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A brief review of the status of neutrino oscillations is given. The phenomenology of neu-
trino mixing and the standard seesaw mechanism of neutrino mass generation is discussed. Differ-
ent approaches to neutrino oscillations are considered and compared. The role of the Heisenberg
space-momentum uncertainty relation and the MandelstamÄTamm time-energy uncertainty relation in
neutrino oscillations is discussed in some detail.

PACS: 14.60.Pq

1. INTRODUCTION
PRESENT STATUS OF NEUTRINO OSCILLATIONS

The observation of neutrino oscillations in the solar, atmospheric, reactor and
accelerator neutrino experiments [1Ä5] is one of the most important recent discov-
eries in particle physics. Small neutrino masses and peculiar neutrino mixing are
commonly considered as a signature of new physics beyond the Standard Model.

Existing neutrino oscillation data (with the exception of the LSND [6] and
recent MiniBooNE [7] antineutrino data) can be perfectly described if we assume
that the number of neutrinos with deˇnite masses νi is equal to the number of
�avor neutrinos which, as was proved by the LEP experiments, is equal to three.

Neutrino oscillation data are usually analyzed under the assumption that the
�avor neutrino transition probability in vacuum is given by the following standard
expression (see, for example, [9])

P(νl → νl′) =
∣∣∣∑

i

Ul′i exp
(
−i

Δm2
kiL

2E

)
U∗

li

∣∣∣2 =

=
∣∣∣∑

i�=k

Ul′i

[
exp

(
−i

Δm2
kiL

2E

)
− 1

]
U∗

li + δl′l

∣∣∣2. (1)

Here L is the source-detector distance; E is the neutrino energy; U is the unitary
mixing matrix, Δm2

ik = m2
k − m2

i .
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In the case of three-neutrino mixing the unitary 3 × 3 PontecorvoÄMNS
mixing matrix [10, 11] is usually parameterized by the three Euler angles θ12,
θ23, θ13 and one CP phase δ. It has the following form:

U =

⎛
⎝ 1 0 0

0 c23 s23

0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠ , (2)

and neutrino transition probabilities in vacuum are characterized by six parame-
ters: θ12, θ23, θ13, δ, Δm2

12, and Δm2
23.

From the analysis of the existing neutrino oscillation data follows, however,
that two parameters are small:

Δm2
12

Δm2
23

� 1
30

, sin2 θ13 � 4 · 10−2. (3)

If we neglect the contribution of the small parameters (leading approximation),
a rather simple picture of neutrino oscillations has emerged (see, [9]). In this
approximation neutrino oscillations in the atmospheric (accelerator) region of

L/E (
Δm2

23L

2E
� 1) are two-neutrino νμ � ντ (ν̄μ � ν̄τ ) oscillations. The

νμ → νμ (ν̄μ → ν̄μ) survival probability is given in this case by the standard
two-neutrino expression

P (νμ → νμ) = P (ν̄μ → ν̄μ) = 1 − 1
2

sin2 2θ23

(
1 − cosΔm2

23

L

2E

)
. (4)

Neutrino oscillations in the reactor KamLAND region of L/E (
Δm2

12L

2E
� 1) are

ν̄e � ν̄μ,τ oscillations. The ν̄e → ν̄e survival probability is given in the leading
approximation by the expression

P (ν̄e → ν̄e) = 1 − 1
2

sin2 2θ12

(
1 − cosΔm2

12

L

2E

)
. (5)

In the leading approximation, the probability of the solar neutrinos to survive is
given by the two-neutrino νe survival probability in matter which depends on
Δm2

12, sin2 θ12, and the electron number density.

The leading approximation gives the dominant contribution to the transi-
tion probabilities: the values of the parameters Δm2

12, Δm2
23, sin2 θ23, sin2 θ12,

which are determined from the two-neutrino and the three-neutrino analysis, are
practically the same.
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From the three-neutrino analysis of the SuperKamiokande atmospheric neu-
trino data∗ [2] the following best ˇt values of the parameters are found:

Δm2
A = 2.1 · 10−3 eV2, sin2 θ23 = 0.5, sin2 θ13 = 0.0. (6)

In the case of the normal (inverted) neutrino mass spectrum the following 90%
CL limits were inferred:

1.9 (1.7)·10−3 � Δm2
A � 2.6 (2.7)·10−3 eV2, 0.407 � sin2 θ23 � 0.583. (7)

For the parameter sin2 θ13 the following bounds were obtained:

sin2 θ13 � 4 · 10−2 (9 · 10−2). (8)

The SuperKamiokande evidence for neutrino oscillations was conˇrmed by the
accelerator long-baseline K2K [4] and MINOS [5] experiments. From the two-
neutrino analysis of the MINOS data was found

Δm2
A = (2.43 ± 0.13) · 10−3 eV2, sin2 2θ23 > 0.90. (9)

From the three-neutrino global analysis of the KamLAND reactor and solar data
was obtained [3]

Δm2
S = (7.50+0.19

−0.20) · 10−5 eV2, tan2 θ12 = 0.452+0.035
−0.032. (10)

For the parameter sin2 θ13 was found

sin2 θ13 = 0.020+0.016
−0.018. (11)

Finally, from the short baseline reactor experiment CHOOZ [12] the following
upper bound was obtained for the parameter sin2 θ13:

sin2 θ13 < 4 · 10−2. (12)

Let us also notice that from the tritium experiments Mainz [13] and Troitsk [14]
the following upper bounds for the absolute value of neutrino mass were found:

mβ � 2.3 eV (Mainz), mβ � 2.2 eV (Troitsk). (13)

∗In the case of the three-neutrino analysis of the neutrino oscillation data it is important to
take into account that neutrino masses are labeled differently for the normal neutrino mass spectrum
(NS) (m1 < m2 < m3; Δm2

12 � Δm2
23) and for the inverted mass spectrum (IS) (m3 < m1 <

m2; Δm2
12 � |Δm2

13|). The smaller and larger neutrino mass squared differences (the same for
both neutrino mass spectra) are equal in NS (IS) Δm2

12 (Δm2
12) and Δm2

23 (|Δm2
13|), respectively.

Thus, we cannot use the Δm2
ik notation in the case of the three-neutrino analysis of the data. One of

the possibilities is to use for the larger and smaller neutrino mass-squared differences, independently
of the character of the neutrino mass spectrum, the notations Δm2

A and Δm2
S . Notice that for both

neutrino mass spectra the elements of the neutrino mixing matrix Uli are usually parameterized in the
same way (inspite that they have different meaning).
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2. QFT BASICS OF NEUTRINO OSCILLATIONS

Our understanding of neutrino oscillations is based on the following assump-
tions:

I. The Lagrangian of the electroweak interaction is the Standard Model
charged current and neutral current Lagrangians. The leptonic part of the CC
Lagrangian is given by the following expression:

LCC
I (x) = − g√

2

∑
l=e,μ,τ

ν̄lL(x) γα lL(x) Wα(x) + h.c. (14)

Here g is the electroweak constant; lL(x) = ((1 − γ5)/2) l(x) is the left-handed
component of the leptonic ˇeld l(x); and Wα(x) is the ˇeld of the vector
W± bosons.

II. The �avor (active) ˇelds νlL(x) in the Lagrangian (14) are mixtures of
the ˇelds of neutrinos with deˇnite masses

νlL(x) =
∑

i

Uli νiL(x). (15)

Here νi(x) is the ˇeld of neutrinos with mass mi, and U is a unitary mixing
matrix.

Interaction (14) follows from the requirements of the local SU(2) × U(1)
invariance. It was conˇrmed with high accuracy by numerous experiments on the
study of the weak interaction processes.

The existence of the neutrino mixing is conˇrmed by the neutrino oscillation
experiments. Four neutrino oscillation parameters are known with accuracies
in the range of 3Ä10%. However, there are many unknowns in the mixing
relation (15). We do not know:

• Are neutrinos with deˇnite masses Majorana or Dirac particles?
• Is the number of the neutrinos with deˇnite masses equal to the number of

�avor neutrinos (three) or larger (in this case sterile neutrinos must exist)?
• What is the value of the parameter sin2 θ13?
• What is the value of the CP phase δ?
• What is the character of the neutrino mass spectrum (normal or inverted)?
• etc.
We believe that the resolution of these problems apparently will allow one

to solve the most important problem: What is the origin of small neutrino masses
and neutrino mixing?

Neutrino masses and neutrino mixing are due to the neutrino mass term of
the Lagrangian. According to the Standard Model, mass terms of quarks and
leptons are generated by the spontaneous violation of the electroweak symmetry.
The origin of the neutrino mass term at present is unknown. We will consider in
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this section a general theoretical framework for possible neutrino mass terms. In
the next section we will discuss the most popular seesaw mechanism of neutrino
mass generation.

Any mass term is a sum of Lorentz-invariant products of the left-handed
and right-handed components of a ˇeld. Three left-handed �avor neutrino ˇelds
νlL(x) must enter into the mass term. Do we need other ˇelds to build the mass
term? Generally not, if we assume that the lepton number is not conserved. This
was shown for the ˇrst time in [15].

In fact, it is easy to show that (νlL(x))c = Cν̄lL(x)T is the right-handed
component (CγT

α C−1 = −γα, CT = −C).∗ From νlL(x) and (νlL(x))c we can
build the following Majorana mass term:

LM = −1
2

nL ML(nL)c + h.c. (16)

Here

nL =

⎛
⎝ νeL

νμL

ντL

⎞
⎠ (17)

and ML is a 3× 3 complex nondiagonal matrix. Taking into account the FermiÄ
Dirac statistics of the neutrino ˇeld we have

nLML(nL)c = nLMLCnT
L = −nL(ML)T CT nT

L = nL(ML)T (nL)c. (18)

Thus, ML must be a symmetrical matrix. A symmetrical, complex matrix can be
diagonalized with the help of one unitary matrix:

ML = UmUT , (19)

U †U = 1 and m is a diagonal matrix (mik = miδik, mi > 0). From (16) and
(19) we ˇnd

LM = −1
2

ν̄mν = −1
2

3∑
i=1

miν̄iνi. (20)

Here

ν = U †nL + (U †nL)c =

⎛
⎝ ν1

ν2

ν3

⎞
⎠ . (21)

∗The left-handed component satisˇes the condition γ5νL = −νL. From this relation we have
γT
5 ν̄T

L = ν̄T
L . Taking into account that CγT

5 C−1 = γ5 we ˇnd γ5(νL)c = (νL)c. This relation
means that (νL)c is the right-handed component.
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From (20) and (21) we conclude the following:
1) νi(x) is the neutrino ˇeld with the mass mi.
2) The ˇeld νi(x) satisˇes the Majorana condition

νc
i (x) = νi(x). (22)

From this condition follows that

νi(x) =
∫

1
(2π)3/2

√
2p0

(air(p)ur(p) e−ipx + a†
ir(p)ur(−p) eipx)d3p. (23)

Here air(p) and a†
ir(p) are the operators of absorption and creation, respectively,

of a neutrino with mass mi, momentum p, and helicity r.
Thus, if the neutrino ˇeld satisˇes the Majorana condition (22), there is no

notion of antineutrino (or, in other words, neutrino and antineutrino are identical).
This is connected with the fact that the mass term (16) is not invariant under the
global gauge transformation νlL → eiΛνlL, i.e., there is no conserved lepton
number which would allow one to distinguish neutrino and antineutrino. Notice
that the Majorana mass term (16) cannot be generated in the framework of the
SM with a Higgs doublet (Higgs triplets are necessary)∗.

3) From (21) follows that the �avor ˇeld νlL(x) is a mixture of three Majo-
rana ˇelds νiL(x):

νlL(x) =
∑

i

UliνiL(x). (24)

We will assume now that not only �avor ˇelds νlL(x), components of the
lepton doublets, but also singlet (sterile) ˇelds νlR(x) enter into the neutrino mass
term. There can be two different mass terms in this case. We will consider ˇrst
the Dirac mass term

LD(x) = −
∑
l′l

ν̄l′L(x)MD
l′l νlR(x) + h.c., (25)

where MD is a 3 × 3 complex matrix.
The matrix MD can be diagonalized by a biunitary transformation. We have

MD = U †mV, (26)

∗It is clear from the derivation we presented that the fact that neutrinos with deˇnite masses
can be Majorana particles is based on the FermiÄDirac property of neutrino ˇelds. If we assume
that neutrino ˇelds are BoseÄEinstein ˇelds (this possibility was discussed in [16]), then neutrinos
with deˇnite masses cannot be Majorana particles. We can see this considering the mass term for a
Majorana particle with a mass m. We have LM = −(1/2) mν̄ν, where ν = νc = Cν̄T . From
this last relation we obtain νc = −νT C−1. Now we have ν̄ν = νcνc = −νT C−1Cν̄T =
−(νT ν̄T )T = +ν̄ν(Fermi) = −ν̄ν(Bose). Thus, for a ®bosonic neutrino¯ ν̄ν ≡ 0.
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where U and V are unitary matrices and mik = miδik . From (25) and (26) we
ˇnd

LD(x) =
3∑

i=1

mi ν̄i(x) νi(x), (27)

where
νi(x) =

∑
l

U †
ilνlL(x) +

∑
l

VilνlR(x). (28)

From (27) and (28) we can make the following conclusions:
1. The ˇeld νi(x) is the ˇeld of neutrinos with the mass mi.
2. The �avor ˇelds νlL(x) are connected with the left-handed components of

the ˇelds of neutrinos with deˇnite masses by the mixing relation

νlL(x) =
3∑

i=1

Uli νiL(x). (29)

The Lagrangian with the neutrino mass term (25) is invariant under the global
phase transformations

νi(x) → eiΛνi(x), l(x) → eiΛ l(x), q(x) → q(x), (30)

where Λ is an arbitrary constant. From the invariance under the transfor-
mations (27) follows that the total lepton number L, the same for e, μ and
τ , is conserved. The ˇeld νi(x) is the four-component Dirac ˇeld of neu-
trinos and antineutrinos with the same mass mi and different lepton numbers
(L(νi) = 1, L(ν̄i) = −1)∗.

The Dirac neutrino mass term can be generated by the standard Higgs mecha-
nism, which is responsible for the generation of the masses of quarks and leptons.
However, this mechanism cannot explain the smallness of the neutrino masses
with respect to the masses of quarks and leptons.

There is no fundamental principle which requires the conservation of the
lepton number L. The baryon asymmetry of the Universe signiˇes that the
baryon number is violated. It is natural to assume that in some interaction the
lepton number is also violated. If this interaction is relevant for the generation of
the neutrino masses, the neutrino mass term will violate the lepton number. The
most general neutrino mass term which violates the lepton number is the Dirac
and Majorana mass term

LD+M =−1
2

∑
l′l

νl′L ML
l′l(νlL)c−

∑
l′l

νl′L MD
l′l νlR− 1

2

∑
l′l

(νl′R)c MR
l′lνlR+h.c.

(31)

∗From (29) and (30) we ˇnd νlL(x) → ei ΛνlL(x). Thus, for the �avor neutrinos we have:
L(νl) = 1, L(ν̄l) = −1.
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Here ML and MR are complex, symmetrical 3×3 matrices and MD is a complex
3 × 3 matrix. After the diagonalization of this mass term we ˇnd

νlL =
6∑

i=1

Uli νiL, (νlR)c =
6∑

i=1

Ul̄i νiL, l = e, μ, τ (32)

and

LD+M (x) = −1
2

6∑
i=1

mi ν̄i(x) νi(x). (33)

Here the ˇeld νi(x) satisˇes the condition

νi(x) = νc
i (x) = Cν̄T

i (x) (34)

and U in (32) is a 6 × 6 unitary mixing matrix. From (33) and (34) follows that
the ˇeld νi(x) is a ˇeld of Majorana particles with mass mi.

From the consideration of the Dirac and Majorana mass term we can conclude
that the number of the massive neutrinos can be larger than the number of the
�avor neutrinos (three). Let us write in general

νlL =
3+ns∑
i=1

Uli νiL, l = e, μ, τ (35)

and

νsL =
3+ns∑
i=1

Usi νiL, s = s1, . . . , sns . (36)

Thus, we assumed that the three �avor neutrino ˇelds νlL are mixtures of the left-
handed components of 3 + ns massive ˇelds. This means that other ns mixtures
of left-handed components of the same 3 + ns massive ˇelds must exist. We
denoted them νsL. The ˇelds νsL do not enter into the standard weak interaction
Lagrangian and are called sterile ˇelds.

All �avor neutrinos (νe, νμ, ντ ) were observed in experiments. Sterile neu-
trinos νs cannot be produced in weak processes. There are two ways to reveal
the existence of the sterile neutrinos.

I. If neutrinos are detected via the observation of NC processes, the sum of
the probabilities of the transitions into all �avor neutrinos

∑
l′=e,μ.τ

P (νl → νl′)

will be measured. If there are no transitions into sterile neutrinos,
∑

l′=e,μ.τ

P (νl →

νl′) = 1 and no oscillations will be observed. If there are transitions into sterile
neutrinos,

∑
l′=e,μ.τ

P (νl → νl′) = 1−
∑
s

P (νl → νs) and neutrino oscillations can

be observed.
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II. Neutrino oscillations with two neutrino mass-squared differences Δm2
A

and Δm2
S were observed in different experiments. If oscillations with additional

mass-squared difference(s) will be measured, this will be the proof of the existence
of sterile neutrino(s).

During many years, the LSND indication [6] is in favor of the ν̄μ → ν̄e

transition with Δm2 � 1 eV2 (Δm2 � Δm2
A,S). In the MiniBooNE experiment

this indication was checked. In the channel νμ → νe the LSND result was not
conˇrmed [8]. In the channel ν̄μ → ν̄e some indication in favor of neutrino
oscillations, compatible with the LSND result, was obtained [7]. Further experi-
ments are necessary in order to test the idea of a possible existence of the sterile
neutrinos.

3. ON THE SEESAW MECHANISM OF NEUTRINO MASS GENERATION

Neutrino masses are many orders of magnitude smaller than masses of quarks
and leptons. Let us consider, for example, the masses of the third family particles.
We have

mt � 1.7 · 102 GeV, mb � 4.7 GeV, m3 � 2.3 · 10−9 GeV, mτ � 1.8 GeV.
(37)

From these values we can conclude that it is very unlikely that the masses of
quarks, leptons, and neutrinos are of the same origin. We believe that the masses
of the quarks and leptons are due to the standard Higgs mechanism. For neutrino
masses a new (or additional) mechanism is needed. We will discuss here the most
popular seesaw mechanism of the generation of small neutrino masses [17]. There
are different versions of this mechanism. We will discuss ˇrst the mechanism
which is based on the Dirac and Majorana mass term.

For illustration let us consider the Dirac and Majorana mass term in the
simplest case of one generation. We have

LD+M = −1
2

mLνL(νL)c − mDνLνR − 1
2

mR(νR)cνR + h.c., (38)

where mL,R and mD are real parameters. The mass term (38) can be easily
diagonalized. We have

LD+M = −1
2

∑
i=1,2

mi νi νi, (39)

where ν1,2 are Majorana ˇelds with masses m1,2 and

νL = cos θ ν1L + sin θ ν2L, (νR)c = − sin θ ν1L + cos θ ν2L. (40)
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The neutrino masses m1,2 and the mixing angle θ are connected with the para-
meters mL,R and mR by the following relations:

m1,2 =
1
2

∣∣∣(mR + mL) ∓
√

(mR − mL)2 + 4 m2
D

∣∣∣ (41)

and

tan 2θ =
2mD

mR − mL
. (42)

We will assume now that:
1) There is no left-handed Majorana mass term in the Lagrangian, i.e.,

mL = 0.
2) The Dirac mass term is generated by the standard Higgs mechanism, i.e.,

mD is of the order of a mass of a quark or a lepton.
3) A new mechanism generates a right-handed Majorana mass term. This

term does not conserve the lepton number. We assume that the lepton number
is violated at a scale which is much larger than the electroweak scale, i.e., that
mR ≡ MR � mD.

From (41) and (42) we obtain∗

m1 � m2
D

MR
� mD, m2 � MR � mD, θ � mD

MR
� 1. (43)

Thus, in the example we have considered, there are two masses in the Majo-
rana mass spectrum: very light (neutrino mass) and very heavy (mass of a new
particle). The mixing angle is tiny.

In the case of three families the seesaw matrix has the form

M =
(

0 mD

mT
D MR

)
. (44)

Here mD and MR = MT
R are 3× 3 matrices and MR � mD. The matrix M can

be presented in block-diagonal form by the unitary transformation

UT MU =
(

−mDM−1
R mT

D 0
0 MR

)
. (45)

The 3 × 3 Majorana mass matrix is given by

mν = −mDM−1
R mT

D. (46)

∗If mD � mt � 170 GeV and m1 � 5 · 10−2, we ˇnd MR � 1015 GeV.
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There are many parameters in the matrix mν . The large denominator M−1
R

ensures, however, the smallness of the neutrino masses with respect to the masses
of leptons and quarks. We can make the following conclusions:

1. In the seesaw approach neutrinos with deˇnite masses are Majorana
particles.

2. The smallness of neutrino masses is due to a right-handed Majorana mass
term which violates the lepton number at a large scale. The suppression factors
which provide the smallness of neutrino masses are characterized by the ratio of
the electroweak scale and the scale of the violation of the lepton number.

3. Heavy Majorana particles, partners of light Majorana neutrinos, must exist.
We have discussed the seesaw idea in terms of the Dirac and Majorana mass

term. The same idea can be realized in another way. Let us assume that there
exist heavy Majorana fermions Ni, singlets of the SU(2) × U(1) group, which
have the following SU(2)× U(1) invariant Yukawa interaction with leptons and
standard Higgs bosons:

L =
√

2
∑
i,l

YilLlLNiRφ̃ + h.c. (47)

Here Yil are dimensionless constants, and

LlL =
(

νlL

lL

)
, φ =

(
φ(+)

φ(0)

)
(48)

are lepton and Higgs doublets and φ̃ = iτ2φ
∗ is the conjugated Higgs doublet.

We assume that Mi � v, where Mi is the mass of the Majorana fermion Ni,
and v � 246 GeV is the Higgs vacuum expectation value. It is obvious that the
Lagrangian (47) does not conserve L. For the processes with virtual Ni at Q2 �
M2

i interaction (47) generates a nonrenormalizable effective Lagrangian [18]

Leff = −
∑
l′,l,i

Ll′Lφ̃Yil′
1

Mi
YilCφ̃T (LlL)T + h.c. (49)

If we put

φ̃ =

⎛
⎝ v + H√

2
0

⎞
⎠ (50)

(H is the Higgs ˇeld), the electroweak symmetry will be spontaneously broken
and from (49) we obtain the left-handed Majorana mass term

LM = −1
2

∑
l′l

νl′LML
l′l(νlL)c + h.c., (51)
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where

ML = Y T v2

M
Y (52)

is the seesaw mass matrix∗. The CP violating decays of heavy Majorana fermions
Ni in the early Universe are considered as a possible source of the baryon
asymmetry of the Universe (see [19]).

4. ON THE NATURE OF NEUTRINO OSCILLATIONS

4.1. Introduction. A lot of debates on the nature of neutrino oscillations
can be found in the literature (see recent papers [20]). We will discuss here this
problem.

From our point of view, the Heisenberg uncertainty relation and the time-
energy uncertainty relation are crucial for the phenomenon of neutrino oscilla-
tions. Uncertainty relations in Quantum Theory are based on the inequality

ΔA ΔB � 1
2
|〈a|[A, B]|a〉|, (53)

which can be easily derived from the Cauchy inequality. Here A and B are

Hermitian operators, |a〉 is any state, and ΔA =
√

A2 − A
2

is the standard
deviation. For example, for operators p and q which satisfy the relation [p, q] =
1/i we obtain from (53) the Heisenberg uncertainly relation Δp Δq � 1/2.

There exist different derivations of the time-energy uncertainty relation

ΔE Δt � 1 (54)

and different interpretations of the quantities which enter into this relation (see,
for example, [21]). Mandelstam and Tamm [22] derived the relation (54) from
inequality (53) and the evolution equation

i
dO(t)

dt
= [O(t), H ] (55)

for an operator O(t) in the Heisenberg representation (H is the total Hamiltonian).
From (53) and (55) we have

ΔE ΔO(t) � 1
2

∣∣∣ d

dt
O(t)

∣∣∣. (56)

∗The model we have discussed is usually called the seesaw type I model. The model based on
the interaction of lepton pairs and the Higgs pair with heavy scalar triplet bosons is called the seesaw
type II model, and the model based on the interaction of lepton-Higgs pairs with heavy Majorana
triplet fermions is called the seesaw type III model.
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For stationary states Eq. (56) is identically satisˇed. Nontrivial constraints can
be obtained only in the case of nonstationary states. In [22], the time-energy
uncertainty relation (54) was derived in which ΔE is the uncertainty of the
energy of the system and Δt is the time interval during which the state of the
system is signiˇcantly changed.

4.2. Flavor Neutrino States. We will consider the neutrino production.
Neutrinos are produced in weak decays and reactions. Let us consider (in the lab.
system) the decay [23]

a → b + l+ + neutrino, (57)

where a and b are some hadrons. The sum of the states of the ˇnal particles is
given by

|f〉 =
∑

i

|b 〉|l+〉|νi〉〈bl+νi|S|a〉, (58)

where 〈bl+νi|S|a〉 is the matrix element of the transition a → b + l+ + νi, where
νi is the neutrino with mass mi. We assume, as usual, that initial and ˇnal
particles have deˇnite momenta. Momenta of neutrinos with mass mi will be
denoted by pi.

Neutrinos νi differ only by their masses. If masses of neutrinos are the same,
their momenta will be equal. Taking into account that neutrino masses are much
smaller than neutrino momenta we have

pi � p + a
Δm2

1i

2E
, (59)

where p is the momentum of the lightest neutrino, E � p is the neutrino energy,
and |a| � 1 is a constant. For the difference of the neutrino momenta we have

|pi − pk| � |Δm2
ik|

2E
=

1
lik

. (60)

For reactor and atmospheric (accelerator) neutrinos we ˇnd, respectively,

l12 � 15 km, l23 � 200 km. (61)

For the uncertainty of the neutrino momentum we have

(Δp)QM � 1
d
, (62)

where d characterizes the quantum-mechanical size of the source.
Because the macroscopic length lik is much larger than the microscopic

quantum-mechanical size of the source we have

|pi − pk| � (Δp)QM. (63)
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Thus, due to the uncertainty relation, it is impossible to resolve the momenta of

neutrinos with different masses. Because Ei � pi

(
1 +

m2
i

2E2

)
and

m2
i

2E2
� 10−13,

energies of neutrinos with different masses also cannot be resolved.
Let us consider the lepton part of the matrix element 〈bl+νi|S|a〉. Taking

into account inequality (60), we have

U∗
liūL(pi)γαu(−pl) � U∗

liūL(p)γαu(−pl), (64)

where pl is the momentum of l+. For the total matrix element we have

〈bl+νi|S|a〉 � U∗
li 〈bl+νl|S|a〉SM, (65)

where 〈bl+νl|S|a〉SM is the Standard Model matrix element of the emission of
the �avor neutrino νl

∗ with momentum p and l+ in the process

a → b + l+ + νl. (66)

From (58) and (65) we ˇnd

|f〉 = |b 〉|l+〉|νl〉〈bl+νl|S|a〉SM. (67)

Here

|νl〉 =
3∑

i=1

U∗
li |νi〉 (l = e, μ, τ) (68)

is the state of the �avor neutrino νl. Thus, due to the smallness of the neutrino
mass-squared differences and the uncertainty relation, it is impossible to say
which massive neutrino is emitted in a weak process. This is the reason why a
coherent superposition of states of neutrinos with different masses is produced.
Let us stress that

• Flavor neutrino states do not depend on the production process (for exam-
ple, νes produced in μ decay and in β decay are the same particles).

• It is natural to assume that �avor states are characterized by the momentum
(if there are no special conditions of neutrino production).

• Flavor states are orthogonal and normalized

〈νl′ |νl〉 = δl′l. (69)

∗By deˇnition the �avor neutrino νl is a particle which is emitted in a weak process together
with l+, and the �avor antineutrino ν̄l is a particle which is emitted together with l−.
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4.3. Schréodinger Evolution of Flavor Neutrino States. The evolution equa-
tion for states in QFT is the Schréodinger equation

i
∂ |Ψ(t)〉

∂t
= H |Ψ(t)〉, (70)

where H is the total Hamiltonian. The general solution of this equation is
given by

|Ψ(t)〉 = e−iHt |Ψ(0)〉. (71)

If at t = 0 in a CC weak process νl is produced, for the neutrino state we have
at the time t

|νl〉t =
∑

i

|νi〉 e−iEit U∗
li, (72)

where Ei =
√

p2 + m2
i .

Neutrinos are detected via observation of weak processes. Let us consider
the transition

νi + N → l′ + X. (73)

For the matrix element we have

〈l′X |S|νiN〉 � 〈l′X |S|νl′N〉SMUl′i, (74)

where 〈l′X |S|νl′N〉SM is the SM matrix element of the process

νl′ + N → l′ + X. (75)

From (67), (72) and (74) follows that to the chain of processes a → b + l+ + νl,
νl → νl′ , νl′ +N → l′+X , there corresponds the factorized product of amplitudes

〈l′X |S|νl′N〉SM

(∑
i

Ul′i e−iEit U∗
li

)
〈bl+νl|S|a〉SM. (76)

Only the amplitude of the transition νl → νl′

A(νl → νl′) =
∑

i

Ul′i e−iEit U∗
li (77)

depends on the properties of massive neutrinos (mass-squared differences and
mixing angles). The matrix elements of the neutrino production and detection
do not depend on any characteristics of individual massive neutrinos. They are
given by the Standard Model. Let us stress that the important property of the
factorization (76) is based on the Heisenberg uncertainty relation.
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For the probability of the transition νl → νl′ we have

P (νl → νl′) =
∣∣∣∑

i

Ul′i e−i(Ei−Ek)t U∗
li

∣∣∣2 =

=
∣∣∣∑

i�=k

Ul′i (e−i(Ei−Ek)t − 1) U∗
li + δl′l

∣∣∣2. (78)

From this expression it is obvious that neutrino oscillations can be observed if
the condition∗

|Ei − Ek| t � 1 (i �= k) (79)

is satisˇed. This inequality is the MandelstamÄTamm time-energy uncertainty
relation. According to this relation a change of the �avor neutrino state in
time requires energy uncertainty (nonstationary state). The time interval required
for a signiˇcant change of the �avor neutrino state (oscillations) is given by
t � 1/|Ei − Ek|.

The inequality (79) can be interpreted in another way: in order to resolve
a small energy difference |Ei − Ek| � |Δm2

ik|/2E we need a macroscopically
large time interval t � 1/|Ei − Ek|. This corresponds to another interpretation
of the time-energy uncertainty relation (see [24]).

The time t in equation (70) is a parameter which in our case describes the
propagation of the neutrino signal. For the ultrarelativistic neutrino we have
t � L, where L is the distance between the neutrino source and the detector.
Taking into account this relation and the relation Ei−Ek = Δm2

ki/2E from (78),
we obtain the standard expression (1) for the neutrino transition probability.

4.4. On Other Approaches to Neutrino Oscillations. We will now brie�y
describe other approaches to neutrino oscillations which were considered in the
literature. We will start with the following remark. In many papers (see, for
example, [25]) the covariant operator e−iPx (Pα is the operator of the total
momentum, and xα = (t,x) is the space-time point) is applied to the mixed
�avor neutrino states (68). If we assume that at point x = 0 the �avor neutrino
νl is produced, we have for the neutrino state at the point x in this case

|νl〉x = e−iPx |νl〉 =
∑

i

e−ipix U∗
li|νi〉 =

∑
l′

|νl′〉
(∑

i

Ul′i e−ipix U∗
li

)
. (80)

∗This is a necessary condition for the observation of the oscillations. Another condition:
relatively large mixing angles.



1028 BILENKY S.M.

For the probability of the transition νl → νl′ we ˇnd the following expression:

P (νl → νl′) =
∣∣∣∑

i

Ul′i e−ipixU∗
li

∣∣∣2 =
∣∣∣ ∑

i�=k

Ul′i( e−i(pi−pk)x − 1)U∗
li + δl′l

∣∣∣2.
(81)

Let us assume that pi = pik, where k is the unit vector. For the phase difference
we have

(pi − pk)x = (Ei − Ek)t − (pi − pk)L � Δm2
kiL

2E
+ (Ei − Ek)(t − L). (82)

Taking into account that for the ultrarelativistic neutrinos t = L, we obtain
from (81) and (82) the standard expression (1) for the neutrino transition probabi-
lity∗. Nevertheless, the presented ®derivation¯ of the transition probability is
wrong. There are two reasons for that:

•The operator e−iPx is the operator of the evolution of ˇelds, but not states.
In fact, from the translational invariance for a ˇeld operator ψ(x) we have

i∂αψ(x) = [ψ(x), Pα]. (83)

The general solution of this equation has the form

ψ(x) = eiPx ψ(0) e−iPx. (84)

This equation means that e−iPx is the operator of evolution of ˇelds.
•The �avor state |νl〉, given by equation (68), which describes the mixture

of states with deˇnite momenta, cannot depend on x. In fact, we have

|νi〉 = c†−1(pi)|0〉, (85)

where |0〉 is the vacuum state and c†−1(pi) is the creation operator of a neutrino
with momentum pi, mass mi, and helicity equal to −1. This operator cannot
depend on x.

The expression (81) for the transition probability, in which neutrino mass
states evolve in space and time, can be treated only in the framework of relativistic
quantum mechanics. In this case the wave function of a �avor neutrino νl,
produced in a CC process, is the superposition

ψνl
(x, t) =

∑
i

U∗
li ψi(x, t), (86)

∗In the approach based on the Schréodinger equation, the phase difference is equal to
(Δm2

ki/2E)L if the �avor state possesses one momentum. We came here to the same result
for the phase difference because the neutrino energies in space and time terms are canceled due to
the relation t � L.
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where
ψi(x, t) = ei(pix−Eit) u(−1)(pi) (87)

is the solution of the Dirac equation

iγα∂αψi(x, t) = miψi(x, t). (88)

From (86) and (87) we ˇnd that the normalized probability of the transition
νl → νl′ is given by the expression (81) in which pix = Eit− piL is the change
of the phase of the plane wave at the distance L after the time t. From (81),
as we have shown before, the standard expression for the transition probability
follows.

Let us stress that
Å In the approach based on the relativistic quantum mechanics the notion of

�avor neutrino states does not appear.
Å The ®mixed¯ wave function ψνl

(x, t) does not satisfy the Dirac equation∗:

iγα∂αψνl
(x, t) =

∑
i

U∗
limiψi(x, t) �= m ψνl

(x, t). (89)

Å In order to obtain from the probability (81), which depends on x and t,
the standard transition probability we need to assume that

L � t. (90)

We will now brie�y discuss the wave packet approach to the neutrino oscillations
(see [26] and references therein). We will see that this approach provides the
equality (90).

Let us take into account the distribution of momenta of the initial neutrinos
determined by the uncertainty relation. For the νl → νl′ transition amplitude we
have in this case

A(νl → νl′) =
∑

i

Ul′i

∫
ei(p′

ix−E′
it) f(p′

i − pi) d3p′ U∗
li. (91)

Here E′
i =

√
(p′

i)2 + m2
i and the function f(p′

i − pi) has a sharp maximum at

the point p′
i = pi. We assume that |p′

i − pi| � pi.
Expanding E′

i at the point p′
i = pi we have

E′
i � Ei + (p′

i − pi) · vi, (92)

∗If any wave function of a particle with spin 1/2 must satisfy the Dirac equation, QM is not the
appropriate framework for neutrino oscillations.
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where Ei =
√

p2
i + m2

i and

vi =
pi

Ei
. (93)

Taking into account (92) we ˇnd∫
ei(p′

ix−E′
it) f(p′

i − pi) d3p′ = e−i(pix−Eit) g(x − vit), (94)

where the amplitude g(x− vit) is given by the expression

g(x− vit) =
∫

eiq (x−vit) f(q) d3q. (95)

Notice that the wave packet transition amplitude differs from the amplitude in the
plane-wave approximation by the additional factor g. Because of the relativistic
relation between momentum and energy, this factor depends on the combination
x − vit.

Usually it is assumed that the function f(q) has the Gaussian form

f(q) = N exp
(
− q2

4σ2
p

)
, (96)

where σp is the width of the wave packet in the momentum space. From (95)
and (96) we ˇnd

g(x− vit) = N

(
π

σ2
x

)3/2

exp
[
− (x− vit)2

4σ2
x

]
, (97)

where σx = 1/2σp characterizes the spacial width of the wave packet.
In the wave packet approach the probability of the transition νl → νl′ is

determined as a quantity obtained by integration over time (assuming that in
neutrino oscillation experiments time is not measured)

P (νl → νl′) =

+∞∫
−∞

|A(νl → νl′)|2 dt. (98)

From (94) and (98) we ˇnd the following expression for the normalized transition
probability:

P (νl → νl′) =
∑
i,k

Ul′iU
∗
l′k ei(pi−pk)x U∗

liUlk eAik , (99)

where

Aik = −i(Ei − Ek)x − 1
2σ2

x

(
Δm2

ik

4E2

)2

x2 − 1
2
σ2

xξ2

(
Δm2

ik

2E

)2

. (100)

Here Ei = E + ξ(m2
t /2E) and ξ is a constant of the order of one.
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The factor eAik is the result of the integration over t. From the ˇrst term of
the expression for Aik it is evident that the Gaussian amplitude g(x− vit) (after
the integration over t) provides the equality t = x. For usual neutrino oscillation
experiments the second and the third terms of the expression for Aik are very
small. In fact, let us introduce the coherence and oscillation lengths∗

Lik
coh =

4
√

2σxE2

|Δm2
ik|

, Lik
osc = 4π

E

|Δm2
ik|

. (101)

The expression for the transition probability takes the form

P(νl → νl′) =
∑
i,k

Ul′iU
∗
l′k exp

(
i
Δm2

ik

2E
L

)
U∗

liUlk×

× exp

[
−

(
L

Lik
coh

)2
]

exp

[
−2π2ξ2

(
σx

Lik
osc

)2
]

, (102)

where x = L is the distance between neutrino source and neutrino detector.
We have

Lik
coh =

√
2

π
σxELik

osc. (103)

From this expression it follows that the coherence length is much larger than the
oscillation length. Thus, for neutrino oscillation experiments with L � Lik

osc the

term exp

[
−

(
L

Lik
coh

)2
]

is practically equal to one.

Further we have∗∗

Lik
osc � σx. (104)

Thus, the term exp

[
−2π2ξ2

(
σx

Lik
osc

)2
]

is also practically equal to one.

We will ˇnish this part with the following remarks:
• Integration over time in the wave packet approach assumes that the time

interval t between neutrino production and detection is not measured in neutrino
oscillation experiments. This is correct in the case of the atmospheric and reactor
neutrino experiments because the time of neutrino production is not known in such

∗We have |vi − vk |Lik
coh �

|Δm2
ik |

2E2
∼ σx. Thus, the coherence length characterizes such

a distance between neutrino source and detector at which the distance between νi and νk becomes
comparable to the size of the wave packet.

∗∗As we discussed before, because of this inequality coherent �avor neutrino states are produced.
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experiments. However, in the case of the accelerator neutrino experiments (K2K,
MINOS, T2K) neutrinos are produced in spills and the time of neutrino production
is known. In these experiments the time of neutrino production is measured and
the time interval t is known. For example, in the K2K experiment [4] the
measurement of t = tSK − tKEK, where tSK is the time of detection of neutrinos
in the SuperKamiokande detector and tKEK is the time of the production of
neutrinos at KEK, allowed one to show that

−0.2 �
∣∣∣t − L

c

∣∣∣ � 1.3 μs. (105)

• The wave packet approach assures the equality t = L and the standard
oscillation phase in the transition probability. Two additional exponential fac-
tors are very close to one for usual neutrino oscillation experiments. The ef-
fect of the decoherence term could be important only for large cosmological
distances.

In many papers (see [20]) neutrinos, propagating about 100 km (reactor νs)
or about 1000 km (atmospheric and accelerator νs), are considered as virtual
neutrinos in a Feynman diagram-like picture with the neutrino production process
at one vertex and the neutrino absorption process in another vertex. This approach
gives the wave packet picture of neutrino oscillations with a transition probability
which (before integration over t) depends on x and t.

In the standard S-matrix approach, which is based on the local quantum ˇeld
theory, the transition amplitude is given by

〈f |S|i〉 =
〈
f
∣∣∣T(

exp
[
−i

∫
HI(x) d4x

])∣∣∣i〉, (106)

where HI(x) is the interaction Hamiltonian. Let us stress that
Å In all orders of the perturbation theory of the matrix element (106) in-

tegration over the same (in our case weak) interaction region is performed and
virtual particles belong to the same region. In the ®virtual neutrino approach to
neutrino oscillations¯ there are two interaction regions (production and detection)
separated by a large macroscopic distance.

Å In the standard S matrix approach initial and ˇnal states are states of
free particles considered at the same time (correspondingly at t → −∞ and
at t → +∞). In the ®virtual neutrino approach¯ initial and ˇnal states are
states of particles at ˇxed space-time points separated by macroscopic distance
and time.

This ®virtual neutrino approach¯ can be considered as a model based on
the combination of ˇeld theory and relativistic quantum mechanics. From our
point of view, the applicability of this approach to neutrino oscillations requires
experimental tests.
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CONCLUSIONS

We have discussed different approaches to neutrino oscillations. The QFT
approach is based on the assumption that states of �avor neutrinos νl are mixed
coherent states |νl〉 =

∑
i

U∗
li|νi〉. The evolution of �avor neutrino states in

time is determined by the Schréodinger equation for quantum states. The QFT
approach is based on the same general principles as the approach to B0 �
B̄0, etc., oscillations studied in detail at B factories and other facilities. The
important characteristic feature of this approach is the MandelstamÄTamm time-
energy uncertainty relation.

Other approaches are based on the assumption that in weak processes mixed
coherent superpositions of plane waves or wave packets, describing neutrinos with
different masses, are produced and detected. The evolution of mixed neutrino
wave functions in space and time is determined by the Dirac equation.

Different approaches to neutrino oscillations lead to the same expression for
the neutrino transition probability P(νl → νl′) in the standard neutrino oscillation
experiments. In order to distinguish different approaches special neutrino oscilla-
tion experiments are necessary. Such experiments could be the recently discussed
Méossbauer neutrino experiments [27,28].

As an example, let us consider the recoilless Méossbauer transition

3H → 3He + ν̄e, ν̄e + 3He → 3H, (107)

in which a ν̄e with energy � 18.6 keV is produced and absorbed.
It was estimated in [27] that the uncertainty of the energy of the antineutrino

in the Méossbauer transition (107) is of the order of

(ΔE)M � 8.4 · 10−12 eV. (108)

Let us compare (ΔE)M given by (108) with the quantity Δm2
A/2E which could

govern neutrino oscillations in (107). We have

Δm2
A

2E
� 0.6 · 10−7 eV. (109)

Thus, we have

(ΔE)M � Δm2
A

2E
. (110)

This means that neutrino oscillations with the oscillation length given by LA
osc =

4π(E/Δm2
A) cannot be observed in the Méossbauer neutrino experiment if the

QFT approach is valid [29]. This statement is in agreement with the time-energy
uncertainty relation: the uncertainty of the energy in the Méossbauer transition is
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too small to fulˇll the MandelstamÄTamm time-energy uncertainty relation (54)
with t � LA

osc.
On the other side, if the space-time picture of neutrino oscillations is valid,

neutrino oscillations with the oscillation length LA
osc will be observed in the

Méossbauer neutrino experiment [30]. In fact, for the oscillation phase we have
in this case

(E3 − E2) − (p3 − p2) �
Δm2

A

2E
. (111)

In the space-time approach a signiˇcant change of the neutrino state at the distance
LA

osc does not require a corresponding energy uncertainty. In other words, neutrino
oscillations in the space-time approach do not necessarily follow the MandelstamÄ
Tamm uncertainty relation.

Neutrino oscillations (like B0 � B̄0, etc., oscillations) are an extremely
important quantum phenomenon. Because of the interference nature of neutrino
oscillations their investigation allows one to determine tiny neutrino mass-squared
differences which are not reachable in other experiments. The theory of neutrino
oscillations is grounded on basic conceptions. The study of neutrino oscillations
in the Méossbauer neutrino experiment with practically monoenergetic neutrinos
would allow us to answer such fundamental questions of Quantum Theory as
the problem of the existence of mixed coherent �avor states, the problem of the
evolution of the quantum states (in time or in space and time), the problem of
the universal applicability of the time-energy uncertainty relation and others.

I would like to express my deep gratitude to Walter Potzel for numerous
discussions. This work has been supported by funds of the DFG (Transregio 27:
Neutrinos and Beyond), the Munich Cluster of Excellence (Origin and Structure
of the Universe), and the MaierÄLeibnitz-Laboratorium (Garching).
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