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W.Grimus
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We motivate the usage of ˇnite groups as symmetries of the Lagrangian. After a presentation
of basic group-theoretical concepts, we introduce the notion of characters and character tables in the
context of irreducible representations and discuss their applications. We exemplify these theoretical
concepts with the groups S4 and A4. Finally, we discuss the relation between tensor products
of irreducible representations and Yukawa couplings and describe a model for tri-bimaximal lepton
mixing based on A4.

PACS: 14.60.Pq

INTRODUCTION

Motivation for Horizontal Symmetries. The mass spectrum of quarks and
leptons is one of the least understood facts of particle physics. However, it was
noticed quite early [1] that the Cabbibo angle might be a function of the ratio of
down and strange quark mass because numerically one has

sin θc �
√

md

ms
. (1)

A very popular possibility to generate fermion masses and mixing is the Higgs
mechanism. This has brought about the idea that in such a framework the
CKM matrix could be explained by symmetries acting on the three quark families
which restrict the Yukawa couplings such that a relation like equation (1) becomes
possible. Since the CKM matrix is not far from the unit matrix and the up and
down quark mass spectra are strongly hierarchical, it seems at least plausible that
the mixing angles are functions of quark mass ratios.

The observation by Harrison, Perkins and Scott [2] that lepton mixing is in
good approximation tri-bimaximal, i.e., compatible with the mixing matrix
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2

⎞
⎠ ≡ UHPS, (2)

has given a boost to the idea of family symmetries. In the lepton sector it seems
that mixing angles could be related to ®pure numbers¯. At any rate, U is very
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different from the unit matrix and thus lepton mixing is very different from quark
mixing [3].

Neutrino Mass Spectrum. The idea that the elements of U are, in good
approximation, pure numbers (and not functions of lepton mass ratios) is in ac-
cord with the observation of the neutrino mass spectrum: it is either completely
different from the charged-fermion mass spectra or its hierarchy is not so pro-
nounced [3].

We know from neutrino oscillations that the neutrino mass spectrum is nonde-
generate. The neutrino mass spectrum is called hierarchical if m1 � Δm2

�, where

Types of neutrino mass spectra

m1 is the smallest neutrino mass and Δm2
�

is the solar mass-squared difference. Since
Δm2

atm/Δm2
� ∼ 30, we conclude that m3/m2 �√

Δm2
atm/Δm2

� ∼ 5−6 in the hierarchical case

which illustrates that a neutrino mass hierarchy can
only be rather weak. The quantity Δm2

atm is the
atmospheric mass-squared difference. An inverted
hierarchy is also possible if (by the usual conven-
tion) m3 is the smallest mass with m3 � Δm2

atm.
Experimentally, the question of the neutrino mass
spectrum is completely undecided. If the smallest
neutrino mass is denoted by ms, we have a normal ordering for ms = m1 and
an inverted ordering for ms = m3. The spectrum is called quasi-degenerate if
m1 � m2 � m3. Of course, also a spectrum between hierarchical and quasi-
degenerate is allowed for both orderings.

Neutrino Mass Terms and Parameter Counting. In the following we as-
sume that

• neutrinos have Majorana nature and
• the charged-lepton mass matrix is diagonal.
Majorana neutrinos are theoretically more appealing than Dirac neutrinos

because many mechanisms for neutrino mass generation, e.g., the seesaw mecha-
nism [4], naturally lead to Majorana nature. The second assumption is used only
for the time being for the purpose of parameter counting.

A Majorana neutrino mass term is given by

LMaj =
1
2
νT

L C−1MννL + h.c. (3)

with the charge-conjugation matrix C. From the anticommutation property of
the neutrino ˇelds we conclude that Mν = MT

ν , i.e., Mν is a symmetric but
in general complex matrix. For the transformation to the mass eigenˇelds, the
following theorem, specialized to 3 × 3 matrices, is applied.
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Theorem 1 (Schur) . For every complex, symmetric matrix Mν there exists a
unitary matrix U with UTMνU = diag (m1, m2, m3) and mj � 0.

The matrix U diagonalizing the neutrino mass matrix Mν is called the PontecorvoÄ
MakiÄNakagawaÄSakata (PMNS) or lepton mixing matrix U , provided we are in
a basis where the charged-lepton mass matrix is diagonal. The matrix U is usually
parameterized as

U = eiα̂ U23U13U12 diag
(
1, eiβ2 , eiβ3

)
. (4)

The diagonal phase matrix eiα̂ = diag (eiα1 , eiα2 , eiα3) is unphysical in the
charged-current interaction because it can be absorbed into the charged lepton
ˇelds. The matrices U23, U13, and U12 are rotations in the subsectors indicated
by their subscripts:

U23 =

⎛
⎜⎝

1 0 0
0 c23 s23

0 −s23 c23

⎞
⎟⎠ , (5)

U13 =

⎛
⎜⎝

c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

⎞
⎟⎠ , (6)

U12 =

⎛
⎜⎝

c12 s12 0
−s12 c12 0

0 0 1

⎞
⎟⎠ . (7)

In the mixing matrix the conventions 0 � θij � 90◦ are imposed. As a con-
sequence, one must allow the full range 0 � δ < 360◦ of the CP -violating
CKM-type phase δ. As for the neutrino masses, one imposes m1 < m2 with
Δm2

� = m2
2 − m2

1. With this convention the sign of m2
3 − m2

1 is a physical
quantity and must eventually be determined by experiment.

In summary there are nine physical parameters in neutrino masses and mixing:
three masses, three angles, and the three phases δ, β2, and β3. The latter two
phases are the so-called Majorana phases; if neutrinos have Dirac nature, they
can be removed from the charged-current interactions by absorbing them into the
neutrino ˇelds.

Let us compare the number of nine parameters with the number of parameters
in Mν . There are 6 × 2 = 12 real parameters in Mν . However, e.g., the ˇrst
line and ˇrst column can be made real by a phase transformation eiα̂ which has
no effect in the charged-current interactions Å see above. Thus we have nine
real physical parameters in Mν corresponding to the nine physical quantities
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above. As mentioned before, there is also one discrete physical parameter, namely
sign (m2

3 − m2
1), which is +1 for the normal ordering and −1 for the inverted

ordering of the neutrino mass spectrum.
Finally, we want to make some remarks concerning the diagonalization of

Mν with theorem 1. If we write U = (u1, u2, u3) with an orthonormal (ON)
basis uj of �3, theorem 1 tells us that

Mνuj = mju
∗
j . (8)

Note the following points:
• In general, uj is not an eigenvector of Mν , this is the case only for real uj .
• If λ is an eigenvalue of Mν , then |λ| is in general not a neutrino mass.
• However, the neutrino masses can be obtained by M†

νMνuj = m2
juj .

In these lecture notes we will discuss some features of model building for
lepton masses and mixing Å see, for instance, [5, 6] for reviews. However, we
will ˇrst delve into useful theoretical aspects of ˇnite groups and review two
groups popular in model building. For the general theory of groups we refer the
reader, e.g., to [7, 8]. Recent reviews on ˇnite subgroups of SU(2) and SU(3)
are presented in [9, 10], for more specialized recent reviews see [11Ä13].

1. THEORY OF FINITE GROUPS

1.1. Basics. We assume familiarity of the reader with the very basic notions
like the deˇnition of a group, representation, irreducible representation (irrep),
subgroup, coset and normal subgroup, which can be found in any text-book on
group theory, e.g., in [7, 8].

Now we will explain some basic useful concepts. On a group G one always
has an equivalence relation via the following deˇnition: g1 is conjugate to g2 if
there exists a g ∈ G such that gg1g

−1 = g2. The sets of equivalent elements are
called conjugacy classes. Obviously, {e} is a class consisting only of the unit
element, and a normal subgroup consists of complete conjugacy classes.

Irreps and Proper Normal Subgroups. Using a symmetry group in physics
mostly boils down to applying its irreps to physical objects (multiplets). There-
fore, we need to know the irreps or methods how to track them down. A good
part of this section is devoted to this subject.

Knowing the proper normal subgroups of G helps in this respect. The notion
®proper¯ means that the subgroup is larger than {e} and smaller than G. Let H
be a proper normal subgroup of G, then

• the mapping f : g ∈ G → Hg ∈ G/H is a homomorphism, i.e., the
relation f(g)f(g′) = f(gg′) holds ∀ g, g′ ∈ G,

• and any representation D of G/H induces naturally a representation D̄ of
G via D̄(g) ≡ D(Hg).
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Direct Product. With two groups G and G′ one can form the direct product
group G × G′ with the multiplication law (g1, g

′
1)(g2, g

′
2) = (g1g2, g

′
1g

′
2). This is

often used in model building. For example, one has a symmetry group like the
permutation group S3 and enlarges it by a sign transformation leading to S3×�2,
a direct product of S3 with the cyclic group �2.

Semidirect Product. This generalization of the direct product is written as
H �φ G, which symbolizes that G acts on H via the homomorphism φ : G →
Aut(H), where Aut (H) is the group of automorphisms on H . (An automorphism
φ on H is simply a group isomorphism φ : H → H .) The multiplication law is
given by

(h1, g1)(h2, g2) = (h1 φ(g1)h2, g1g2). (9)

This is a rather abstract deˇnition and it takes a bit of effort to prove that the
multiplication law is associative. We will shortly see that in practice it has a very
simple interpretation.

Obviously, for φ = id the semidirect product is identical with the direct prod-
uct. A useful question for model building is whether a group can be decomposed
into a semidirect product. Actually, a closer examination of ˇnite groups shows
that semidirect products are ubiquitous! The reason is the following theorem.

Theorem 2 . Let us assume that H is a proper normal subgroup of S; and G, a
subgroup of S with following properties:

1) H ∩ G = {e},
2) Every element s ∈ S can be written as s = hg with h ∈ H , g ∈ G.

Then the following holds:
• S ∼= H �φ G with φ(g)h = ghg−1,
• The decomposition s = hg is unique,
• S/H ∼= G.

The proof is straightforward. That the homomorphism φ has the form given in
the theorem simply follows from the multiplication of two elements of S:

s1s2 = (h1g1)(h2g2) = (h1g1h2g
−1
1 )(g1g2). (10)

1.2. Symmetries in the Lagrangian versus Symmetry Groups. Suppose we
have a multiplet of fermion ˇelds ψ1, . . . , ψr in the Lagrangian L. Then L has
the form

L = i

r∑
j=1

ψ̄jγ
μ∂μψj + . . . , (11)

where the dots indicate the terms beyond the kinetic terms. The symmetries of L
are given by transformations ψj → A

(p)
jk ψk (p = 1, . . . , Ngen). Since the kinetic

term has to be invariant, it follows that the matrices A(p) (p = 1, . . . , Ngen) are
unitary. There are two approaches to symmetries and Lagrangians:
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• We start with L and impose symmetries A(p) on L. Then the Ngen matrices
A(p) generate a representation of a symmetry group G from which we can infer
the group G.

• We can also take the opposite point of view. We begin with a group G
and introduce multiplets of ˇelds which transform according to representations
of G. In this way we determine L from the symmetry group and the multiplets
we introduce.

1.3. Useful Theorems for Finite Groups. Finite groups, i.e., groups whose
number of elements is ˇnite, are very popular in model building. As expected,
inˇnite groups are more complicated than ˇnite ones: They possess inˇnitely
many inequivalent irreps, and noncompact simple Lie groups G possess no ˇnite-
dimensional unitary irreps apart from the trivial ones where every element is
mapped onto unity.

Let us, for example, consider U(1) as the simplest inˇnite group. We readily
ˇnd its irreps: eiα → einα with n ∈ �. Thus there are inˇnitely many. The
same applies to the simplest non-Abelian group O(2). Its irreps can be found,
for instance, in Appendix of [14].

For ˇnite groups, the number of its elements is called order of G and abbre-
viated by ordG. Finite groups have the following properties:

• They possess a ˇnite number of inequivalent irreps.
• All irreps are equivalent to unitary irreps.
• All numbers concerning properties of the group and its irreps are ˇnite as

well; this allows one to derive extremely useful relations which are totally lacking
in inˇnite groups.

Now we list some of the most important theorems for ˇnite groups:

Theorem 3 (Lagrange) . If H is a subgroup of G, then ordH is a divisor of
ordG.

This theorem has a straightforward corollary. Deˇning the order of an ele-
ment g of G as the smallest number r such that gr = e, we observe that every
element g ∈ G generates a cyclic subgroup �r ⊆ G. Therefore, the order of
every element is a divisor of ordG.

Theorem 4 . If we denote the irreps of G by D(α), with dimD(α) = dα being the
dimension of the vector space on which the irrep acts, and if the index α numbers
all inequivalent irreps, then it follows that

∑
α

d2
α = ordG. (12)

Theorem 5 . The number of inequivalent irreps D(α) equals the number of con-
jugacy classes of G.
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1.4. Characters and Character Tables. Orthogonality Relations for Irreps.
One can deˇne the space of functions on G and endow it with the scalar product

(f1|f2) =
1

ordG

∑
g∈G

f∗
1 (g)f2(g) (13)

in order to make it a unitary space.
Suppose we have an irrep D(α) with dimension dα. Then with respect to

a basis, the irrep consists of matrices and we can conceive the matrix elements

D
(α)
ij (g) as functions on G. With Schur's lemma (not to be confused with theo-

rem 1 (Schur)) it is rather easy to prove the following theorem [7Ä9]:

Theorem 6 . For irreps D(α) and D(β) with dimensions dα and dβ , respectively,
the orthogonality relations∑

g∈G

D
(α)
ij (g−1)D(β)

kl (g) =
ordG

dα
δαβδjkδil (14)

hold.

For ˇnite groups we can always assume that the representation matrices

are unitary. In this case D
(α)
ij (g−1) = (D(α)†)ij(g) = (D(α)

ji (g))∗ is valid and
equation (14) can be rewritten as

(D(α)
ji |D(β)

kl ) =
1
dα

δαβδjkδil. (15)

The Character of a Representation. For any representation D its character is
deˇned by the function

χ : g ∈ G → χ(g) = TrD(g) ∈ �, (16)

where Tr denotes the trace. The character has the property that it is constant on
every class Ck.

Let us move to the characters of irreps. We denote by χ(α) the character of
the irrep D(α). These characters have the following properties:

χ(α)(e) = dα,
∑
g∈G

(χ(α)(g))∗χ(β)(g) = δαβ ordG. (17)

The ˇrst relation is trivial, the second one follows from Eq. (14). If we denote

by ck the number of elements in class Ck and by χ
(α)
k the value of χ(α) on Ck,

then the orthogonality relation for the characters of irreps reads
n∑

k=1

ck(χ(α)
k )∗χ(β)

k = δαβ ordG, (18)

where n is the number of classes.
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Character Tables. Since according to theorem 5 for every group G the
number of classes, n, equals the number of inequivalent irreps, one can depict

a quadratic scheme of numbers χ
(α)
k , with columns and lines marked by k and

α, respectively. Such a scheme is called character table of the group G (see
Table 1). Note that this scheme is usually supplemented by two further lines as
shown in Table 1, for providing further information on the group.

Table 1. Schematic description of a character table. In the ˇrst line, after the name of
the group G, the classes are listed, below each class Ck is its number of elements ck,
and in the second line below the class, the order νk of its elements is stated

G C1 C2 · · · Cn

(# Ck) (c1) (c2) · · · (cn)
ord (Ck) ν1 ν2 · · · νn

D(1) χ
(1)
1 χ

(1)
2 · · · χ

(1)
n

D(2) χ
(2)
1 χ

(2)
2 · · · χ

(2)
n

...
...

...
...

...

D(n) χ
(n)
1 χ

(n)
2 · · · χ

(n)
n

It is customary to set C1 = {e}, thus in the ˇrst column the dimensions

dα = χ
(α)
1 of the irreps can be read off. Furthermore, the usual convention is that

D(1) is the trivial irrep, therefore, χ
(1)
k = 1 ∀k. Moreover, the irreps are ordered

according to increasing dimensions.
From equation (18) we know that the line vectors

(√
c1

ord G
χ

(α)
1 , . . . ,

√
cn

ord G
χ(α)

n

)
(19)

form an ON basis of �n. Consequently, also the column vectors

√
ck

ordG

⎛
⎜⎜⎝

χ
(1)
k
...

χ
(n)
k

⎞
⎟⎟⎠ (k = 1, . . . , n) (20)

deˇne an ON basis whose orthonormality conditions can be reformulated as

n∑
α=1

(χ(α)
k )∗χ(α)

� =
ordG

ck
δk�. (21)

Equations (18) and (21) are useful for the construction of a character table.
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Reducible Representations and Character Tables. Suppose a representation D
of a group G is given. Then with its character table it is straightforward to ˇnd
its decomposition into irreps because the character of a reducible representation
is a sum

χD =
n∑

α=1

nαχ(α), (22)

where the nα denote the multiplicities with which the irreps D(α) occur in D.
Consequently,

nα = (χ(α)|χD). (23)

This relation is particularly useful for tensor products because the character of
the tensor product D(α) ⊗D(β) is given by the product of the characters of D(α)

and D(β):
χ(α⊗β)(g) = χ(α)(g) × χ(β)(g). (24)

1.5. The Group S4. Let us examine the symmetric group S4, i.e., the group
of permutations of four objects, in the light of our group-theoretical discussion.
We have chosen S4 for two reasons. First, it is a group which is popular for
model building Å see, e.g., [15] for a very early paper with S4 used in the quark
sector and two recent papers [16,17] where this group is a symmetry in the lepton
sector. Second, for the symmetric groups Sn there is a general and simple rule
how to ˇnd their classes∗.

The order of Sn is n!. Every element p ∈ Sn can be written as

p =
(

1 2 . . . n
p1 p2 . . . pn

)
. (25)

This scheme means that i is mapped to pi (i = 1, . . . , n). One can also present
permutations as cycles. A cycle of length r is a mapping

(n1 → n2 → n3 → . . . → nr → n1) ≡ (n1n2n3 · · ·nr) (26)

such that all numbers n1, . . . , nr are different. Evidently, every permutation is a
unique product of cycles which have no common elements. For instance,(

1 2 3 4 5 6
4 6 3 5 1 2

)
= (145)(3)(26). (27)

Cycles which have no common element commute and a cycle which consists of
only one element is identical with the unit element of Sn. The classes of Sn are
characterized by the cycle structure [7].

∗In general, the problem of ˇnding the classes of a group can be quite tricky, if its order is
large.



THEORY OF NEUTRINO MASSES AND MIXING 1111

Theorem 7 . The classes of Sn consist of the permutations with the same cycle
structure.

Let us apply this to S4. The theorem says that it has ˇve classes correspond-
ing to the cycle structures e, (n1n2), (n1n2)(n3n4), (n1n2n3) and (n1n2n3n4).
Its corresponding classes will be denoted by C1, . . . , C5, respectively, in the
following. Thus, S4 has ˇve inequivalent irreps.

There is another useful theorem concerning Sn.

Theorem 8 . Sn has exactly two 1-dimensional irreps: p → 1 and p → sgn (p).

The sign of a permutation is +1 (−1), if it can be decomposed into an even
(odd) number of transpositions, i.e., cycles of length r = 2. A cycle of length r
is even (odd) if r is odd (even).

Now we can easily ˇnd the dimensions of all irreps of S4. We know already
that there are ˇve irreps, with two of them having dimension one. Thus, according
to theorem 4, we have the equation 12 + 12 + d2

3 + d2
4 + d2

5 = 24. One can easily
check that the solution is unique (up to reordering): d3 = 2, d4 = d5 = 3.

In order to ˇnd the remaining three irreps we take advantage of the fact that
Klein's four-group

K = {e, (12)(34), (13)(24), (14)(23)} ∼= �2 × �2 (28)

is a normal, Abelian subgroup of S4. That it is an Abelian subgroup is easily
checked, that K is also normal follows from theorem 7. We observe that S3 can
be conceived as subgroup of S4 if we consider the permutations of only 2, 3, 4.
One can check that K and the S3 deˇned in this way have exactly the properties
of H and G of theorem 2. Therefore,

S4
∼= K � S3 (29)

and every element of S4 can uniquely be decomposed into s = kp with k ∈ K
and p ∈ S3.

Taking advantage of equation (29), we ˇnd the 2-dimensional irrep as

kp → D2(p) with D2((234)) =
(

ω 0
0 ω2

)
, D2((34)) =

(
0 1
1 0

)
. (30)

Note that D2 is an irrep of S3. Clearly, K , which is represented trivially as we
have discussed in Subsec. 1.1, and the two cycles in equation (30) generate the
full S4, thus we really have found the complete 2-dimensional irrep.

It remains to construct the two 3-dimensional irreps. We only sketch the
procedure. A 3-dimensional representation of K ∼= �2 × �2 is given by

(12) (34) → diag ( 1,−1,−1) ,

(13) (24) → diag (−1, 1,−1) ,

(14) (23) → diag (−1,−1, 1) .

(31)
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We denote the representation of K by A(k). Obviously, the mapping

(34) →

⎛
⎝ 1 0 0

0 0 1
0 1 0

⎞
⎠ , (24) →

⎛
⎝ 0 0 1

0 1 0
1 0 0

⎞
⎠ , (23) →

⎛
⎝ 0 1 0

1 0 0
0 0 1

⎞
⎠ (32)

generates a representation of the S3 which permutes the numbers 2, 3, 4. We
denote this representation by M3(p). It is not difˇcult to ckeck that kp →
A(k)M3(p) is indeed a representation of S4. Obviously, it is irreducible. The
second 3-dimensional irrep is obtained by multiplication of the previous one
with sgn (p).

Thus we have the following summary of the S4 irreps:

s = kp ∈ S4 ⇒

1 : kp → 1,

1′ : kp → sgn (p),
2 : kp → D2(p),
3 : kp → A(k)M3(p),
3′ : kp → sgn (p)A(k)M3(p).

(33)

Note that sgn (kp) = sgn (p) = det M3(p).

Table 2. Character table of S4

S4 C1 C2 C3 C4 C5

(# Ck) (1) (6) (3) (8) (6)

ord (Ck) 1 2 2 3 4

1 1 1 1 1 1

1′ 1 −1 1 1 −1

2 2 0 2 −1 0

3 3 1 −1 0 −1

3′ 3 −1 −1 0 1

Having all classes and irreps at our disposal, we can write down character
Table 2. As an application we compute the decomposition of 3 ⊗ 3 into ir-
reps. The character of 3 ⊗ 3 is given by the square of the line labeled by 3
in Table 2:

χ3⊗3 = [ 9 1 1 0 1 ] . (34)

With Eq. (23) the multiplicities of the irreps in 3 ⊗ 3 are computed.
The whole information for this computation is contained in the cha-
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racter table:

n1 =
1
24

(1 × 1 × 9 + 6 × 1 × 1 + 3 × 1 × 1 + 8 × 1 × 0 + 6 × 1 × 1) = 1,

n1′ =
1
24

(1 × 1 × 9 − 6 × 1 × 1 + 3 × 1 × 1 + 8 × 1 × 0 − 6 × 1 × 1) = 0,

n2 =
1
24

(1 × 2 × 9 + 6 × 0 × 1 + 3 × 2 × 1 − 8 × 1 × 0 + 6 × 0 × 1) = 1,

n3 =
1
24

(1 × 3 × 9 + 6 × 1 × 1 − 3 × 1 × 1 + 8 × 0 × 0 − 6 × 1 × 1) = 1,

n3′ =
1
24

(1 × 3 × 9 − 6 × 1 × 1 − 3 × 1 × 1 + 8 × 0 × 0 + 6 × 1 × 1) = 1.

All products of three numbers in this computation are given by

ck × χ
(α)
k × χ3⊗3

k .

Thus the result of the decomposition is

3⊗ 3 = 1⊕ 2⊕ 3⊕ 3′. (35)

With some experience it is not difˇcult to guess the ClebschÄGordan coefˇcients
(for their deˇnition see, e.g., [7,8]). Denoting the Cartesian basis vectors in 3 by
ej (j = 1, 2, 3) and deˇning ω = e2πi/3 we ˇnd

1 :
1√
3

(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) ,

2 :

⎧⎪⎪⎨
⎪⎪⎩

1√
3

(
e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3

)
,

1√
3

(
e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3

)
,

3 :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2

(e2 ⊗ e3 + e3 ⊗ e2) ,

1√
2

(e3 ⊗ e1 + e1 ⊗ e3) ,

1√
2

(e1 ⊗ e2 + e2 ⊗ e1) ,

3′ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1√
2

(e2 ⊗ e3 − e3 ⊗ e2) ,

1√
2

(e3 ⊗ e1 − e1 ⊗ e3) ,

1√
2

(e1 ⊗ e2 − e2 ⊗ e1) .

(36)
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1.6. The Group A4. After the seminal paper by Ma and Rajasekaran [18],
this group has become the most popular one in the context of neutrino masses
and lepton mixing. We can only list a few early papers here in [19,20], refer the
reader to the review [6] and to citations in recent A4 papers to get an impression
of the bustling activities with respect to model building with A4. It is worth noting
that this group has already been used much earlier in the quark sector [21].

The group A4 consists of all even permutations of S4. Therefore, its struc-
ture is

A4
∼= K � �3. (37)

Theorem 7 cannot be applied to ˇnd the classes, it is however clear that the classes
of A4 must be subsets of the classes of S4 which consist of even permutations.
In this way we obtain

C1 = {e},
C2 = {(12)(34), (13)(24), (14)(23)},
C3 = {(132), (124), (234), (143)},
C4 = {(123), (142), (243), (134)}.

(38)

Thus we know that A4 has four inequivalent irreps. Equation (37) tells us that
there are three 1-dimensional irreps stemming from the �3, which map K onto 1:

1 : (243) → 1, 1′ : (243) → ω2, 1′′ : (243) → ω. (39)

Since A4 has 12 elements, the remaining irrep must have dimension three. Equa-
tions (31) and (32) for S4 allow one to determine this irrep:

(12)(34) → A ≡

⎛
⎝ 1 0 0

0 −1 0
0 0 −1

⎞
⎠ , (243) → E =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ . (40)

For the second relation we have exploited the relation (243) = (23)(24). An
alternative deˇnition of A4 is given by this irrep because the 3 is faithful. In
this way, A4 can be considered as a ˇnite subgroup of SU(3) with generators A
and E.

Having constructed all irreps we can write down the character table of A4

(see Table 3). As an example for its usage one can, for instance, compute

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3. (41)
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Table 3. Character table of A4

A4 C1 C2 C3 C4

(# Ck) (1) (3) (4) (4)

ord (Ck) 1 2 3 3

1 1 1 1 1

1′ 1 1 ω ω2

1′′ 1 1 ω2 ω

3 3 −1 0 0

The ClebschÄGordan decomposition of this tensor product is given by

1 :
1√
3

(e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) ,

1′ :
1√
3

(
e1 ⊗ e1 + ω2e2 ⊗ e2 + ωe3 ⊗ e3

)
,

1′′ :
1√
3

(
e1 ⊗ e1 + ωe2 ⊗ e2 + ω2e3 ⊗ e3

)
,

3 : e2 ⊗ e3, e3 ⊗ e1, e1 ⊗ e2,

3 : e3 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1.

(42)

For the two 3-dimensional irreps one could equivalently use the symmetric and
antisymmetric combinations of ej ⊗ ek, or any other weighted, orthogonal com-
bination. Note that for S4 one does not have this freedom, one must use the
symmetric combination for the 3 and the antisymmetric combination for the 3′

(see Eq. (36)). In the case of A4 this freedom comes about because the 3′ becomes
identical with the 3 due to the absence of transpositions.

2. MODELS OF NEUTRINO MASSES AND LEPTON MIXING

2.1. Lagrangians and Horizontal Symmetries. We begin with some re-
marks. The notion ®horizontal symmetry¯ is used synonymously with ®family
symmetry¯:

• We assume that any model we have in mind is an extension of the Standard
Model. Therefore, the full symmetry group of the Lagrangian L is Ggauge ×
Gfamily. (Gfamily could also be gauged, but we do not consider this possibility
here.)
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• Kinetic and gauge terms in the Lagrangian are automatically invariant under
Gfamily.

• Therefore, the effect of Gfamily is felt in the Yukawa Lagrangian and the
scalar potential.

• The Yukawa couplings are connected with the ClebschÄGordan coefˇcients
of the tensor products of the fermion representations, such that for every irrep of
scalar ˇelds there is a free Yukawa coupling constant.

• The mass matrices contain, in addition, the vacuum expectation values
(VEVs) which are determined by the minimum of the scalar potential.

• With several VEVs one has the problem of vacuum alignment. The meaning
of this notion is that only speciˇc VEV relations lead to mass matrices which
give the desired mixing angles and, sometimes in addition, predictions for the
neutrino mass spectrum.

• With family symmetries one has almost necessarily a proliferation of the
scalar sector and, in most cases, also additional fermion ˇelds. Thus there is a
tension between the introduction of new ˇelds and, as a consequence, unknown
constants, which are necessary to realize the symmetry, and the attempted predic-
tions for masses and mixings.

Let us discuss the relation between ClebschÄGordan coefˇcients and Yukawa
couplings in more detail. Suppose we have a tensor product D ⊗ D′ = DS ⊕ . . .
with irreps D, D′, and DS . We choose the bases D : {eα} and D′ : {fα}. Then
the basis for irrep DS has the form {bi = Γiαβeα⊗fβ}. With the transformations

eα → Dγαeγ , fβ → Dδβfδ, bi → (DS)jibj (43)

the conditions on the ClebschÄGordan coefˇcient matrices Γi are obtained as

Γi =
(
D†ΓjD

′∗) (DS)ji. (44)

Now we consider generic Yukawa couplings in the Majorana form

LY = y ψT
α C−1γiαβSi ψ′

β + h.c., (45)

where ψ and ψ′ transform according to D and D′, respectively. Comparing with
equation (44) we ˇnd that

ψ → Dψ, D′ → D′ψ′ ⇒ S → D∗
SS, γi = Γ∗

i . (46)

That is, the scalar ˇelds transform with the irrep complex conjugate to DS and the
Yukawa couplings are partially determined by the complex conjugate ClebschÄ
Gordan coefˇcient matrix, as announced above.

If we have three fermion families, then the fermion multiplets constitute
3-dimensional representations of the horizontal group G. We can distinguish
three cases:
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i. Abelian case: Only 1-dimensional irreps are present.
ii. Non-Abelian case: 2-dimensional irreps occur, but no 3-dimensional one.
iii. Non-Abelian case: 3-dimensional irreps occur.
An Abelian group G is synonymous with ®texture zeros¯, i.e., a Yukawa

coupling is either present and undetermined or it is zero, but there are no rela-
tions between different Yukawa couplings. Relations among observables in the
mass spectrum and mixing have their origin solely in these zeros. It has been
shown [22] that by Abelian symmetries the only extremal mixing angle which can
be enforced is θ13 = 0◦. It is possible to enforce texture zeros in arbitrary entries
of the fermion mass matrices by means of Abelian symmetries and an extended
scalar sector [23].

In the second case it is possible to enforce θ13 = 0◦ and θ23 = 45◦. For
tri-bimaximal mixing one needs 3-dimensional irreps. In the next subsection we
will discuss one such model based on A4.

2.2. A Type I Seesaw Model Based on A4. As a prototype for a renormal-
izable A4 model we discuss the model of [20]. It is based on the following A4

multiplets:

fermion ˇelds: �R ∈ 1⊕ 1′ ⊕ 1′′, DL ∈ 3, νR ∈ 3,
scalar ˇelds: φ ∈ 3, φ0 ∈ 1, χ ∈ 3.

(47)

In this list the DL are the usual leptonic left-handed gauge doublets, the �R are
the right-handed charged gauge singlets and the νR are the right-handed neutrino
singlets. There are four Higgs doublets φ and φ0 with hypercharge +1 and three
real gauge singlets χ.

With the discussion in the previous section it is straightforward to derive the
Lagrangian

L = . . . −
[
h1

(
D̄1Lφ1 + D̄2Lφ2 + D̄3Lφ3

)
�1R+

+ h2

(
D̄1Lφ1 + ω2D̄2Lφ2 + ωD̄3Lφ3

)
�2R+

+ h3

(
D̄1Lφ1 + ωD̄2Lφ2 + ω2D̄3Lφ3

)
�3R+ (48)

+ h0

(
D̄1Lν1R + D̄2Lν2R + D̄3Lν3R

)
φ̃0 + h.c.

]
+ (49)

+
1
2

[
M

(
νT
1RC−1ν1R + νT

2RC−1ν2R + νT
3RC−1ν3R

)
+ h.c.

]
+ (50)

+
1
2

[
hχ

(
χ1

(
νT
2RC−1ν3R + νT

3RC−1ν2R

)
+

+ χ2

(
νT
3RC−1ν1R + νT

1RC−1ν3R

)
+

+ χ3

(
νT
1RC−1ν2R + νT

2RC−1ν1R

))
+ h.c.

]
, (51)

where we have conˇned ourselves to the Yukawa interactions and mass terms.
The dots indicate the kinetic terms, the gauge interactions and the scalar potential.
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Through spontaneous symmetry breaking with VEVs vj , wj (j = 1, 2, 3) and
v0 of the Higgs doublets and scalar singlets, respectively, the Lagrangian leads to
the mass terms

−�̄LM��R − ν̄LMDνR +
1
2
νT

RC−1MRνR + h.c. (52)

While MD = h0v
∗
0� is simply proportional to the unit matrix, the other two mass

matrices are given by

M� =

⎛
⎝ h1v1 h2v1 h3v1

h1v2 h2v2ω
2 h3v2ω

h1v3 h2v3ω h3v3ω
2

⎞
⎠ and MR =

⎛
⎝ M hχw3 hχw2

hχw3 M hχw1

hχw2 hχw1 M

⎞
⎠ .

(53)
With general VEVs one cannot obtain tri-bimaximal mixing. It is well known

that the vacuum alignment

v1 = v2 = v3 ≡ v, w1 = w3 = 0, hχw2 ≡ M ′ (54)

is needed, which gives the mass matrices

M� =
√

3v U †
ω

⎛
⎝ h1 0 0

0 h2 0
0 0 h3

⎞
⎠ , MR =

⎛
⎝ M 0 M ′

0 M 0
M ′ 0 M

⎞
⎠ . (55)

The matrix Uω can be read off from M� in Eq. (53). We denote by Uν the
matrix which diagonalizes MR of Eq. (55). These two unitary matrices are then
obtained as

Uω =
1√
3

⎛
⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ , Uν =

⎛
⎝ 1/

√
2 0 −1/

√
2

0 1 0
1/

√
2 0 1/

√
2

⎞
⎠ . (56)

Therefore, up to diagonal phase matrices on the left- and right-hand side, we
arrive at the lepton mixing matrix

U = UωUν = diag (1, ω, ω2)UHPS diag (1, 1,−i). (57)

Thus the A4 symmetry of the Lagrangian together with suitable vacuum alignment
leads to tri-bimaximal mixing. The charged-lepton masses are reproduced by
choosing the Yukawa couplings appropriately: mα =

√
3|vhα| (α = e, μ, τ ).

We conclude the discussion of the model of [20] with a few comments. As
shown above, vacuum alignment is a very important ingredient for achieving
tri-bimaximal mixing. Of course, the symmetry group also restricts the scalar
potential and is essential for allowing the required vacuum structure to be a
minimum of the scalar potential. Nevertheless, vacuum alignment is usually a
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tricky problem. In the model we have discussed, it was necessary to break
A4 down to �3 generated by the matrix E (see Eq. (40)) in the charged lepton
sector, while in the neutrino sector the VEVs of the scalars χk break A4 to a
�2 generated by diag (−1, 1,−1). This is quite generic for A4 models with
tri-bimaximal mixing and leads to MD ∝ � and the structure of M� and MR

of Eq. (55). It was shown in [20] that the vacuum alignment (54) is possible if
the scalar potential is CP -conserving. Since in this model �R is not in the same
A4 multiplet as DL and νR, it cannot be embedded in a Grand Uniˇed Theory.
Note, however, that it is possible to put both DL and �R into a 3 and to use the
type II seesaw mechanism with scalar gauge triplets (see, for instance, [24]) Ä a
scenario which can at least in principle be extended to a Grand Uniˇed Theory.

CONCLUSIONS

A large part of this lecture dealt with the theory of ˇnite groups, the other
part with the application of group theory to Lagrangians for the purpose of ®ex-
plaining¯ mass and mixing patterns found experimentally or to make predictions
in this context. Let us ˇnish with remarks on the second part.

We have tried to demonstrate that symmetries based on ˇnite groups could
be a way to tackle the mass and mixing problem. However, all models for lepton
mixing (and neutrino masses) require complicated and contrived extensions of
the Standard Model. Such models are in most cases incompatible with Grand
Uniˇcation, need vacuum alignment, employ SUSY and nonrenormalizable terms,
etc. Here we have conˇned ourselves to the relatively simple renormalizable
model of [20] as a showcase, which manages without SUSY. As for tri-bimaximal
mixing (2), for the time being it is compatible with all experimental results.
However, it could turn out that s2

13 ∼ 0.01 [3]. In that case, ideas alternative to
tri-bimaximal mixing would be in demand. Or one assumes that tri-bimaximal
mixing holds at a high (seesaw) scale and, by the renormalization group evolution
of the mixing angles from the high scale down to the electroweak scale, s2

13

evolves sufˇciently away from zero; this is possible with a degenerate neutrino
mass spectrum.
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