moment.
And then, one considers the fourth-order form calculating the dispersion of M̂z.
Going outside of the region of applicability of the chosen approximation leads
to the appearance of meaningless results. But self-consistent calculations, as is
shown above, always give normal longitudinal �uctuations.

The transverse �uctuations are known [185] to be much larger than the
longitudinal ones. Formally, Eq. (589) diverges when h → 0. This, however, does
not make the transverse magnetic �uctuations thermodynamically anomalous. To
be thermodynamically anomalous, expression (589) should diverge with respect
to the number of particles N , or, what is the same, with respect to the system
volume V . But here, it is the divergence with respect to h.
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Moreover, one should not forget that below the transition temperature Tc

the spin-rotation symmetry is broken. The symmetry breaking is described by
switching on a small external magnetic ˇeld h �= 0. But then Eq. (589) is ˇnite.
Switching off this ˇeld restores the symmetry, as a result of which Eq. (589)
would diverge, similarly to how the compressibility of a Bose-condensed system
would diverge being incorrectly calculated without the gauge symmetry breaking.
Therefore, as soon as the spin-rotation symmetry has been broken, when h �= 0, all
�uctuations are thermodynamically normal. And above Tc, where the symmetry
is not broken, one has η ∼= h/2T , hence Δ2(M̂x)/N ∼= 1/4, which is again ˇnite
for any h.

When some symmetry in a system is broken, the mathematically correct
deˇnition of statistical averages is understood in the sense of the Bogolubov
quasiaverages [16]. Then, as is well known, one has, ˇrst, to accomplish the
thermodynamic limit, with N → ∞ and, only after this, to consider the limit
h → 0. In that sense, there is no any thermodynamically anomalous �uctuations.

Note that real magnetic systems always possess magnetic anisotropy. This
can be small, but never exactly zero, which corresponds to the presence of
a ˇnite h. Consequently, in real equilibrium magnetic systems, there are no
thermodynamically anomalous �uctuations. And there are no thermodynamically
anomalous �uctuations in any equilibrium system with the spontaneous breaking
of any continuous symmetry. In the other case, such a system would be unstable
and could not be in equilibrium.

11. NONGROUND-STATE CONDENSATES

11.1. Coherent Modes. First of all, it is necessary to concretize what is meant
under nonground-state condensates. The stationary equation (335) for the conden-
sate function can be treated as an eigenproblem. Generally, an eigenproblem can
yield a spectrum of possible eigenvalues and a set of the related eigenfunctions.
So, generally, the eigenproblem, corresponding to Eq. (335), can be represented
in the form[

−∇2

2m
+ U(r)

]
ηn(r)+

+ Φ0

[
|ηn(r)|2ηn(r) + 2ρ1(r)ηn(r) + σ1(r)η∗

n(r) + ξ(r)
]

= Enηn(r), (591)

in which the minimal eigenvalue deˇnes the chemical potential

μ0 = min
n

En. (592)

When En = μ0, Eq. (591) corresponds to the standard ground-state BoseÄEinstein
condensate, while, for higher eigenvalues En, this equation corresponds to non-
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ground-state condensates. The values of ρ1(r), σ1(r), and ξ(r) depend on the
index n, but for short, this dependence is not shown explicitly.

The condensate function describes the coherent part of the system. In the
limit of asymptotically weak interactions (Φ0 → 0) and low temperature (T → 0),
when the whole system is in the coherent state, Eq. (591) reduces to the nonlinear
Schréodinger equation[

− ∇2

2m
+ U(r)

]
ηn(r) + Φ0|ηn(r)|2ηn(r) = Enηn(r). (593)

In the particular case, for En = μ0, it is called the GrossÄPitaevskii equation.
The condensate function ηn(r) is normalized to the number of condensed

particles, as in Eq. (52). It is convenient to introduce the function ϕn(r) by the
relation

ηn(r) =
√

N0 ϕn(r), (594)

so that ϕn(r) be normalized to one,∫
|ϕn(r)|2dr = 1. (595)

Then Eq. (591) transforms into[
−∇2

2m
+ U(r)

]
ϕn(r)+

+ Φ0

[
N0|ϕn(r)|2ϕn(r) + 2ρ1(r)ϕn(r) + σ1(r)ϕ∗

n(r) +
ξ(r)√
N0

]
= Enϕn(r),

(596)

while Eq. (593), into[
−∇2

2m
+ U(r)

]
ϕn(r) + Φ0N0|ϕn(r)|2ϕn(r) = Enϕn(r). (597)

The solutions to Eqs. (591) and (596) deˇne the coherent modes in the gen-
eral case [66]; and Eqs. (593) and (597), the coherent modes for asymptotically
weak interactions and temperature [186]. These coherent modes, ˇrst introduced
in [186], correspond to nonground-state condensates. The properties of such co-
herent modes and the methods of their generation have been studied in a series of
papers [66, 186Ä215]. A dipole coherent mode was excited in experiment [216].
These coherent modes are also called topological, since the nonground-state con-
densates, corresponding to different coherent modes, describe particle densities
with different spatial topology.
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11.2. Trap Modulation. There are several requirements that are necessary
for creating a nonground-state condensate. First of all, it is clear that such a
condensate cannot be equilibrium. Hence, its creation requires the action of
external time-dependent ˇelds. Second, the system of Bose particles has to
possess a discrete spectrum in order that it would be possible to distinguish the
usual ground-state BoseÄEinstein condensate from a nonground-state condensate.
This means that the system is to be placed inside a trapping potential. And,
third, to transfer particles from their ground-state to a chosen excited state, it is
necessary, either to employ a resonant ˇeld or to use rather strong pumping.

A straightforward way of imposing external alternating ˇelds is by modulating
the trapping potential. Let the conˇning potential be composed of two parts,

U(r, t) = U(r) + V (r, t), (598)

in which the ˇrst term is a trapping potential and the second term

V (r, t) = V1(r) cos ωt + V2(r) sin ωt (599)

realizes the modulation of this potential with frequency ω.
There exists one limitation on the spatial dependence of the modulated trap-

ping potential (598). In [206, 207], the shape-conservation theorem has been
proved, showing that the trap modulation moves the whole condensate without
changing its shape if and only if the trapping potential U(r) is harmonic, while the
modulation term (599) is linear with respect to the spatial variables. In that case,
the trap modulation would not be able to produce excited coherent modes. So, to
generate these modes, one has to avoid this particular case of spatial dependence.

Suppose that at the initial time t = 0 the system has been completely con-
densed, being in the energy state E0 = μ0. Then, to transfer the system to an
energy state En, one has to use the alternating ˇeld with a frequency ω close to
the transition frequency ωn = En − μ0. Under this resonance condition∣∣∣∣Δω

ω

∣∣∣∣	 1 (Δω ≡ ω − ωn), (600)

it is sufˇcient to invoke the pumping ˇelds of small amplitudes.
The time-dependent equation (323) for the condensate function, after the

substitution of the relation

η(r, t) =
√

N0 ϕ(r, t), (601)

similar to Eq. (594), transforms into

i
∂

∂t
ϕ(r, t) =

[
−∇2

2m
+ U(r, t) − μ0

]
ϕ(r, t)+

+ Φ0

[
N0ρ0(r, t)ϕ(r, t) + 2ρ1(r, t)ϕ(r, t) + σ1(r, t)ϕ∗(r, t) +

ξ(r, t)√
N0

]
. (602)



BASICS OF BOSEÄEINSTEIN CONDENSATION 983

We can look for the solution to this equation represented [66, 186, 187, 198]
as an expansion over the coherent modes,

ϕ(r, t) =
∑

n

Cn(t)ϕn(r) e−iωnt, (603)

so that the coefˇcient function Cn(t) be slow as compared to the fast oscillating
exponential functions:

1
ωn

∣∣∣∣dCn

dt

∣∣∣∣	 1. (604)

Let us introduce the matrix elements corresponding to particle interactions,

αmn ≡ Φ0N0

∫
|ϕm(r)|2

[
2|ϕn(r)|2 − |ϕm(r)|2

]
dr, (605)

and to the action of the modulating ˇeld,

βmn ≡
∫

ϕ∗
m(r) [V1(r) − iV2(r)] ϕn(r) dr. (606)

Also, let us deˇne the expression

εn(t) ≡ αnn−

−Φ0

∫
ϕ∗

n(r)
[
2ρ

(n)
1 (r)ϕn(r) − 2ρ1(r, t)ϕn(r) + σ

(n)
1 (r)ϕ∗

n(r) +
ξ(n)(r)√

N0

]
dr,

(607)

in which the functions with the upper index n correspond to the stationary solu-
tions characterized by the condensate function ϕn(r) and where

αnn = Φ0N0

∫
|ϕn(r)|4 dr.

The trap modulation produces not only the required coherent mode but it
also destroys the condensate by transferring particles from the condensate to the
fraction of uncondensed particles. Therefore, the generation of the coherent mode
can be effectively done only during a ˇnite depletion time tdep, when the transfer
from the condensate to the uncondensed fraction is yet negligible. During this
time, the variation of quantity (607) is small, such that∣∣∣∣ t

εn

dεn

dt

∣∣∣∣	 1 (t < tdep). (608)

It is convenient to make the change

Cn(t) = cn(t) exp [−iεn(t)t], (609)
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in which εn = εn(t) is treated as a slow function of time, in the sense of
inequality (608). We may notice that in the limit of a completely coherent
system, when the fraction of uncondensed particles is negligibly small, Eq. (607)
does not depend on time.

Then, we substitute expansion (603) into Eq. (602), employ the above nota-
tions, and invoke the averaging techniques [114, 117, 119, 121, 217Ä219], based
on the existence of different time scales [220, 221]. As initial conditions, we
assume nonzero cn(0) and c0(0), while all other coefˇcient functions cj(0) = 0
for j �= 0, n. This procedure yields [66, 186, 195] the equations

i
dc0

dt
= α0n|cn|2c0 +

1
2
β0ncn eiΔωt,

(610)

i
dcn

dt
= αn0|c0|2cn +

1
2
β∗

0nc0 e−iΔωt.

Solving these equations gives the fractional mode populations

pn(t) ≡ |cn(t)|2. (611)

As a concluding remark to this section, it is worth emphasizing that expansion
(603) corresponds to the diabatic representation [66, 215], and one should not
confuse it with the adiabatic representation [222], which is not suitable for the
studied resonant process.

11.3. Interaction Modulation. Another way of exciting the cloud of particles
conˇned inside a trap is by varying the particle interactions by means of the
Feshbach-resonance techniques [1Ä3, 5, 34, 223]. This method can also be used
for generating the coherent modes, as has been mentioned in [206, 207, 210], and
analyzed in detail in [214, 215].

Let the scattering length be modulated so that the particle interaction becomes
time-dependent according to the law

Φ(t) = Φ0 + Φ1 cos (ωt) + Φ2 sin(ωt). (612)

Following the same procedure as in the case of the trap modulation and introduc-
ing the notation

γm ≡ N0(Φ1 − iΦ2)
∫

ϕ∗
0(r)|ϕm(r)|2ϕn(r) dr, (613)

in which n is ˇxed and m = 0, n, we get the equations

i
dc0

dt
= α0n|cn|2c0 +

(
γ0|c0|2 +

1
2
γn|cn|2

)
cn eiΔωt +

1
2
γ∗
0c∗nc2

0 e−iΔωt,

(614)

i
dcn

dt
= αn0|c0|2cn +

(
γ∗

n|cn|2 +
1
2
γ∗
0 |c0|2

)
c0 e−iΔωt +

1
2
γnc∗0c

2
n eiΔωt.
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Both these ways of modulating either the trapping potential or particle inter-
actions can be used for generating excited coherent modes.

Nonequilibrium systems with the generated coherent modes, representing
nonground-state condensates, possess a variety of interesting properties. We
can mention the following effects: interference patterns and interference cur-
rents [194, 195, 198], mode locking [186, 198, 199], dynamical phase transitions
and critical phenomena [190, 194, 195, 198], chaotic motion [206, 207], atomic
squeezing [198, 201, 202], Ramsey fringes [211Ä213], and entanglement produc-
tion [224Ä226] that can be quantiˇed by a general measure of entanglement
production [227Ä229].

The above-mentioned effects can be realized by resonant alternating ˇelds
of rather low amplitudes. When increasing the amplitude of the pumping ˇeld,
it becomes feasible to generate the excited coherent modes with the frequencies
of the alternating ˇelds, which are not exactly in resonance with the transition
frequencies. Thus, the transition between the coherent modes, characterized by
the transition frequency ω12, can be done by means of the harmonic generation
and parametric conversion [206, 207].

Harmonic generation occurs, when the driving frequency ω satisˇes the con-
dition

nω = ω12 (n = 1, 2, . . .). (615)

Parametric conversion requires the use of two alternating ˇelds, with the driving
frequencies ω1 and ω2, such that

ω1 ± ω2 = ω12. (616)

In the case of two pumping ˇelds, there exists the combined resonance under the
condition

n1ω1 + n2ω2 = ω12 (ni = ±1,±2, . . .). (617)

And, generally, the application of several external alternating ˇelds, with the
driving frequencies ωi, can generate coherent modes under the condition of gen-
eralized resonance, when∑

i

niωi = ω12 (ni = ±1,±2, . . .). (618)

The amplitudes of external alternating ˇelds can be made arbitrarily strong.
Therefore, all these effects can be realized in experiments. The particle interac-
tions can also be varied in a wide range. For instance, employing the Feshbach
resonance techniques, it is possible to tune the interactions of 7Li atoms over
seven orders of magnitude [230]. Hence, the generation of nonground-state con-
densates can be done by the interaction modulation as well.
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11.4. Turbulent Super�uid. As follows from the previous sections, increas-
ing the modulation amplitude results in the generation of more and more coherent
modes, whose excitation becomes more and more easy, especially when several
alternating ˇelds are involved. This is because it is sufˇcient that the frequencies
of the modulating ˇelds be such that one of the above conditions be approximately
satisˇed. As soon as this happens, the related coherent modes become excited.
Intensive ˇeld modulation generates simultaneously several coherent modes.

When alternating ˇelds are applied creating an oscillating anisotropy, with
local rotation moments, then the prevailing coherent modes will be quantum vor-
tices. An important feature of the vortex creation by means of the anisotropic trap
modulation, contrary to the vortex creation by means of rotation, is the genera-
tion of vortices as well as antivortices, that is, the generation of the vortices with
opposite rotation velocities. The oppositely rotating vortices repel each other and
diffuse in space, separating from each other. In the beginning, when the ampli-
tude modulation is not yet too strong, there should arise just a small number of
vortices having the standard properties [1Ä3, 231, 232], except that vortices and
antivortices both are present. In the case, when the whole system is uniformly
rotated, the increased rotation frequency induces a vortex lattice [231, 232]. Con-
trary to this, when the trapped system is subject to the action of alternating ˇelds,
nonuniformly and anisotropically shaking the trapped particle cloud, the created
vortices possess different axes of rotation and different rotation velocities. There-
fore no vortex lattice is possible. Then, increasing the amplitude of the alternating
ˇelds produces a large number of vortices with randomly distributed vorticities.
Such a tangle of quantized vortices forms what is called quantum turbulence, and
the whole system is said to be in the state of turbulent super�uid.

The problem of turbulent super�uid has been addressed in a number of
works. The related literature has been reviewed in articles [233Ä237] (see also
recent [238Ä240]). There are plenty of experiments observing quantum turbulence
in liquid 3He and 4He. Quantum turbulence in trapped gases has also been
observed [241]. The description of turbulent super�uids as continuous vortex
mixtures has been advanced [237].

11.5. Heterophase Fluid. Increasing further the amplitude of the alternating
ˇeld breaks the turbulent super�uid into spatially separated pieces, with Bose-
condensed droplets separated by normal, nonsuper�uid, spatial regions. Such a
state reminds the Bose glass, or granular condensate, considered in Subsec. 9.5.
But now it is a highly nonequilibrium state. This state is analogous to heterophase
mixtures consisting of several randomly intermixed phases [54]. Thence, it is
called heterophase �uid.

An external modulating ˇeld acts on the system similarly to the action of a
spatial random potential [110], such as treated in Sec. 9. The possibility of map-
ping the system with a time-dependent modulation to the system with a spatially
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random potential is very important, since it allows us to understand the behav-
ior of modulated nonequilibrium systems by comparing them with equilibrium
random systems. The proof of this mapping is as follows.

Let the system Hamiltonian

H(t) = H0 + V̂ (t) (619)

consist of the usual term H0, containing no time-dependent ˇelds, and a term

V̂ (t) =
∫

ψ̂†(r)V (r, t)ψ̂(r) dr, (620)

with an external potential depending on time. The characteristic variation time
tmod of the modulating potential V (r, t) is assumed to be much longer than the
local-equilibrium time tloc, but much shorter than the time of experiment texp,

tloc 	 tmod 	 texp. (621)

The modulating potential pumps energy into the system that can be associated
with the effective temperature

T ∗ ≡ 1
N

texp∫
0

∣∣∣∣∣
〈

∂V̂ (t)
∂t

〉∣∣∣∣∣ dt. (622)

If the pumping potential is periodically oscillating with a frequency ω and period
tmod = 2π/ω, then

∂V̂ (t)
∂t

= ωV̂ (t) =
2π

tmod
V̂ (t).

In this case, the effective temperature (622) is

T ∗ =
2π

Ntmod

texp∫
0

|〈V̂ (t)〉| dt. (623)

Denoting the amplitude of the modulating potential V (r, t) as Vmod, we have

|〈V̂ (t)〉| ≈ NVmod.

Therefore, the effective temperature (623) becomes

T ∗ ≈ 2π
texp

tmod
Vmod. (624)

One may notice that the effective temperature depends on texp, though this de-
pendence is week, in the sense that

tmod

T ∗

∣∣∣∣ ∂T ∗

∂texp

∣∣∣∣ � tmod

texp
	 1.
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Under the slow modulation, such that tmod 
 tloc, the system, at each
moment of time, is in quasi-equilibrium. Consequently, one can deˇne the local
in time thermodynamic potential

Ω(t) = −T ∗ ln Tr exp {−β∗H(t)}, (625)

where β∗ = 1/T ∗. Because texp 
 tmod, we are interested not in the local
potential (625) but in the coarse-grained potential

Ω =
1

tmod

tmod∫
0

Ω(t) dt, (626)

averaged over oscillations that are fast as compared to texp.
At each moment of time t the potential V (r, t) describes a spatial potential.

This can be characterized by the relation

V (r, t) = ξ(r), (627)

which deˇnes the functional
t = t[ξ(r)]. (628)

Equations (627) and (628) symbolize the fact that for each time t there corresponds
a spatial potential ξ(r) and vice versa, a potential ξ(r) is ascribed to time t. The
relation between the interval [0, tmod] and the topological space {ξ(r)}, without
much loss of generality, can be taken as homeomorphic.

The variation of time is equivalent to the variation of the spatial potential, so
that

dt =
δt[ξ(r)]
δξ(r)

δξ(r).

With relation (628), Hamiltonian (619) becomes the functional

H [ξ(r)] = H0 +
∫

ψ̂†(r)ξ(r)ψ̂(r) dr (629)

of the spatial ˇeld ξ(r). Therefore, the averaged thermodynamic potential (626)
takes the form

Ω = −T ∗
∫

ln Tr exp {−β∗H [ξ(r)]}Dξ(r). (630)

The latter is equivalent to the thermodynamic potential of an equilibrium system
in a random external ˇeld.

If the external alternating ˇeld has an amplitude Vmod and the whole trapped
system is subject to the modulation, then the modulation amplitude Vmod plays
the role of the correlation amplitude VR and the effective trap length l0, of the
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correlation length lR in Eq. (459). The effective trap length l0 = 1/
√

mω0 and
the effective trap frequency ω0 are deˇned in Eq. (532).

More strictly, the system state, produced by the trap modulation, depends
not merely on the modulation amplitude Vmod, but on the amount of the total
energy pumped into the system, playing the role of the effective temperature
in the nonequilibrium system [237]. For an alternating ˇeld, with the driving
frequency ω and the related period tmod = 2π/ω, acting on the system during the
total time of experiment texp, the pumped energy is associated with the effective
temperature (624). This energy should be treated as the effective modulation
amplitude. Thus, instead of the localization length (460), we get

lloc =
�

4

m2V 2
0 l30

=
(

�ω0

V0

)2

l0, (631)

where, for clarity, the Planck constant is restored.
Depending on the relation between the localization length (631) and the trap

length l0, there can exist the following states:

lloc > l0 (super�uid),
a < lloc < l0 (heterophase �uid),
lloc � a (chaotic �uid).

(632)

The super�uid state here includes all types of super�uids, the regular super�uid
having no vortices, the vortex super�uid with a small number of vortices, and the
turbulent super�uid with a random tangle of many vortices. This classiˇcation,
in terms of the pumped energy, reads as follows:

V0 < �ω0 (super�uid),
�ω0 < V0 < �ω0

√
l0/a (heterophase �uid),

V0 � �ω0

√
l0/a (chaotic �uid).

(633)

Chaotic �uid is a strongly �uctuating system having neither long-range order
nor even local order. It resembles the state of weak turbulence [242] or the
chaotic state [243]. Qualitatively, the overall scheme, representing the sequence
of states arising under the action of an alternating ˇeld, with respect to the amount
of the pumped energy V0, is shown [237] in the Figure.

After the external modulation ˇeld is switched off, a ˇnite quantum system
relaxes to its equilibrium state during the relaxation time deˇned by particle col-
lisions, the trap size, and trap shape [244]. The relaxation time becomes quite
long for quasi-one-dimensional traps, where it may last, without equilibration for
thousands of collisions between the oscillating Bose-condensed droplets [245].
This is because the one-dimensional system with local interactions is the in-
tegrable LiebÄLiniger system [246, 247]. And quasi-one-dimensional systems,
approaching integrability, display very long equilibration times.
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Scheme of the sequence of states for a trapped Bose-condensed system subject to the

action of an alternating external ˇeld, with the increasing pumped energy V0

In a quasi-one-dimensional trap, collisions, restricted to the motion of par-
ticles in the axial direction, with the particles remaining in the same transverse
ground state, are not accompanied by energy change, hence, do not lead to ther-
malization. For such two-body collisions, equilibration and thermalization occur
only under transverse excitations. The corresponding rate of populating the radi-
ally excited modes by pairwise collisions, can be estimated from the Fermi golden
rule that, at low temperature T < ω⊥, gives [248, 249] the rate

Γ2 ≈ 2.8ω⊥ζ exp (−2ω⊥/T ), (634)

where the dimensionless parameter

ζ ≡ ρ1d
a2

s

l⊥

is expressed through the three-dimensional scattering length as, transverse oscil-
lator length l⊥, and the one-dimensional density

ρ1d = ρπl2⊥ =
N

2lz
.

At temperature tending to zero, this rate is exponentially suppressed. However,
it can be essential for ˇnite temperatures.

For quasi-one-dimensional traps at low temperatures, the three-body collision
rate [249] can become important,

Γ3 ≈ 6.9ζ2ω⊥. (635)
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The states, described above, have been experimentally realized by means of
the trap modulation [241, 250]. The whole diagram, showing the dependence of
the produced states on the modulation amplitude and modulation time has been
presented [250], starting from the regular super�uid, through vortex super�uid,
to turbulent super�uid, and to heterophase �uid.

CONCLUSIONS

In this review, the basic theoretical problems have been considered, arising
in the description of systems with BoseÄEinstein condensate. The solutions to
these problems are elucidated. The main conclusions can be brie�y summarized
as follows.

(i) The global gauge symmetry breaking is the necessary and sufˇcient con-
dition for BoseÄEinstein condensation. This is an exact mathematical fact. The
symmetry breaking results in the appearance of both, the condensate fraction and
the anomalous averages. The latter cannot be neglected without destroying the
theory self-consistency. Omitting the anomalous averages is principally wrong,
yielding unreliable and often unreasonable results.

(ii) The HohenbergÄMartin dilemma of conserving versus gapless theories
is resolved by introducing two Lagrange multipliers guaranteeing the validity of
two normalization conditions, for the numbers of condensed and uncondensed
particles. The use of these two Lagrange multipliers is necessary as soon as the
global gauge symmetry has been broken.

(iii) BoseÄEinstein condensed systems in strong spatially random potentials
can be described by means of the method of stochastic decoupling. Perturbation
theory with respect to the strength of disorder can fail, leading to incorrect
conclusions.

(iv) Thermodynamically anomalous �uctuations of any observable quantities
are strictly prohibited in all equilibrium statistical systems, irrespectively of the
used representative statistical ensemble. Thermodynamically anomalous particle
�uctuations, of either condensed or uncondensed particles, cannot exist in Bose-
condensed systems. The occurrence of thermodynamically anomalous �uctuations
can be due only to calculational mistakes.

(v) The method has been suggested of generating nonground-state conden-
sates of trapped particles. The method can be realized by applying alternating
external ˇelds modulating either the trapping potential or particle interactions.
This makes it possible to create different types on nonground-state condensates,
such as coherent modes, turbulent super�uids, and heterophase �uids.
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