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The postulate that coordinate and momentum representations are related to each other
by the Fourier transform has been accepted from the beginning of quantum theory by
analogy with classical electrodynamics. As a consequence, an inevitable effect in standard
theory is the wave packet spreading (WPS) of the photon coordinate wave function in direc-
tions perpendicular to the photon momentum. This leads to the following paradoxes: if the
major part of photons emitted by stars are in wave packet states (what is the most probable
scenario), then we should see not separate stars but only an almost continuous background
from all stars; no anisotropy of the CMB radiation should be observable; data on gamma-
ray bursts, signals from directional radio antennas (in particular, in experiments on Shapiro
delay), and signals from pulsars show no signs of WPS. In addition, a problem arises: why
there are no signs of WPS for protons in the LHC ring. We argue that the above postulate
is based neither on strong theoretical arguments nor on experimental data and propose a
new consistent deˇnition of the position operator. Then WPS in directions perpendicular to
the particle momentum is absent and the paradoxes are resolved. Different components of
the new position operator do not commute with each other and, as a consequence, there is
no wave function in coordinate representation. Implications of the results for entanglement,
quantum locality, and the problem of time in quantum theory are discussed.
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1. WHY DO WE NEED POSITION OPERATOR IN QUANTUM THEORY?

It has been postulated from the beginning of quantum theory that the coordi-
nate and momentum representations of wave functions are related to each other by
the Fourier transform. The historical reason was that in classical electrodynamics
the coordinate and wave vector k representations are related analogously and we
postulate that p = �k, where p is the particle momentum. Then, although the
interpretations of classical ˇelds on the one hand and wave functions on the other
are fully different, from mathematical point of view classical electrodynamics and
quantum mechanics have much in common (and such a situation does not seem
to be natural).

Similarity of classical electrodynamics and quantum theory is re
ected even
in the terminology of the latter. The terms ©wave functionª, ©particle-wave
dualityª and ©de Broglie wave lengthª have arisen at the beginning of quantum
era in efforts to explain quantum behavior in terms of classical waves, but now it
is clear that no such an explanation exists. The notion of wave is purely classical;
it has a physical meaning only as a way of describing systems of many particles
by their mean characteristics. In particular, such notions as frequency and wave
length can be applied only to classical waves, i.e., to systems consisting of many
particles. If a particle state vector contains exp [i(pr − Et)/�], where E is the
energy, then, by analogy with the theory of classical waves, one might say that the
particle is a wave with the frequency ω = E/� and the (de Broglie) wave length
λ = 2π�/|p|. However, such deˇned quantities ω and λ are not real frequencies
and wave lengths measured on macroscopic level. A striking example showing
that on quantum level λ does not have a usual meaning is that, from the point
of view of classical theory, an electron having the size of the order of the Bohr
radius cannot emit a wave with λ = 21 cm (this observation has been pointed out
to me by Volodya Netchitailo).

In quantum theory, the photon and other particles are characterized by their
energies, momenta, and other quantities for which there exist well deˇned oper-
ators, while the notion of coordinates on quantum level is a problem which is
investigated in the present paper. The term ©wave functionª might be misleading
since in quantum theory it deˇnes not amplitudes of waves but only amplitudes
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of probabilities. So, although in our opinion the term ©state vectorª is more
pertinent than ©wave functionª, we will use the latter in accordance with the
usual terminology, and the phrase that a photon has a frequency ω and the wave
length λ will be understood only such that ω = E/� and λ = 2π�/|p|.

One of the examples of the above similarity follows. As explained in text-
books on quantum mechanics (see, e.g., [1]), if the coordinate wave function
ψ(r, t) contains a rapidly oscillating factor exp [iS(r, t)/�], where S(r, t) is the
classical action as a function of coordinates and time, then in the formal limit
� → 0 the Schréodinger equation becomes the HamiltonÄJacoby equation which
shows that quantum mechanical wave packets are moving along classical trajecto-
ries. This situation is called semiclassical approximation and it is analogous to the
approximation of geometrical optics in classical electrodynamics (see, e.g., [2])
when the ˇelds contain a rapidly oscillating factor exp [iϕ(r, t)], where the func-
tion ϕ(r, t) is called eikonal. It satisˇes the eikonal equation which coincides
with the relativistic HamiltonÄJacobi equation for a particle with zero mass. This
shows that classical electromagnetic wave packets are moving along classical tra-
jectories for particles with zero mass what is reasonable since it is assumed that
such packets consist of photons.

Another example follows. In classical electrodynamics, a wave packet mov-
ing even in empty space inevitably spreads out and this fact has been known for
a long time. For example, as pointed out by Schréodinger (see p. 41Ä44 in [3]),
in standard quantum mechanics a packet does not spread out if a particle is mov-
ing in a harmonic oscillator potential in contrast to ©a wave packet in classical
optics, which is dissipated in the course of timeª. However, as a consequence
of the similarity, a free quantum mechanical wave packet inevitably spreads out
too. This effect is called wave packet spreading (WPS) and it is described in
textbooks and many papers (see, e.g., [4] and references therein). Moreover, as
is shown in Sec. 7, in quantum theory this effect is pronounced even in a much
greater extent than in classical electrodynamics.

In particular, the WPS effect has been investigated by de Broglie, Darwin, and
Schréodinger. The fact that WPS is inevitable has been treated by several authors
as unacceptable and as an indication that standard quantum theory should be
modiˇed. For example, de Broglie has proposed to describe a free particle not by
the Schréodinger equation but by a wavelet, which satisˇes a nonlinear equation and
does not spread out (a detailed description of de Broglie's wavelets can be found,
e.g., in [5]). Sapogin writes (see [6] and references therein) that ©Darwin showed
that such a packet quickly and steadily dissipates and disappearsª and proposes an
alternative to standard theory which he calls unitary uniˇed quantum ˇeld theory.

At the same time, it has not been explicitly shown that numerical results
on WPS are incompatible with experimental data. For example, it is known (see
Sec. 3) that for macroscopic bodies the effect of WPS is extremely small. Probably
it is also believed that in experiments on the Earth with atoms and elementary
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particles spreading does not have enough time to manifest itself although we have
not found an explicit statement on this problem in the literature. Probably for these
reasons the majority of physicists do not treat WPS as a drawback of the theory.

However, a natural problem arises: what happens to photons which can travel
from distant objects to Earth even for billions of years. For example, as is shown
in Sec. 9, in the case when the major part of photons emitted by stars are in wave
packet states (what is the most probable scenario), the effect of WPS for photons
emitted even by close stars is so strong that we should see not separate stars
but rather an almost continuous background from all stars. In addition, data on
relic radiation and gamma-ray bursts, signals from radio antennas to planets and
space probes, signals from space probes and signals from pulsars show no signs of
spreading of photon wave functions. We call those facts the WPS paradoxes. The
consideration given in the present paper shows that the reason of the paradoxes is
that standard position operator is not consistently deˇned. Hence, the inconsistent
deˇnition of the position operator is not only an academic problem but leads to
the above paradoxes.

Usual arguments in favor of choosing the standard position and momentum
operators are that these operators have correct properties in semiclassical approxi-
mation. However, the requirement that an operator should have correct properties
in semiclassical approximation does not deˇne the operator unambiguously.

One of the arguments in favor of choosing standard position and momentum
operators is that the nonrelativistic Schréodinger equation correctly describes the
hydrogen energy levels, the Dirac equation correctly describes ˇne structure cor-
rections to these levels, etc. Historically these equations have been ˇrst written
in coordinate space, and in textbooks they are still discussed in this form. How-
ever, from the point of view of the present knowledge, those equations should be
treated as follows.

A fundamental theory describing electromagnetic interactions on quantum
level is quantum electrodynamics (QED). This theory proceeds from quantizing
classical Lagrangian which is only an auxiliary tool for constructing S-matrix.
The argument x in the Lagrangian density L(t,x) cannot be treated as a position
operator because L(t,x) is constructed from ˇeld functions which do not have
a probabilistic interpretation. When the quantization is accomplished, the results
of QED are formulated exclusively in momentum space and the theory does not
contain space-time at all.

In particular, as follows from Feynman diagrams for the one-photon ex-
change, in the approximation (v/c)2 the electron in the hydrogen atom can be
described in the potential formalism where the potential acts on the wave function
in momentum space. So for calculating energy levels one should solve the eigen-
value problem for the Hamiltonian with this potential. This is an integral equation
which can be solved by different methods. One of the convenient methods is to
apply the Fourier transform and get standard Schréodinger or Dirac equation in
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coordinate representation with the Coulomb potential. Hence, the fact that the
results for energy levels are in good agreement with experiment shows only that
QED deˇnes the potential correctly and standard coordinate Schréodinger and
Dirac equations are only convenient mathematical ways of solving the eigenvalue
problem. For this problem the physical meaning of the position operator is not
important at all. One can consider other transformations of the original integral
equation and deˇne other position operators. The fact that for nonstandard choices
one might obtain something different from the Coulomb potential is not important
on quantum level. On classical level, the interaction between two charges can be
described by the Coulomb potential but this does not imply that on quantum level
the potential in coordinate representation should be necessarily Coulomb.

Let us also note the following. In the literature, the statement that the
Coulomb law works with a high accuracy is often substantiated from the point
of view that predictions of QED have been experimentally conˇrmed with a high
accuracy. However, as follows from the above remarks, the meaning of distance
on quantum level is not clear and in QED the law 1/r2 can be tested only if we
assume additionally that the coordinate and momentum representations are related
to each other by the Fourier transform. So, a conclusion about the validity of the
law can be made only on the basis of macroscopic experiments. A conclusion
made from the results of classical Cavendish and Maxwell experiments is that if
the exponent in Coulomb's law is not 2 but 2±q, then q < 1/21600. The accuracy
of those experiments has been considerably improved in the experiment [7] the
result of which is q < 2 · 10−9. However, the CavendishÄMaxwell experiments
and the experiment [7] do not involve pointlike electric charges. Cavendish and
Maxwell used a spherical air condenser consisting of two insulated spherical
shells, while the authors of [7] developed a technique where the difˇculties due
to spontaneous ionization and contact potentials were avoided. Therefore the
conclusion that q < 2 · 10−9 for pointlike electric charges requires additional
assumptions.

Another example follows. It is said that the spatial distribution of the electric
charge inside a system can be extracted from measurements of form factors
in the electron scattering on this system. However, the information about the
experiment is again given only in terms of momenta and conclusions about the
spatial distribution can be drawn only if we assume additionally how the position
operator is expressed in terms of momentum variables. On quantum level, the
physical meaning of such a spatial distribution is not fundamental.

In view of the fact that the coordinate and momentum representations are
related to each other by the Fourier transform, one might think that the position
and momentum operators are on equal footing. However, they are not on equal
footing for the following reasons. In quantum theory each elementary particle
is described by an irreducible representation (IR) of the symmetry algebra. For
example, in Poincare invariant theory the set of momentum operators represents
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three of ten linearly independent representation operators of the Poincare algebra
and hence those operators are consistently deˇned. On the other hand, among
the representation operators there is no position operator. In view of the above
discussion, since the results of existing fundamental quantum theories describing
interactions on quantum level (QED, electroweak theory and QCD) are formulated
exclusively in terms of the S-matrix in momentum space without any mentioning
of space-time, for investigating such stationary quantum problems as calculating
energy levels, form factors, etc., the notion of the position operator is not needed.

However, the choice of the position operator is important in nonstationary
problems when evolution is described by the time-dependent Schréodinger equation
(with the nonrelativistic or relativistic Hamiltonian). For any new theory, there
should exist a correspondence principle that at some conditions the new theory
should reproduce results of the old well-tested theory with a good accuracy. In
particular, quantum theory should reproduce the motion of a particle along the
classical trajectory deˇned by classical equations of motion. Hence, the position
operator is needed only in semiclassical approximation and it should be deˇned
from additional considerations.

In standard approaches to quantum theory, the existence of space-time back-
ground is assumed from the beginning. Then, the position operator for a par-
ticle in this background is the operator of multiplication by the particle radius-
vector r. As explained in textbooks on quantum mechanics (see, e.g., [1]), the
result −i�∂/∂r for the momentum operator can be justiˇed from the requirement
that quantum theory should correctly reproduce classical results in semiclassical
approximation. However, as noted above, this requirement does not deˇne the
operator unambiguously.

A standard approach to the Poincare symmetry on quantum level follows.
Since the Poincare group is the group of motions of the Minkowski space, quan-
tum states should be described by representations of the Poincare group. In turn,
this implies that the representation generators should commute according to the
commutation relations of the Poincare group Lie algebra:

[Pμ, P ν ] = 0, [Pμ, Mνρ] = −i(ημρP ν − ημνP ρ),
(1)

[Mμν , Mρσ] = −i(ημρMνσ + ηνσMμρ − ημσMνρ − ηνρMμσ),

where Pμ are the operators of the four-momentum, Mμν are the operators of
Lorentz angular momenta, the diagonal metric tensor ημν has the nonzero com-
ponents η00 = −η11 = −η22 = −η33 = 1 and μ, ν = 0, 1, 2, 3. It is usually said
that the above relations are written in the system of units c = � = 1. However, as
we argue in [8], quantum theory should not contain c and � at all; those quantities
arise only because we wish to measure velocities in m/s and angular momenta
in kg×m2/s.



54 LEV F.M.

The above approach is in the spirit of Klein's Erlangen program in mathe-
matics. However, as we argue in [8, 9], quantum theory should not be based on
classical space-time background. The notion of space-time background contra-
dicts the basic principle of physics that a deˇnition of a physical quantity is a
description of how this quantity should be measured. Indeed, one cannot measure
coordinates of a manifold which exists only in our imagination.

As we argue in [8,9] and other publications, the approach should be opposite.
Each system is described by a set of independent operators. By deˇnition, the
rules how these operators commute with each other deˇne the symmetry algebra.
In particular, by deˇnition, Poincare symmetry on quantum level means that
the operators commute according to Eq. (1). This deˇnition does not involve
Minkowski space at all. Such a deˇnition of symmetry on quantum level is in
the spirit of Dirac's paper [10].

The fact that an elementary particle in quantum theory is described by an IR
of the symmetry algebra can be treated as a deˇnition of the elementary particle.
In the Poincare invariant theory, the IRs can be implemented in a space of
functions χ(p) such that

∫
|χ(p)|2d3p < ∞ (see Sec. 4). In this representation,

the momentum operator P is deˇned unambiguously and is simply the operator
of multiplication by p. A standard assumption is that the position operator in this
representation is i�∂/∂p.

As explained in textbooks on quantum mechanics (see, e.g., [1] and Sec. 2),
semiclassical approximation cannot be valid in situations when the momentum
is rather small. Consider ˇrst a one-dimensional case. If the value of the x
component of the momentum px is rather large, the deˇnition of the coordinate
operator x = i�∂/∂px can be justiˇed, but this deˇnition does not have a physical
meaning in situations when px is small.

Consider now the three-dimensional case. If all the components pj (j =
1, 2, 3) are rather large, then there are situations when all the operators i�∂/∂pj

are semiclassical. A semiclassical wave function χ(p) in momentum space should
describe a narrow distribution around the mean value p0. Suppose now, that the
coordinate axes are chosen, such p0 is directed along the z axis. Then, in view
of the above remarks, the operators i�∂/∂pj cannot be physical for j = 1, 2,
i.e., in directions perpendicular to the particle momentum. Hence, the standard
deˇnition of all the components of the position operator can be physical only for
special choices of the coordinate axes, and there exist choices when the deˇnition
is not physical. The situation when a deˇnition of an operator is physical or
not depending on the choice of the coordinate axes is not acceptable and hence
standard deˇnition of the position operator is not physical.

In the present paper, we propose a consistent deˇnition of the position oper-
ator. As a consequence, in our approach WPS in directions perpendicular to the
particle momentum is absent regardless of whether the particle is nonrelativistic
or relativistic. Hence, the above paradoxes are resolved. Moreover, for an ultra-
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relativistic particle, the effect of WPS is absent at all. In our approach different
components of the position operator do not commute with each other and, as a
consequence, there is no wave function in coordinate representation.

Our presentation is self-contained, and for reproducing the results of the cal-
culations no special knowledge is needed. The paper is organized as follows.
In Secs. 2 and 4 we discuss the approach to the position operator in standard
nonrelativistic and relativistic quantum theory, respectively. An inevitable con-
sequence of this approach is the effect of WPS of the coordinate wave function
which is discussed in Secs. 3 and 5 for the nonrelativistic and relativistic cases,
respectively. In Sec. 7 we discuss a relation between the WPS effects for a clas-
sical wave packet and for photons comprising this packet. In Sec. 8 the problem
of WPS in coherent states is discussed. In Sec. 9 we show that the WPS effect
leads to several paradoxes mentioned above. As discussed in Sec. 10, in standard
theory it is not possible to avoid those paradoxes. Our approach to a consis-
tent deˇnition of the position operator and its application to WPS are discussed
in Secs. 11Ä13. Finally, in Sec. 14 we discuss implications of the results for
entanglement, quantum locality and the problem of time in quantum theory.

2. POSITION OPERATOR
IN NONRELATIVISTIC QUANTUM MECHANICS

In quantum theory, states of a system are represented by elements of a
projective Hilbert space. The fact that the Hilbert space H is projective means
that if ψ ∈ H is a state, then const · ψ is the same state. The matter is that
not the probability itself but only relative probabilities of different measurement
outcomes have a physical meaning. In this paper we will work with states ψ
normalized to one, i.e., such that ||ψ|| = 1, where || . . . || is a norm. It is deˇned
such that if (. . . , . . .) is a scalar product in H , then ||ψ|| = (ψ, ψ)1/2.

In quantum theory, every physical quantity is described by a self-adjoint
operator. Each self-adjoint operator is Hermitian, i.e., satisˇes the property
(ψ2, Aψ1) = (Aψ2, ψ1) for any states belonging to the domain of A. If A is an
operator of some quantity, then the mean value of the quantity and its uncertainty
in state ψ are given by Ā = (ψ, Aψ) and ΔA = ||(A − Ā)ψ||, respectively.
The condition that a quantity corresponding to the operator A is semiclassical in
state ψ, can be deˇned such that ΔA � |Ā|. This implies that the quantity can be
semiclassical only if |Ā| is rather large. In particular, if Ā = 0, then the quantity
cannot be semiclassical.

Let B be an operator corresponding to another physical quantity and B̄ and
ΔB be the mean value and the uncertainty of this quantity, respectively. We can
write AB = {A, B}/2 + [A, B]/2, where the commutator [A, B] = AB − BA is
anti-Hermitian and the anticommutator {A, B} = AB + BA is Hermitian. Let
[A, B] = −iC and C̄ be the mean value of the operator C.
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A question arises whether two physical quantities corresponding to the opera-
tors A and B can be simultaneously semiclassical in state ψ. Since ||ψ1||||ψ2|| �
|(ψ1, ψ2)|, we have that

ΔAΔB � 1
2
|(ψ, ({A − Ā, B − B̄} + [A, B])ψ)|. (2)

Since (ψ, {A − Ā, B − B̄}ψ) is real and (ψ, [A, B]ψ) is imaginary, we get

ΔAΔB � 1
2
|C̄|. (3)

This condition is known as a general uncertainty relation between two quantities.
The well-known special case is that if P is the x component of the momen-
tum operator and X is the operator of multiplication by x, then [P, X ] = −i�
and ΔpΔx � �/2. The states where ΔpΔx = �/2 are called coherent ones.
They are treated such that the momentum and the coordinate are simultaneously
semiclassical in a maximal possible extent. The well-known example is that if

ψ(x) =
1

a1/2π1/4
exp

[
i

�
p0x − 1

2a2
(x − x0)2

]
,

then X̄ = x0, P̄ = p0, Δx = a/
√

2 and Δp = �/(a
√

2).
Consider ˇrst a one-dimensional motion. In standard textbooks on quantum

mechanics, the presentation starts with a wave function ψ(x) in coordinate space
since it is implicitly assumed that the meaning of space coordinates is known.
Then a question arises why P = −i�d/dx should be treated as the momentum
operator. The explanation follows.

Consider wave functions having the form ψ(x) = exp (ip0x/�)a(x), where
the amplitude a(x) has a sharp maximum near x = x0 ∈ [x1, x2], such that
a(x) is not small only when x ∈ [x1, x2]. Then, Δx is of the order of x2 − x1

and the condition that the coordinate is semiclassical is Δx � |x0|. Since
−i�dψ(x)/dx = p0ψ(x) − i� exp (ip0x/�) da(x)/dx, we see that ψ(x) will be
approximately the eigenfunction of −i�d/dx with the eigenvalue p0 if |p0a(x)| �
�|da(x)/dx|. Since |da(x)/dx| is of the order of |a(x)/Δx|, we have a condition
|p0Δx| � �. Therefore, if the momentum operator is −i�d/dx, the uncertainty
of momentum Δp is of the order of �/Δx, |p0| � Δp and this implies that the
momentum is also semiclassical. At the same time, |p0Δx|/2π� is approximately
the number of oscillations which the exponent makes on the segment [x1, x2].
Therefore the number of oscillations should be much greater than unity. In
particular, semiclassical approximation cannot be valid if Δx is very small, but
on the other hand, Δx cannot be very large since it should be much less than x0.
Another justiˇcation of the fact that −i�d/dx is the momentum operator is that
in the formal limit � → 0 the Schréodinger equation becomes the HamiltonÄJacobi
equation.
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We conclude that the choice of −i�d/dx as the momentum operator is jus-
tiˇed from the requirement that in semiclassical approximation this operator be-
comes the classical momentum. However, it is obvious that this requirement does
not deˇne the operator uniquely: any operator P̃ such that P̃ − P disappears in
semiclassical limit, also can be called the momentum operator.

One might say that the choice P = −i�d/dx can also be justiˇed from the
following considerations. In nonrelativistic quantum mechanics we assume that
the theory should be invariant under the action of the Galilei group, which is a
group of transformations of Galilei space-time. The x component of the momen-
tum operator should be the generator corresponding to spatial translations along
the x axis and −i�d/dx is precisely the required operator. In this consideration
one assumes that the space-time background has a physical meaning while, as
discussed in [8,9] and references therein, this is not the case.

As noted in [8,9] and references therein, one should start not from space-time
but from a symmetry algebra. Therefore, in nonrelativistic quantum mechanics
we should start from the Galilei algebra and consider its IRs. For simplicity, we
again consider a one-dimensional case. Let Px = P be one of representation
operators in an IR of the Galilei algebra. We can implement this IR in a Hilbert

space of functions χ(p) such that
∞∫

−∞
|χ(p)|2dp < ∞, and P is the operator of

multiplication by p, i.e., Pχ(p) = pχ(p). Then a question arises how the operator
of the x coordinate should be deˇned. In contrast to the momentum operator, the
coordinate one is not deˇned by the representation and so it should be deˇned
from additional assumptions. Probably a future quantum theory of measurements
will make it possible to construct operators of physical quantities from the rules
how these quantities should be measured. However, at present we can construct
necessary operators only from rather intuitive considerations.

By analogy with the above discussion, one can say that semiclassical wave
functions should be of the form χ(p) = exp (−ix0p/�)a(p), where the amplitude
a(p) has a sharp maximum near p = p0 ∈ [p1, p2] such that a(p) is not small
only when p ∈ [p1, p2]. Then Δp is of the order of p2 − p1 and the condi-
tion that the momentum is semiclassical is Δp � |p0|. Since i�dχ(p)/dp =
x0χ(p) + i� exp (−ix0p/�)da(p)/dp, we see that χ(p) will be approximately
the eigenfunction of i�d/dp with the eigenvalue x0 if |x0a(p)| � �|da(p)/dp|.
Since |da(p)/dp| is of the order of |a(p)/Δp|, we have a condition |x0Δp| � �.
Therefore, if the coordinate operator is X = i�d/dp, the uncertainty of coordi-
nate Δx is of the order of �/Δp, |x0| � Δx and this implies that the coordinate
deˇned in such a way is also semiclassical. We can also note that |x0Δp|/2π�

is approximately the number of oscillations which the exponent makes on the
segment [p1, p2] and therefore the number of oscillations should be much greater
than unity. It is also clear that semiclassical approximation cannot be valid if Δp



58 LEV F.M.

is very small, but on the other hand, Δp cannot be very large since it should be
much less than p0. By analogy with the above discussion, the requirement that
the operator i�d/dp becomes the coordinate in classical limit does not deˇne the
operator uniquely. In nonrelativistic quantum mechanics it is assumed that the
coordinate is a well deˇned physical quantity even on quantum level and that
i�d/dp is the most pertinent choice.

The above results can be directly generalized to the three-dimensional case.
For example, if the coordinate wave function is chosen in the form

ψ(r) =
1

π3/4a3/2
exp

[
− (r− r0)2

2a2
+

i

�
p0r

]
, (4)

then the momentum wave function is

χ(p) =
∫

exp
(
− i

�
pr

)
ψ(r)

d3r
(2π�)3/2

=

=
a3/2

π3/4�3/2
exp

[
− (p− p0)2a2

2�2
− i

�
(p − p0)r0

]
. (5)

It is easy to verify that

||ψ||2 =
∫

|ψ(r)|2 d3r = 1, ||χ||2 =
∫

|χ(p)|2 d3p = 1, (6)

the uncertainty of each component of the coordinate operator is a/
√

2 and the
uncertainty of each component of the momentum operator is �/(a

√
2). Hence

one might think that Eqs. (4) and (5) describe a state which is semiclassical in a
maximal possible extent.

Let us make the following remark about semiclassical vector quantities. We
deˇned a quantity as semiclassical if its uncertainty is much less than its mean
value. In particular, as noted above, a quantity cannot be semiclassical if its
mean value is small. In the case of vector quantities, we have sets of three
physical quantities. Some of them can be small and for them it is meaningless
to discuss whether they are semiclassical or not. We say that a vector quantity
is semiclassical if all its components which are not small are semiclassical and
there should be at least one semiclassical component.

For example, if the mean value of the momentum p0 is directed along the
z axes, then the xy components of the momentum are not semiclassical but the
three-dimensional vector quantity p can be semiclassical if p0 is rather large.
However, in that case the deˇnitions of the x and y components of the position
operator as x = i�∂/∂px and y = i�∂/∂py become inconsistent. The situation
when the validity of an operator depends on the choice of directions of the
coordinate axes is not acceptable and hence the above deˇnition of the position
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operator is at least problematic. Moreover, as already mentioned, it will be
shown in Sec. 9 that the standard choice of the position operator leads to the WPS
paradoxes.

Let us note that semiclassical states can be constructed not only in momentum
or coordinate representations. For example, instead of momentum wave functions
χ(p) one can work in the representation where the quantum numbers (p, l, μ) in
wave functions χ(p, l, μ) mean the magnitude of the momentum p, the orbital
quantum number l (such that a state is the eigenstate of the orbital momentum
squared L2 with the eigenvalue l(l + 1)), and the magnetic quantum number μ
(such that a state is the eigenvector or Lz with the eigenvalue μ). A state
described by a χ(p, l, μ) will be semiclassical with respect to those quantum
numbers if χ(p, l, μ) has a sharp maximum at p = p0, l = l0, μ = μ0 and the
widths of the maxima in p, l, and μ are much less than p0, l0, and μ0, respectively.
However, by analogy with the above discussion, those widths cannot be arbitrarily
small if one wishes to have other semiclassical variables (e.g., the coordinates).
Examples of such situations will be discussed in Sec. 12.

3. WAVE PACKET SPREADING
IN NONRELATIVISTIC QUANTUM MECHANICS

As noted by Pauli (see p. 63 of [11]), at early stages of quantum theory
some authors treated time t as the operator commuting with the Hamiltonian as
[H, t] = i�, but such a treatment is not correct (for example, one cannot construct
the eigenstate of the time operator with the eigenvalue 5000 BC or 3000 AD).
Hence, the quantity t can be only a classical parameter (see also [12]). We see
that the principle of quantum theory that every physical quantity is deˇned by
an operator does not apply to time. The problem of time in quantum theory is
discussed in a wide literature and remarks on this problem are made in Sec. 14.
However, for now we assume that standard treatment of time is valid, i.e., that
time is a classical parameter such that the dependence of the wave function on
time is deˇned by the Hamiltonian according to the Schréodinger equation.

In nonrelativistic quantum mechanics, the Hamiltonian of a free particle with
the mass m is H = p2/2m and hence, as follows from Eq. (5), in the model
discussed above the dependence of the momentum wave function on t is given by

χ(p, t) =
a3/2

π3/4�3/2
exp

[
− (p − p0)2a2

2�2
− i

�
(p − p0)r0 −

ip2t

2m�

]
. (7)

It is easy to verify that for this state the mean value of the operator p and the
uncertainty of each momentum component are the same as for the state χ(p),
i.e., those quantities do not change with time.
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Consider now the dependence of the coordinate wave function on t. This
dependence can be calculated by using Eq. (7) and the fact that

ψ(r, t) =
∫

exp
(

i

�
pr

)
χ(p, t)

d3p
(2π�)3/2

. (8)

The result of a direct calculation is

ψ(r, t) =
1

π3/4a3/2

(
1 +

i�t

ma2

)−3/2

×

× exp

⎡
⎢⎢⎣− (r − r0 − v0t)2

2a2

(
1 +

�
2t2

m2a4

) (
1 − i�t

ma2

)
+

i

�
p0r−

ip2
0t

2m�

⎤
⎥⎥⎦ , (9)

where v0 = p0/m is the classical velocity. This result shows that the semiclassi-
cal wave packet is moving along the classical trajectory r(t) = r0 + v0t. At the
same time, it is now obvious that the uncertainty of each coordinate depends on
time as

Δxj(t) = Δxj(0)
(

1 +
�

2t2

m2a4

)1/2

(j = 1, 2, 3), (10)

where Δxj(0) = a/
√

2, i.e., the width of the wave packet in coordinate repre-
sentation is increasing. This fact, known as the wave packet spreading (WPS),
is described in many textbooks and papers (see, e.g., the textbooks [4] and ref-
erences therein). It shows that if a state was semiclassical in the maximal extent
at t = 0, it will not have this property at t > 0 and the accuracy of semiclassical
approximation will decrease with the increase of t. The characteristic time of
spreading can be deˇned as t∗ = ma2/�. For macroscopic bodies this is an
extremely large quantity and hence in macroscopic physics the WPS effect can
be neglected. In the formal limit � → 0, t∗ becomes inˇnite, i.e., spreading does
not take place. This shows that WPS is a pure quantum phenomenon. For the
ˇrst time the result (9) has been obtained by Darwin in [13].

One might pose a problem whether the WPS effect is speciˇc only for
Gaussian wave functions. One might expect that this effect will take place
in general situations since each component of the standard position operator
i�∂/∂p does not commute with the Hamiltonian and so the distribution of the
corresponding physical quantity will be time-dependent. A good example showing
inevitability of WPS follows. If at t = 0 the coordinate wave function is ψ0(r),
then, as follows from Eqs. (5) and (8),

ψ(r, t) =
∫

exp
{

i

�

[
p(r − r′) − p2t

2m

]}
ψ0(r′)

d3r′d3p
(2π�)3

. (11)
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As follows from this expression, if ψ0(r) �= 0 only if r belongs to a ˇnite vicinity
of some vector r0, then at any t > 0 the support of ψ(r, t) belongs to the whole
three-dimensional space, i.e., the wave function spreads out with an inˇnite speed.
One might think that in nonrelativistic theory this is not unacceptable since this
theory can be treated as a formal limit c → ∞ of relativistic theory. In the next
section we will discuss an analogous situation in relativistic theory.

As is shown in [14] titled ©Nonspreading Wave Packetsª, for a one-dimen-
sional wave function in the form of an Airy function, spreading does not take place
and the maximum of the quantity |ψ(x)|2 propagates with constant acceleration
even in the absence of external forces. Those properties of Airy packets have been
observed in optical experiments [15]. However, since such a wave function is not
normalizable, the term ©wave packetª in the given situation might be misleading
since the mean values and uncertainties of the coordinate and momentum cannot
be calculated in a standard way. Such a wave function can be constructed only
in a limited region of space. As explained in [14], this wave function describes
not a particle but rather families of particle orbits. As is shown in [14], one
can construct a normalized state which is a superposition of Airy functions with
Gaussian coefˇcients and ©eventually the spreading due to the Gaussian cutoff
takes overª. This is an additional argument that the effect of WPS is an inevitable
consequence of standard quantum theory.

Since quantum theory is invariant under time reversal, one might ask the
following question: Is it possible that the width of the wave packet in coordinate
representation is decreasing with time? From the formal point of view, the
answer is ©yesª. Indeed, the solution given by Eq. (9) is valid not only when
t � 0, but when t < 0 as well. Then, as follows from Eq. (10), the uncertainty
of each coordinate is decreasing when t changes from some negative value to
zero. However, eventually the value of t will become positive and the quantities
Δxj(t) will grow to inˇnity. In the present paper, we consider situations when
a photon is created on atomic level and hence one might expect that its initial
coordinate uncertainties are not large. However, when the photon travels a long
distance to Earth, those uncertainties become much greater, i.e., the term WPS
re
ects the physics adequately.

4. POSITION OPERATOR IN RELATIVISTIC QUANTUM MECHANICS

The problem of the position operator in relativistic quantum theory has been
discussed in a wide literature and different authors have different opinions on this
problem. In particular, some authors state that in relativistic quantum theory no
position operator exists. As already noted, the results of fundamental quantum
theories are formulated only in terms of the S-matrix in momentum space without
any mentioning of space-time. This is in the spirit of the Heisenberg S-matrix
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program that in relativistic quantum theory it is possible to describe only transi-
tions of states from the inˇnite past when t → −∞ to the distant future when
t → +∞. On the other hand, since quantum theory is treated as a theory more
general than classical one, it is not possible to fully avoid space and time in
quantum theory. For example, quantum theory should explain how photons from
distant objects travel to Earth and even how macroscopic bodies are moving along
classical trajectories. Hence, we can conclude that: a) in quantum theory (non-
relativistic and relativistic) we must have a position operator and b) this operator
has a physical meaning only in semiclassical approximation.

Let us ˇrst consider the deˇnition of elementary particle. Although theory of
elementary particles exists for a rather long period of time, there is no commonly
accepted deˇnition of elementary particle in this theory. In [8, 9] and references
therein, we argue that, in the spirit of Wigner's approach to the Poincare sym-
metry [16], a general deˇnition, not depending on the choice of the classical
background and on whether we consider a local or nonlocal theory, is that a
particle is elementary if the set of its wave functions is the space of an IR of the
symmetry algebra in the given theory.

There exists a wide literature describing how IRs of the Poincare algebra can
be constructed. In particular, an IR for a spinless particle can be implemented in
a space of functions ξ(p) satisfying the condition∫

|ξ(p)|2dρ(p) < ∞, dρ(p) =
d3p
ε(p)

, (12)

where ε(p) = (m2 + p2)1/2 is the energy of the particle with the mass m.
The convenience of the above requirement is that the volume element dρ(p) is
Lorentz-invariant. In that case it can be easily shown by direct calculations (see,
e.g., [17]) that the representation operators have the form

L = −ip× ∂

∂p
, N = −iε(p)

∂

∂p
, P = p, E = ε(p), (13)

where L is the orbital angular momentum operator; N is the Lorentz boost
operator; P is the momentum operator; E is the energy operator, and these
operators are expressed in terms of the operators in Eq. (1) as

L = (M23, M31, M12), N = (M10, M20, M30), P = (P 1, P 2, P 3), E = P 0.

For particles with spin these results are modiˇed as follows. For a massive
particle with spin s, the functions ξ(p) also depend on spin projections which
can take 2s + 1 values −s,−s + 1, . . . , s. If s is the spin operator, then the total
angular momentum has an additional term s and the Lorentz boost operator has an
additional term (s×p)/(ε(p)+m) (see, e.g., Eq. (2.5) in [17]). Hence, corrections
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of the spin terms to the quantum numbers describing the angular momentum and
the Lorentz boost do not exceed s. We assume, as usual, that in semiclassical
approximation the quantum numbers characterizing the angular momentum and
the Lorentz boost are much greater than unity and hence in this approximation
spin effects can be neglected. For a massless particle with the spin s the spin
projections can take only values −s and s and those quantum numbers have the
meaning of helicity. In this case, the results for the representation operators can
be obtained by taking the limit m → 0 if the operators are written in the light
front variables (see, e.g., Eq. (25) in [8]). As a consequence, in semiclassical
approximation the spin corrections in the massless case can be neglected as well.
Hence for investigating the position operator, we will neglect spin effects and
will not explicitly write the dependence of wave functions on spin projections.

In the above IRs, the representation operators are Hermitian as it should
be for operators corresponding to physical quantities. In standard theory (over
complex numbers) such IRs of the Lie algebra can be extended to unitary IRs of
the Poincare group. In particular, in the spinless case, the unitary operator U(Λ)
corresponding to the Lorentz transformation Λ acts in H as (see, e.g., [17])

U(Λ)ξ(p) = ξ(Λ−1p). (14)

In the literature, elementary particles are described not only by such IRs, but
also by nonunitary representations induced from the Lorentz group [18]. Since the
factor space of the Poincare group over the Lorentz group is Minkowski space, the
elements of such representations are ˇelds Ψ(x) depending on four-vectors x in
Minkowski space and possibly on spin variables. Since those functions describe
nonunitary representations, their probabilistic interpretation is problematic. The
Pauli theorem [19] states that for ˇelds with an integer spin it is impossible to
deˇne a positive deˇnite charge density and for ˇelds with a half-integer spin it
is impossible to deˇne a positive deˇnite energy density.

Hence, a problem arises whether such ˇelds have a physical meaning. The
answer is that in QFT after quantizing they become quantum ˇelds deˇning the
stress-energy and angular momentum tensors. Then the Hermitian operators Pμ

and Mμν are deˇned by integrals of those tensors over a space-like hyperplane.
So, the quantity x in local ˇelds is only an integration parameter and a problem
of whether there are quantum operators corresponding to x does not arise. This
is clear also from the fact that quantized ˇelds are operators in Fock spaces
describing systems with an inˇnite number of particles and hence x does not
refer to any speciˇc particle. Therefore local quantum ˇelds (in this situation even
the term ©localª is not clear) are only auxiliary tools for constructing physical
operators in QFT.

Let us note that although QFT has achieved very impressive successes in
explaining many experimental data, a problem of its mathematical substantiation
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has not been solved yet. The main mathematical inconsistency of QFT is that since
interacting local quantum ˇelds can be treated only as operatorial distributions,
their products at the same space-time points are not well deˇned (see, e.g., [20]).
One of ideas of the string theory is that if products of ˇelds at the same points
(zero-dimensional objects) are replaced by products where arguments belong to
strings (one-dimensional objects), then there is hope that inˇnities will be less
singular. In view of such controversial properties of local quantum ˇelds, many
authors posed a question whether local ˇelds will survive in the future quantum
theory. Nevertheless, in the literature the problem of position operator is mainly
discussed in the approach when elementary particles are described by local ˇelds
rather than unitary IRs. Below we discuss both the approaches, but ˇrst we
consider the case of unitary IRs.

As follows from Eq. (1), the operator I2 = E2 − P2 is the Casimir operator
of the second order, i.e., it is a bilinear combination of representation operators
commuting with all the operators of the algebra. As follows from the well-known
Schur lemma, all states belonging to an IR are the eigenvectors of I2 with the
same eigenvalue m2. Note that Eq. (13) contains only m2 but not m. The choice
of the energy sign is only a matter of convention but not a matter of principle.
Indeed, the energy can be measured only if the momentum p is measured and then
it is only a matter of convention what sign of the square root should be chosen.
However, it is important that the sign should be the same for all particles. For
example, if we consider a system of two particles with the same values of m2

and the opposite momenta p1 and p2 such that p1 + p2 = 0, we cannot deˇne
the energies of the particles as ε(p1) and −ε(p2), respectively, since in that case
the total four-momentum of the two-particle system will be zero what contradicts
the experiment.

The notation I2 = m2 is justiˇed by the fact that for all known particles
I2 � 0. Then, the mass m is deˇned as the square root of m2 and the sign of m
is only a matter of convention. The usual convention is that m � 0. However,
from mathematical point of view, IRs with I2 < 0 are not prohibited. If the
velocity operator v is deˇned as v = P/E, then for known particles |v| � 1,
i.e., |v| � c in standard units. However, for IRs with I2 < 0, |v| > c and, at
least from the point of view of mathematical construction of IRs, this case is not
prohibited. The hypothetical particles with such properties are called tachyons and
their possible existence is widely discussed in the literature. If the tachyon mass m
is also deˇned as the square root of m2, then this quantity will be imaginary.
However, this does not mean that the corresponding IRs are unphysical since all
the operators of the Poincare group Lie algebra depend only on m2.

As follows from Eqs. (12) and (13), in the nonrelativistic approximation
dρ(p) = d3p/m and N = −im∂/∂p. Therefore in this approximation N is
proportional to standard position operator and one can say that the position
operator is in fact present in the description of the IR.
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The following remarks are in order. The choice of the volume element in the
Lorentz invariant form dρ(p) (see Eq. (12)) might be convenient from the point
of view that then the Hilbert space can be treated as a space of functions ξ(p)
depending on four-vectors p such that p0 = ε(p) and the norm can be written
in the covariant form (i.e., in the form depending only on Lorentz invariant
quantities): ||ξ||2 =

∫
|ξ(p)|2δ(p2 − m2) θ(p0) d4p. However, the requirement of

covariance does not have a fundamental physical meaning. In relativistic theory,
a necessary requirement is that symmetry is deˇned by operators satisfying the
commutation relations (1) and this requirement can be implemented in different
forms, not necessarily in covariant ones.

As an illustration, consider the following problem. Suppose that we wish
to construct a single-particle coordinate wave function. Such a wave function
cannot be deˇned on the whole Minkowski space. This is clear even from the
fact that there is no time operator. The wave function can be deˇned only on a
space-like hyperplane of the Minkowski space. For example, on the hyperplane
t = const, the wave function depends only on x. Hence, for deˇning the wave
function one has to choose the form of the position operator. By analogy with
the nonrelativistic case, one might try to deˇne the position operator as i∂/∂p.
However, if the Hilbert space is implemented as in Eq. (12), then this operator
is not self-adjoint since dρ(p) is not proportional to d3p. One can perform a
unitary transformation ξ(p) → χ(p) = ξ(p)/ε(p)1/2 such that the Hilbert space
becomes the space of functions χ(p) satisfying the condition

∫
|χ(p)|2d3p < ∞.

It is easy to verify that in this implementation of the IR, the operators (L,P, E)
will have the same form as in Eq. (13) but the expression for N will be

N = −iε(p)1/2 ∂

∂p
ε(p)1/2. (15)

In this case one can deˇne i�∂/∂p as a position operator, but now we do not have
a situation when the position operator is present among the other representation
operators.

A problem of the deˇnition of the position operator in relativistic quantum
theory has been discussed since the beginning of the 1930s and it has been
noted that when quantum theory is combined with relativity, the existence of the
position operator with correct physical properties becomes a problem. The above
deˇnition has been proposed by Newton and Wigner in [21]. They worked in the
approach when elementary particles are described by local ˇelds Ψ(x) deˇned on
the whole Minkowski space rather than unitary IRs. As noted above, such ˇelds
cannot be treated as single-particle wave functions. The spacial Fourier transform
of such ˇelds at t = const describes states where the energy can be positive and
negative and this is interpreted such that local quantum ˇelds describe a particle
and its antiparticle simultaneously. Newton and Wigner ˇrst discuss the spinless
case and consider only states on the upper Lorentz hyperboloid where the energy
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is positive. For such states, the representation operators act in the same way
as in the case of spinless unitary IRs. With this deˇnition the coordinate wave
function ψ(r) can be again deˇned by Eq. (4) and a question arises whether such
a position operator has all the required properties.

For example, in the introductory section of the well-known textbook [22]
the following arguments are given in favor of the statement that in relativistic
quantum theory it is impossible to deˇne a physical position operator. Suppose
that we measure coordinates of an electron with the mass m. When the uncertainty
of coordinates is of the order of �/mc, the uncertainty of momenta is of the order
of mc, the uncertainty of energy is of the order of mc2 and hence creation of
electronÄpositron pairs is allowed. As a consequence, it is impossible to localize
the electron with the accuracy better than its Compton wave length �/mc. Hence,
for a particle with a nonzero mass, exact measurement is possible only either in
the nonrelativistic limit (when c → ∞) or in the classical limit (when � → 0).
In the case of the photon, as noted by Pauli (see p. 191 of [11]), the coordinate
cannot be measured with the accuracy better than �/p, where p is the magnitude
of the photon momentum. The quantity λ = 2π�/p is called the photon wave
length although, as noted in Sec. 1, the meaning of this quantity in quantum case
might be fully different than in classical one. Since λ → 0 in the formal limit
� → 0, Pauli concludes that ©Only within the conˇnes of the classical ray concept
does the position of the photon have a physical signiˇcanceª.

Another argument that the NewtonÄWigner position operator does not have
all the required properties follows. Since the energy operator acts on the function
χ(p) as Eχ(p) = ε(p)χ(p) (see Eq. (13)) and the energy is an operator corre-
sponding to inˇnitesimal time translations, the dependence of the wave function
χ(p) on t is given by

χ(p, t) = exp
(
− i

�
Et

)
χ(p) = exp

(
− i

�
ε(p)t

)
χ(p). (16)

Then a relativistic analog of Eq. (11) is

ψ(r, t) =
∫

exp
{

i

�
[p(r − r′) − ε(p)t]

}
ψ0(r′)

d3r′d3p
(2π�)3

. (17)

As a consequence, the NewtonÄWigner position operator has the ©tail propertyª:
if ψ0(r) �= 0 only if r belongs to a ˇnite vicinity of some vector r0, then at any
t > 0 the function ψ(r, t) has a tail belonging to the whole three-dimensional
space, i.e., the wave function spreads out with an inˇnite speed. Hence, at
any t > 0 the particle can be detected at any point of the space and this contra-
dicts the requirement that no information should be transmitted with the speed
greater than c.

The tail property of the NewtonÄWigner position operator has been known
for a long time (see, e.g., [23] and references therein). It is characterized as
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nonlocality leading to the action at a distance. Hegerfeldt argues [23] that this
property is rather general because it can be proved assuming that energy is
positive and without assuming a speciˇc choice of the position operator. The
Hegerfeldt theorem [23] is based on the assumption that there exists an opera-
tor N(V ) whose expectation deˇnes the probability to ˇnd a particle inside the
volume V . However, the meaning of time on quantum level is not clear and for
the position operator proposed in the present paper such a probability does not
exist because there is no wave function in coordinate representation (see Sec. 11
and the discussion in Sec. 14).

One might say that the requirement that no signal can be transmitted with the
speed greater than c has been obtained in Special Relativity which is a classical
(i.e., nonquantum) theory operating only with classical space-time coordinates.
For example, in classical theory the velocity of a particle is deˇned as v = dr/dt
but, as noted above, the velocity should be deˇned as v = p/E (i.e., without
mentioning space-time) and then on classical level it can be shown that v =
dr/dt. In QFT local quantum ˇelds separated by space-like intervals commute or
anticommute (depending on whether the spin is integer or half-integer) and this is
treated as a requirement of causality and that no signal can be transmitted with the
speed greater than c. However, as noted above, the physical meaning of space-
time coordinates on quantum level is not clear. Hence, from the point of view of
quantum theory, the existence of tachyons is not prohibited. Note also that when
two electrically charged particles exchange by a virtual photon, a typical situation
is that the four-momentum of the photon is space-like, i.e., the photon is the
tachyon. We conclude that although in relativistic theory such a behavior might
seem undesirable, there is no proof that it must be excluded. Also, as argued
by Grifˇths (see [24] and references therein), with a consistent interpretation of
quantum theory there are no nonlocality and superluminal interactions. In Sec. 14,
we argue that the position operator proposed in the present paper sheds a new
light on this problem.

Another striking example is a photon emitted in the famous 21 cm transition
line between the hyperˇne energy levels of the hydrogen atom. The phrase that
the lifetime of this transition is of the order of τ = 107 years implies that the
width of the level is of the order of �/τ , i.e., experimentally the uncertainty of the
photon energy is �/τ . Hence, the uncertainty of the photon momentum is �/(cτ)
and with the above deˇnition of the coordinate operators the uncertainty of the
longitudinal coordinate is cτ , i.e., of the order of 107 light years. Then there is a
nonzero probability that immediately after its creation at point A, the photon can
be detected at point B such that the distance between A and B is 107 light years.

A problem arises how this phenomenon should be interpreted. On the one
hand, one might say that in view of the above discussion it is not clear whether
or not the requirement that no information should be transmitted with the speed
greater than c should be a must in relativistic quantum theory. On the other
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hand (as pointed out to me by Alik Makarov), we can know about the photon
creation only if the photon is detected and when it was detected at point B at the
moment of time t = t0, this does not mean that the photon travelled from A to B
with the speed greater than c since the time of creation has an uncertainty of the
order of 107 years. Note also that in this situation a description of the system
(atom + electric ˇeld) by the wave function (e.g., in the Fock space) depending
on a continuous parameter t has no physical meaning (since, roughly speaking,
the quantum of time in this process is of the order of 107 years). If we accept this
explanation, then we should acknowledge that in some situations a description of
evolution by a continuous classical parameter t is not physical and this is in the
spirit of the Heisenberg S-matrix program. However, this example describes a
pure quantum phenomenon while, as noted above, a position operator is needed
only in semiclassical approximation.

For particles with nonzero spin, the number of states in local ˇelds is typically
by a factor of two greater than in the case of unitary IRs (since local ˇelds describe
a particle and its antiparticle simultaneously) but those components are not inde-
pendent since local ˇelds satisfy a covariant equation (KleinÄGordon, Dirac, etc.).
In [21], Newton and Wigner construct a position operator in the massive case but
say that in the massless one they have succeeded in constructing such an operator
only for KleinÄGordon and Dirac particles, while in the case of the photon the
position operator does not exist. On the other hand, as noted above, in the case
of unitary IRs different spin components are independent and in semiclassical ap-
proximation spin effects are not important. So in this approach one might adopt
the NewtonÄWigner position operator for particles with any spin and any mass.

We now consider the following problem. Since the NewtonÄWigner position
operator formally has the same form as in nonrelativistic quantum mechanics,
the coordinate and momentum wave functions also are related to each other by
the same Fourier transform as in nonrelativistic quantum mechanics (see Eq. (8)).
One might think that this relation is not Lorentz-covariant and pose a question
whether in relativistic theory this is acceptable. As noted above, for constructing
the momentum wave function, covariance does not have a fundamental physical
meaning and is not necessary. A question arises whether the same is true for
constructing the coordinate wave function.

Let us note ˇrst that if the four-vector x is such that x = (t,x), then the
wave function ψ(x) = ψ(x, t) can have a physical meaning only if we accept that
(at least in some approximations) a position operator is well deˇned. Then the
function ψ(x, t) describes amplitudes of probabilities for different values of x at
a ˇxed value of t. This function cannot describe amplitudes of probabilities for
different values of t because there is no time operator.

For discussing Lorentz covariance of the coordinate wave function it is im-
portant to note that, in view of the above remarks, this function can be deˇned not
in the whole Minkowski space but only on space-like hyperplanes of that space
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(by analogy with the fact that in QFT the operators (Pμ, Mμν) are deˇned by
integrals over such hyperplanes). They are deˇned by a time-like unit vector n
and the evolution parameter τ such that the corresponding hyperplane is a set of
points with the coordinates x satisfying the condition nx = τ . Wave functions
ψ(x) on this hyperplane satisfy the requirement

∫
|ψ(x)|2δ(nx − τ) d4x < ∞.

In a special case, when n0 = 1, n = 0, the hyperplane is a set of points (t = τ,x)
and the wave functions satisfy the usual requirement

∫
|ψ(x, t)|2d3x < ∞. In the

literature coordinate wave functions are usually considered without discussions
of the position operator and without mentioning the fact that those functions are
deˇned on space-like hyperplanes (see, e.g., [25,26]).

By analogy with the construction of the coordinate wave function in [25,27],
it can be deˇned as follows. Let x̃0 be a four-vector and p and p0 be four-vectors
(ε(p),p) and (ε(p0),p0), respectively. We will see below that momentum wave
functions describing wave packets can be chosen in the form

ξ(p, p0, x̃0) = f(p, p0) exp
(

i

�
px̃0

)
, (18)

where f(p, p0) as a function of p has a sharp maximum in the vicinity of p = p0,
x̃0 = x0 − (nx0)n and the four-vector x0 has the coordinates (t, r0). Then the
coordinate wave function can be deˇned as

ψ(x, p0, x̃0) =
1

(2π�)3/2

∫
ξ(p, p0, x̃0) exp

(
− i

�
px

)
dρ(p). (19)

Suppose that f(p, p0) is a covariant function of its arguments, i.e., it can depend
only on p2, p2

0 and pp0. Then, as follows from Eq. (14), the function ψ(x, p0, x̃0)
is covariant because its Lorentz transformation is ψ(x, p0, x̃0) → ψ(Λ−1x, p0, x̃0).

The choice of f(p, p0) in the covariant form might encounter the following
problem. For example, the authors of [27] propose to consider f(p, p0) in the form

f(p, p0) = const exp
[
(p − p0)2

4σ2

]
. (20)

The exponent in this expression has the maximum at p = p0 and in the vicinity
of the maximum

(p − p0)2 = −(p − p0)2 +
[
(p0,p − p0)

ε(p0)

]2

+ o(|p − p0|2). (21)

If p0 is directed along the z axis and the subscript ⊥ is used to denote the
projection of the vector onto the xy plane, then

(p − p0)2 = −(p⊥ − p0⊥)2 −
[

m

ε(p0)

]2

(pz − p0z)2 + o(|p − p0|2). (22)

It follows from this expression that if the particle is ultrarelativistic, then the
width of the momentum distribution in the longitudinal direction is much greater
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than in transverse ones and for massless particles the former becomes inˇnite.
We conclude that for massless particles the covariant parameterization of f(p, p0)
is problematic.

As noted above, the only fundamental requirement on quantum level is that
the representation operators should satisfy the commutation relations (1) while
covariance is not fundamental. Nevertheless, the above discussion shows that
covariance of coordinate wave functions can be preserved if one takes into account
the fact that they are deˇned on space-like hyperplanes. In particular, covariance
of functions f can be preserved if one assumes that they depend not only on p
and p0 but also on n. In what follows, we consider only the case when the
vector n is such that n0 = 1 and n = 0. Let us replace f(p, p0) by f(p̃, p̃0),
where p̃ = p − (pn)n and p̃0 = p0 − (p0n)n. Then the four-vectors p̃ and p̃0

have only nonzero spatial components equal to p and p0, respectively. As a
consequence, any rotationally invariant combination of p and p0 can be treated
as a Lorentz covariant combination of p̃ and p̃0.

We conclude that with the above choice of the vector n one can work with
momentum and coordinate wave functions in full analogy with nonrelativistic
quantum mechanics and in that case Lorentz covariance is satisˇed. In particular
in that case Eq. (19) can be written in the form of Eq. (8).

In view of the WPS paradoxes, we consider the photon case in greater detail.
In classical theory, the notion of ˇeld, as well as that of wave, is used for
describing systems of many particles by their mean characteristics. For example,
the electromagnetic ˇeld consists of many photons. In classical theory, each
photon is not described individually but the ˇeld as a whole is described by the
ˇeld strengths E(r, t) and B(r, t) which can be measured (in principle) by using
macroscopic test bodies such that the quantities r and t refer to positions of
such bodies at time t. In quantum theory one can formally deˇne corresponding
quantized ˇeld operators but the meaning of (r, t) for elementary particles is not
clear. In particular, the physical meaning of electric and magnetic ˇelds of a
single photon is problematic.

For the ˇrst time, the coordinate photon wave function has been discussed
by Landau and Peierls in [28]. However, in the literature it has been stated
(see, e.g., [29] and [25]) that in QED there is no way to deˇne a coordinate
photon wave function. The section in the textbook [29] is titled ©Impossibility
of Introducing the Photon Wave Function in Coordinate Representationª. The
arguments follow. The electric and magnetic ˇelds of the photon in coordinate
representation are proportional to the Fourier transforms of |p|1/2χ(p), rather than
χ(p). As a consequence, the quantities E(r) and B(r) are deˇned not by ψ(r)
but by integrals of ψ(r) over a region of the order of the wave length. However,
this argument also does not exclude the possibility that ψ(r) can have a physical
meaning in semiclassical approximation since, as noted above, the notions of the
electric and magnetic ˇelds of a single photon are problematic. In addition, since
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λ → 0 in the formal limit � → 0, one should not expect that any position operator
in semiclassical approximation can describe coordinates with the accuracy better
than the wave length.

A detailed discussion of the photon position operator can be found in papers
by Margaret Hawton and references therein (see, e.g., [30]). In this approach,
the photon is described by a local ˇeld and the momentum and coordinate rep-
resentations are related to each other by standard Fourier transform. The author
of [30] discusses generalizations of the photon position operator proposed by
Pryce [31]. However, the Pryce operator and its generalizations discussed in [30]
differ from the NewtonÄWigner operator only by terms of the order of the wave
length. Hence in semiclassical approximation all those operators are equivalent.

The above discussion shows that on quantum level, the physical meaning of
the coordinate is a difˇcult problem, but in view of a) and b) (see the beginning of
this section), one can conclude that in semiclassical approximation all the existing
proposals for the position operator are equivalent to the NewtonÄWigner operator
i�∂/∂p. An additional argument in favor of this operator is that the relativistic
nature of the photon might be somehow manifested in the longitudinal direction,
while in transverse directions the behavior of the wave function should be similar
to that in standard nonrelativistic quantum mechanics. Another argument is that
the photon wave function in coordinate representation constructed by using this
operator satisˇes the wave equation in agreement with classical electrodynamics
(see Sec. 6).

In addition, if we consider a motion of a free particle, it is not important in
what interactions this particle participates and, as explained above, if the particle
is described by its IR in semiclassical approximation, then the particle spin is
not important. Hence the effect of WPS for an ultrarelativistic particle does not
depend on the nature of the particle, i.e., on whether the particle is the photon,
the proton, the electron, etc.

For all the reasons described above and in view of a) and b), in the next
section we consider what happens if the space-time evolution of relativistic wave
packets is described by using the NewtonÄWigner position operator.

5. WAVE PACKET SPREADING
IN RELATIVISTIC QUANTUM MECHANICS

Consider ˇrst a construction of the wave packet for a particle with nonzero
mass. A possible way of the construction follows. We ˇrst consider the particle
in its rest system, i.e., in the reference frame where the mean value of the particle
momentum is zero. The wave function χ0(p) in this case can be taken as in
Eq. (5) with p0 = 0. As noted in Sec. 2, such a state cannot be semiclassical.
However, it is possible to obtain a semiclassical state by applying a Lorentz
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transformation to χ0(p). As a consequence of Eq. (14) and the relation between
the functions ξ and χ

U(Λ)χ0(p) =
[
ε(p′)
ε(p)

]1/2

χ0(p′), (23)

where p′ is the momentum obtained from p by the Lorentz transformation Λ−1.
If Λ is the Lorentz boost along the z axis with the velocity v, then

p′
⊥ = p⊥, p′z =

pz − vε(p)
(1 − v2)1/2

. (24)

As follows from this expression, exp (−p
′2a2/2�

2) as a function of p has
the maximum at p⊥ = 0, pz = pz0 = v[(m2 + p2

⊥)/(1 − v2)]1/2 and near the
maximum

exp

(
−a2p

′2

2�2

)
≈ exp

{
− 1

2�2
[a2p2

⊥ + b2(pz − pz0)2]
}

,

where b = a(1 − v2)1/2, what represents the effect of the Lorentz contraction. If
mv � �/a (in units where c = 1), then m � |p⊥| and pz0 ≈ mv/(1 − v2)1/2.
In this case the transformed state is semiclassical and the mean value of the
momentum is exactly the classical (i.e., nonquantum) value of the momentum of
a particle with mass m moving along the z axis with the velocity v. However,
in the opposite case when m � �/a, the transformed state is not semiclassical
since the uncertainty of pz is of the same order as the mean value of pz.

If the photon mass is exactly zero, then the photon cannot have the rest
state. However, even if the photon mass is not exactly zero, it is so small that
the relation m � �/a is certainly satisˇed for any realistic value of a. Hence,
a semiclassical state for the photon or a particle with a very small mass cannot
be obtained by applying the Lorentz transformation to χ0(p) and considering the
case when v is very close to unity. An analogous problem with the covariant
description of the massless wave function has been discussed in the preceding
section (see Eq. (22)).

The above discussion shows that in the relativistic case, the momentum
distribution in transverse directions is the same as in the nonrelativistic case
(see also Eq. (22)), and the difference arises only for the momentum distribution
in the longitudinal direction. Let us consider the ultrarelativistic case, when
|p0| = p0 � m, and suppose that p0 is directed along the z axis. As noted in the
preceding section, the formal requirement of Lorentz covariance will be satisˇed
if one works with rotationally invariant combinations of p and p0. The quantities
p2
⊥ and (pz − p0)2 satisfy this condition because

p2
⊥ =

[
p − p0

(pp0)
p2
0

]2

, (pz − p0)2 =
1
p2
0

[(pp0) − p2
0]

2.
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We will describe an ultrarelativistic semiclassical state by a wave function
which is a generalization of the function (5) (see also Eq. (18)):

χ(p, 0) =
ab1/2

π3/4�3/2
exp

[
−p2

⊥a2

2�2
− (pz − p0)2b2

2�2
− i

�
p⊥r0⊥ − i

�
(pz − p0)z0

]
.

(25)
In the general case the parameters a and b deˇning the momentum distributions in
the transverse and longitudinal directions, respectively, can be different. In that
case the uncertainty of each transverse component of momentum is �/(a

√
2),

while the uncertainty of the z component of momentum is �/(b
√

2). In view
of the above discussion, one might think that, as a consequence of the Lorentz
contraction, the parameter b should be very small. However, the above discussion
shows that the notion of the Lorentz contraction has a physical meaning only if
m � �/a, while for the photon the opposite relation takes place. We will see
below that in typical situations the quantity b is large and much greater than a.

In relativistic quantum theory, the situation with time is analogous to that
in the nonrelativistic case (see Sec. 3) and time can be treated only as a good
approximate parameter describing the evolution according to the Schréodinger
equation with the relativistic Hamiltonian. Then, as a consequence of Eq. (16),
we have that in the ultrarelativistic case (i.e., when p = |p| � m)

χ(p, t) = exp
(
− i

�
pct

)
χ(p, 0). (26)

Since at different moments of time the wave functions in momentum space differ
from each other only by a phase factor, the mean value and uncertainty of each
momentum component do not depend on time. In other words, there is no WPS
for the wave function in momentum space. As noted in Sec. 3, the same is true
in the nonrelativistic case.

As noted in the preceding section, in the relativistic case, the function ψ(r, t)
can be again deˇned by Eq. (8), where now χ(p, t) is deˇned by Eq. (26). If the
variable pz in the integrand is replaced by p0 + pz, then as follows from Eqs. (8),
(25), (26),

ψ(r, t) =
ab1/2 exp (ip0r/�)
π3/4�3/2(2π�)3/2

∫
exp

{
−p2

⊥a2

2�2
− p2

zb
2

2�2
+

i

�
p(r − r0)−

− ict

�
[(pz + p0)2 + p2

⊥]1/2

}
d3p. (27)

We now take into account the fact that in semiclassical approximation, the quantity
p0 should be much greater than uncertainties of the momentum in the longitudinal
and transversal directions, i.e., p0 � pz and p0 � |p⊥|. Hence, with a good
accuracy we can expand the square root in the integrand in powers of |p|/p0.
Taking into account the linear and quadratic terms in the square root, we get

[(pz + p0)2 + p2
⊥]1/2 ≈ p0 + pz + p2

⊥/2p0. (28)
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This is analogous to the Fresnel approximation in geometrical optics and to the
approximation (m2 + p2)1/2 ≈ m + p2/2m in nonrelativistic case. Then, the
integral over d3p can be calculated as a product of integrals over d2p⊥ and dpz

and the calculation is analogous to that in Eq. (9). The result of the calculation is

ψ(r, t) =
[
π3/4ab1/2

(
1 +

i�ct

p0a2

)]−1

exp
[

i

�
(p0r − p0ct)

]
×

× exp

⎡
⎢⎢⎣−

(r⊥ − r0⊥)2
(

1 − i�ct

p0a2

)

2a2

(
1 +

�
2c2t2

p2
0a

4

) − (z − z0 − ct)2

2b2

⎤
⎥⎥⎦ . (29)

This result shows that the wave packet describing an ultrarelativistic particle
(including a photon) is moving along the classical trajectory z(t) = z0 + ct, in
the longitudinal direction there is no spreading, while in transversal directions
spreading is characterized by the function

a(t) = a

(
1 +

�
2c2t2

p2
0a

4

)1/2

. (30)

The characteristic time of spreading can be deˇned as t∗ = p0a
2/�c. The fact

that t∗ → ∞ in the formal limit � → 0 shows that in relativistic case WPS
also is a pure quantum phenomenon (see the end of Sec. 3). From the formal
point of view, the result for t∗ is the same as in nonrelativistic theory, but m
should be replaced by E/c2, where E is the energy of the ultrarelativistic particle.
This fact could be expected since, as noted above, it is reasonable to think that
spreading in directions perpendicular to the particle momentum is similar to that
in standard nonrelativistic quantum mechanics. However, in the ultrarelativistic
case spreading takes place only in these directions. If t � t∗, the transversal
width of the packet is a(t) = �ct/p0a. Hence, the speed of spreading in the
perpendicular directions is v∗ = �c/p0a.

6. GEOMETRICAL OPTICS

The relation between quantum and classical electrodynamics is well known
and is described in textbooks (see, e.g., [29]). As already noted, classical elec-
tromagnetic ˇeld consists of many photons, and in classical electrodynamics the
photons are not described individually. Instead, classical electromagnetic ˇeld is
described by ˇeld strengths which represent mean characteristics of a large set
of photons. For constructing the ˇeld strengths one can use the photon wave
functions χ(p, t) or ψ(r, t), where E is replaced by �ω and p is replaced by �k.
In this connection, it is interesting to note that since ω is a classical quantity used
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for describing a classical electromagnetic ˇeld, the photon is a pure quantum
particle since its energy disappears in the formal limit � → 0. Even this fact
shows that the photon cannot be treated as a classical particle and the effect of
WPS for the photon cannot be neglected.

With the above replacements, the functions χ and ψ do not contain any de-
pendence on � (note that the normalization factor �

−3/2 in χ(k, t) will disappear
since the normalization integral for χ(k, t) is now over d3k, not d3p). The quan-
tities ω and k are now treated, respectively, as the frequency and the wave vector
of the classical electromagnetic ˇeld, and the functions χ(k, t) and ψ(r, t) are in-
terpreted not such that they describe probabilities for a single photon, but such that
they describe classical electromagnetic ˇeld, and E(r, t) and B(r, t) can be con-
structed from these functions as described in textbooks on QED (see, e.g., [29]).

An additional argument in favor of the choice of ψ(r, t) as the coordinate
photon wave function is that in classical electrodynamics the quantities E(r, t)
and B(r, t) for the free ˇeld should satisfy the wave equation ∂2E/c2∂t2 = ΔE
and, analogously, for B(r, t). Hence, if E(r, t) and B(r, t) are constructed from
ψ(r, t) as described in textbooks (see, e.g., [29]), they will satisfy the wave equa-
tion since, as follows from Eqs. (8), (25), (26), ψ(r, t) also satisˇes this equation.

The geometrical optics approximation implies that if k0 and r0 are the mean
values of the wave vector and the spatial radius vector for a wave packet de-
scribing the electromagnetic wave, then the uncertainties Δk and Δr, which are
the mean values of |k − k0| and |r − r0|, respectively, should satisfy the re-
quirements Δk � |k0| and Δr � |r0|. Analogously, in full analogy with the
derivation of Eq. (3), one can show that for each j = 1, 2, 3 the uncertainties
of the corresponding projections of the vectors k and r satisfy the requirement
ΔkjΔrj � 1/2 (see, e.g., [2]). In particular, an electromagnetic wave satisˇes
the approximation of geometrical optics in the greatest possible extent if ΔkΔr
is of the order of unity.

The above discussion conˇrms what has been mentioned in Sec. 1 that the
effect of WPS in transverse directions takes place not only in quantum theory
but even in classical electrodynamics. Indeed, since the function ψ(r, t) satisˇes
the classical wave equation, the above consideration can be also treated as an
example showing that even for a free wave packet in classical electrodynamics,
the WPS effect is inevitable. In the language of classical waves, the parameters
of spreading can be characterized by the function a(t) (see Eq. (30)) and the
quantities t∗ and v∗ (see the end of the preceding section) such that in terms of
the wave length λ = 2πc/ω0

a(t) = a

(
1 +

λ2c2t2

4π2a4

)1/2

, t∗ =
2πa2

λc
, v∗ =

λc

2πa
. (31)

The last expression can be treated such that if λ � a, then the momentum has the
angular uncertainty of the order of α = λ/(2πa). This result is natural from the
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following consideration. Let the mean value of the momentum be directed along
the z axis and the uncertainty of the transverse component of the momentum be
Δp⊥. Then Δp⊥ is of the order of �/a, λ = 2π�/p0 and hence α is of the order
of Δp⊥/p0 ≈ λ/(2πa). This is analogous to the well-known result in classical
optics that the best angular resolution of a telescope with the dimension d is of
the order of λ/d. Another well-known result of classical optics is that if a wave
encounters an obstacle having the dimension d, then the direction of the wave
diverges by the angle of the order of λ/d.

The inevitability of WPS for a free wave packet in classical electrodynamics
is obvious from the following consideration. Suppose that a classical wave packet
does not have a deˇnite value of the momentum. Then, if a is the initial width of
the packet in directions perpendicular to the mean momentum, one might expect
that the width will grow as a(t) = a + αct and for large values of t, a(t) ≈ αct.
As follows from Eq. (31), if t � t∗, then indeed a(t) ≈ αct. In standard
quantum theory, we have the same result because the coordinate and momentum
wave functions are related to each other by the same Fourier transform as the
coordinate and k distributions in classical electrodynamics.

The quantity N|| = b/λ shows how many oscillations the oscillating exponent
in Eq. (29) makes in the region, where the wave function or the amplitude of the
classical wave is signiˇcantly different from zero. As noted in Sec. 2, for the
validity of semiclassical approximation this quantity should be very large. In
nonrelativistic quantum mechanics a and b are of the same order and hence the
same can be said about the quantity N⊥ = a/λ. As noted above, in the case of
the photon we do not know the relation between a and b. In terms of the quantity
N⊥, we can rewrite the expressions for t∗ and v∗ in Eq. (31) as

t∗ = 2πN2
⊥T, v∗ =

c

2πN⊥
, (32)

where T is the period of the classical wave. Hence the accuracy of semiclassical
approximation (or the geometrical optics approximation in classical electrody-
namics) increases with the increase of N⊥.

In [32], the problem of WPS for classical electromagnetic waves has been
discussed in the Fresnel approximation (i.e., in the approximation of geometrical
optics) for a two-dimensional wave packet. Equation (25) of [32] is a special
case of Eq. (28), and the author of [32] shows that, in his model, the wave packet
spreads out in the direction perpendicular to the group velocity of the packet. As
noted at the end of the preceding section, in the ultrarelativistic case the function
a(t) is given by the same expression as in the nonrelativistic case, but m is
replaced by E/c2. Hence, if the results of the preceding section are reformulated
in terms of classical waves, then m should be replaced by �ω0/c2 and this fact
has been pointed out in [32].
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7. WAVE PACKET WIDTH PARADOX

We now consider the following important question. We assume that a clas-
sical wave packet is a collection of photons. Let acl be the quantity a for the
classical packet and aph be a typical value of a for the photons. What is the
relation between acl and aph?

My observation is that physicists answer this question in different ways.
Quantum physicists usually say that in typical situations aph � acl because acl

is of macroscopic size, while in semiclassical approximation the quantity aph for
each photon can be treated as the size of the region where the photon has been
created. On the other hand, classical physicists usually say that aph � acl and
the motivation follows.

Consider a decomposition of some component of classical electromagnetic
ˇeld into the Fourier series:

A(x) =
∑

σ

∫
[a(p, σ)u(p, σ) exp (−ipx) + a(p, σ)∗u(p, σ)∗ exp (ipx)] d3p,

(33)
where σ is the polarization, x and p are the four-vectors such that x = (ct,x)
and p = (|p|c,p), the functions a(p, σ) are the same for all the components, the
functions u(p, σ) depend on the component, and ∗ is used to denote the complex
conjugation. Then photons arise as a result of quantization when a(p, σ) and
a(p, σ)∗ are understood not as usual function but as operators of annihilation
and creation of the photon with the quantum numbers (p, σ), and ∗ is now
understood as Hermitian conjugation. Hence, the photon is described by a plane
wave which has the same magnitude in all points of the space. In other words,
aph is inˇnitely large and a ˇnite width of the classical wave packet arises as a
result of interference of different plane waves.

The above deˇnition of the photon has at least the following inconsistency. If
the photon is treated as a particle, then its wave function should be normalizable,
while the plane wave is not normalizable. In textbooks this problem is often
circumvented by saying that we consider our system in a ˇnite box. Then the
spectrum of momenta becomes ˇnite and instead of Eq. (33) one can write

A(x) =
∑

σ

∑
j

[a(pj , σ)u(pj , σ) exp (−ipjx) + a(pj , σ)∗u(pj , σ)∗ exp (ipjx)],

(34)
where j enumerates the points of the momentum spectrum.

One can now describe quantum electromagnetic ˇeld by states in the Fock
space where the vacuum vector Φ0 satisˇes the condition a(pj , σ)Φ0 = 0,
||Φ0|| = 1 and the operators commute as

[a(pi, σk), a(pj , σl)] = [a(pi, σk)∗, a(pj , σl)∗] = 0,

[a(pi, σk), a(pj , σl)∗] = δijδkl.
(35)
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Then any state can be written as

Ψ =
∞∑

n=0

∑
σ1,...,σn

∑
p1,...,pn

χ(p1, σ1, . . . ,pn, σn)a(p1, σ1)∗ · · · a(pn, σn)∗Φ0.

(36)
Classical states are understood such that although the number of photons is

large, it is much less than the number of possible momenta, and in Eq. (36) all
the photons have different momenta (this is analogous to the situation in classical
statistics, where mean occupation numbers are much less than unity). Then it is
not important whether the operators (a, a∗) commute or anticommute. However,
according to the Pauli theorem on spin-statistics connection [19], they should
commute and this allows the existence of coherent states where many photons
have the same quantum numbers. Such states can be created in lasers and they
are not described by classical electrodynamics. In the next section, we consider
position operator for coherent states, while in this section, we consider only
quantum description of states close to classical.

Note that even in some textbooks on quantum optics (see, e.g., [33]) classical
and quantum states are characterized in the opposite way: it is stated that classical
states are characterized by large occupation numbers, while quantum states Å by
small ones. The question what states should be called classical or quantum is
not a matter of convention since in quantum theory there are rigorous criteria
for that purpose. In particular, as explained in textbooks on quantum theory,
the exchange interaction is a pure quantum phenomenon which does not have
classical analogs. That is why the Boltzmann statistics (which works when mean
occupation numbers are much less than unity and the exchange interaction is
negligible) is classical, while the FermiÄDirac and BoseÄEinstein statistics (which
work when mean occupation numbers are of the order of unity or greater and the
exchange interaction is important) are quantum.

The next problem is that one should take into account that in standard theory
the photon momentum spectrum is continuous. Then the above construction can
be generalized as follows. The vacuum state Φ0 satisˇes the same conditions
||Φ0|| = 1 and a(p, σ)Φ0 = 0, while the operators (a, a∗) satisfy the following
commutation relations:

[a(p, σ), a(p′, σ′)] = [a(p, σ)∗, a(p′, σ′)∗] = 0,

[a(p, σ), a(p′, σ′)∗] = δ(3)(p − p′)δσσ′ .
(37)

Then a general quantum state can be written as

Ψ =
∞∑

n=0

∑
σ1,...,σn

∫
· · ·

∫
χ(p1, σ1, . . . ,pn, σn)×

× a(p1, σ1)∗ · · ·a(pn, σn)∗d3p1 · · · d3pn Φ0. (38)
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In the approximation when a classical wave packet is understood as a col-
lection of independent photons (see the discussion in Sec. 10), the state of this
packet has the form

Ψ =
∞∑

n=0

cn

n∏
j=1

{∑
σj

∫
χj(pj , σj)a(pj , σj)∗ d3pj

}
Φ0, (39)

where χj is the wave function of the jth photon and intersections of supports of
wave functions of different photons can be neglected. This is an analog of the
above situation with the discrete case where it is assumed that different photons
in a classical wave packet have different momenta. In other words, while the
wave function of each photon can be treated as an interference of plane waves,
different photons can interfere only in coherent states but not in classical wave
packets.

We now describe a well-known generalization of the results on IRs of the
Poincare algebra to the description in the Fock space (see, e.g., [34] for details).
If A is an operator in the space of the photon IR, then a generalization of this
operator to the case of the Fock space can be constructed as follows. Any operator
in the space of IR can be represented as an integral operator acting on the wave
function as

Aχ(p, σ) =
∑
σ′

∫
A(p, σ,p′, σ′)χ(p′, σ′) d3p′. (40)

For example, if Aχ(p, σ) = ∂χ(p, σ)/∂p, then A is the integral operator with
the kernel

A(p, σ,p′, σ′) =
∂δ(3)(p − p′)

∂p
δσσ′ .

We now require that if the action of the operator A in the space of IR is deˇned
by Eq. (40), then in the case of the Fock space this action is deˇned as

A =
∑
σσ′

∫
A(p, σ,p′, σ′) a(p, σ)∗ a(p′, σ′) d3p d3p′. (41)

Then it is easy to verify that if A, B, and C are operators in the space of IR
satisfying the commutation relation [A, B] = C, then the generalizations of these
operators in the Fock space satisfy the same commutation relation. It is also
easy to verify that the operators generalized to the action in the Fock space in
such a way are additive, i.e., for a system of n photons they are sums of the
corresponding single-particle operators. In particular, the energy of the n-photon
system is a sum of the energies of the photons in the system and analogously for
the other representation operators of the Poincare algebra Å momenta, angular
momenta, and Lorentz boosts.
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We are interested in calculating mean values of different combinations of the
momentum operator. Since this operator does not act over spin variables, we
will drop such variables in the (a, a∗) operators and in the functions χj . Then
the explicit form of the momentum operator is P =

∫
pa(p)∗a(p) d3p. Since

this operator does not change the number of photons, the mean values can be
independently calculated in each subspace where the number of photons is N .

Suppose that the momentum of each photon is approximately directed along
the z axis and the quantity p0 for each photon approximately equals 2π�/λ. If
Δp⊥ is a typical uncertainty of the transversal component of the momentum for
the photons, then a typical value of the angular uncertainty for the photons is
αph = Δp⊥/p0 ≈ λ/(2πaph). The total momentum of the classical wave packet

consisting of N photons is a sum of the photon momenta: P =
N∑

i=1

p(i). Suppose

that the mean value of P is directed along the z axis and its magnitude P0 is

such that P0 ≈ Np0. The uncertainty of the x component of P is ΔPx = P 2
x

1/2
,

where

P 2
x =

N∑
i=1

(p(i)
x )2 +

N∑
i�=j;i,j=1

p
(i)
x p

(j)
x .

Then in the approximation of independent photons (see the remarks after Eq. (39))

P 2
x =

N∑
i=1

(p(i)
x )2 +

N∑
i�=j;i,j=1

p
(i)
x · p(j)

x =
N∑

i=1

[
(p(i)

x )2 − p
(i)
x

2
]

=
N∑

i=1

(Δp(i)
x )2,

where we have taken into account that Px =
N∑

i=1

p
(i)
x = 0.

As a consequence, if typical values of Δp
(i)
⊥ have the the same order of

magnitude equal to Δp⊥, then ΔP⊥ ≈ N1/2Δp⊥ and the angular divergence of
the classical wave packet is

αcl =
ΔP⊥
P0

≈ Δp⊥
p0N1/2

=
αph

N1/2
.

Since the classical wave packet is described by the same wave equation as the
photon wave function, its angular divergence can be expressed in terms of the
parameters λ and acl such that αcl = λ/(2πacl). Hence, acl ≈ N1/2aph and we
conclude that aph � acl.

Note that in this derivation no position operator has been used. Although
the quantities λ and aph have the dimension of length, they are deˇned only
from considering the photon in momentum space because, as noted in Sec. 4, for
individual photons λ is understood only as 2π�/p0, aph deˇnes the width of the
photon momentum wave function (see Eq. (25)) and is of the order of �/Δp⊥.
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As noted in Secs. 3 and 5, the momentum distribution does not depend on time
and hence the result aph � acl does not depend on time, too. If photons in
a classical wave packet could be treated as (almost) point-like particles, then
photons do not experience WPS while the WPS effect for a classical wave packet
is a consequence of the fact that different photons in the packet have different
momenta.

However, in standard quantum theory this scenario does not take place for
the following reason. Let acl(t) be the quantity a(t) for the classical wave packet
and aph(t) be a typical value of the quantity a(t) for individual photons. With
standard position operator, the quantity aph(t) is interpreted as the spatial width
of the photon coordinate wave function in directions perpendicular to the photon
momentum and this quantity is time-dependent. As shown in Secs. 5 and 6,
a(0) = a but if t � t∗, then a(t) is inversely proportional to a and the coefˇcient
of proportionality is the same for the classical wave packet and individual photons
(see Eq. (31)). Hence, in standard quantum theory, we have a paradox that after
some period of time aph(t) � acl(t), i.e., individual photons in a classical wave
packet spread out in a much greater extent than the wave packet as a whole.
We call this situation the wave packet width (WPW) paradox (as noted above,
different photons in a classical wave packet do not interfere with each other).
The reason of the paradox is obvious: if the law that the angular divergence of a
wave packet is of the order of λ/a is applied to both a classical wave packet and
photons comprising it, then the paradox follows from the fact that the quantities
a for the photons are much less than the quantity a for the classical wave packet.
Note that in classical case, the quantity acl does not have the meaning of �/ΔP⊥
and λ is not equal to 2π�/P0.

8. WAVE PACKET SPREADING IN COHERENT STATES

In textbooks on quantum optics, the laser emission is described by the fol-
lowing model (see, e.g., [33, 35]). Consider a set of photons having the same
momentum p and polarization σ and, by analogy with the discussion in the pre-
ceding section, suppose that the momentum spectrum is discrete. Consider a

quantum superposition Ψ =
∞∑

n=0
cn[a(p, σ)∗]nΦ0, where the coefˇcients cn sat-

isfy the condition that Ψ is an eigenstate of the annihilation operator a(p, σ).
Then the product of the coordinate and momentum uncertainties has the mini-
mum possible value �/2 and, as noted in Sec. 2, such a state is called coherent.
However, the term coherent is sometimes used meaning that the state is a quantum
superposition of many-photon states [a(p, σ)∗]nΦ0.

In the above model it is not taken into account that (in standard theory)
photons emitted by a laser can have only a continuous spectrum of momenta.
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Meanwhile for the WPS effect, the width of the momentum distribution is impor-
tant. In this section, we consider a generalization of the above model where the
fact that photons have a continuous spectrum of momenta is taken into account.
This will make it possible to consider the WPS effect in coherent states.

In the above formalism, coherent states can be deˇned as follows. We assume
that all the photons in the state, Eq. (38), have the same polarization. Hence, for
describing such states we can drop the quantum number σ in wave functions
and a operators. We also assume that all photons in coherent states have the
same momentum distribution. These conditions can be satisˇed by requiring that
coherent states have the form

Ψ =
∞∑

n=0

cn

[∫
χ(p)a(p)∗d3p

]n

Φ0, (42)

where cn are some coefˇcients. Finally, by analogy with the description of
coherent states in standard textbooks on quantum optics, one can require that they
are eigenstates of the operator

∫
a(p)d3p.

The dependence of the state Ψ in Eq. (42) on t is Ψ(t) = exp (−iEt/�)Ψ,
where, as follows from Eqs. (13) and (41), the action of the energy operator in
the Fock space is E =

∫
pca(p)∗a(p) d3p. Since exp (iEt/�)Φ0 = Φ0, it readily

follows from Eq. (37) that

Ψ(t) =
∞∑

n=0

cn

[∫
χ(p, t)a(p)∗d3p

]n

Φ0, (43)

where the relation between χ(p, t) and χ(p) = χ(p, 0) is given by Eq. (26).
A problem arises how to deˇne the position operator in the Fock space.

If this operator is deˇned by analogy with the above construction, then we get
an unphysical result that each coordinate of the n-photon system as a whole
is a sum of the corresponding coordinates of the photons in the system. This
is an additional argument that the position operator is less fundamental than
the representation operators of the Poincare algebra and its action should be
deˇned from additional considerations. In textbooks on quantum optics, the
position operator for coherent states is usually deˇned by analogy with the position
operator in nonrelativistic quantum mechanics for the harmonic oscillator problem.
The motivation follows. If the energy levels �ω(n + 1/2) of the harmonic
oscillator are treated as states of n quanta with the energies �ω, then the harmonic
oscillator problem can be described by the operators a and a∗ which are expressed
in terms of the one-dimensional position and momentum operators q and p, as a =
(ωq + ip)/(2�ω)1/2 and a∗ = (ωq− ip)/(2�ω)1/2. However, as noted above, the
model description of coherent states in those textbooks is one-dimensional because
the continuous nature of the momentum spectrum is not taken into account.
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In addition, the above results on WPS give indications that the position operator
in standard theory is not consistently deˇned. For all these reasons, a problem
arises whether the requirement that the state Ψ in Eq. (42) is an eigenvector of the
operator

∫
a(p) d3p has a physical meaning. In what follows, this requirement is

not used.
In nonrelativistic classical mechanics, the radius vector of a system of n

particles as a whole (the radius vector of the center of mass) is deˇned as
R = (m1r1 + . . .+mnrn)/(m1 + . . .+mn) and in works on relativistic classical
mechanics, it is usually deˇned as R = (ε1(p1)r1 + . . . + εn(pn)rn)/(ε1(p1) +
. . . + εn(pn)), where εi(pi) = (m2

i + p2
i )

1/2. Hence, if all the particles have the
same masses and momenta, then R = (r1 + . . . + rn)/n.

These remarks make it reasonable to deˇne the position operator for coherent
states as follows. Let xj be the jth component of the position operator in the space
of IR and Aj(p,p′) be the kernel of this operator. Then, in view of Eq. (41), the
action of the operator Xj on the state Ψ(t) in Eq. (42) can be deˇned as

XjΨ(t) =
∞∑

n=1

×

× cn

n

∫ ∫
Aj(p′′,p′)a(p′′)∗a(p′) d3p′′d3p′

[∫
χ(p, t)a(p)∗d3p

]n

Φ0. (44)

If xj(t) and x2
j (t) are the mean values of the operators xj and x2

j , respec-
tively, then as follows from the deˇnition of the kernel of the operator xj ,

xj(t) =
∫ ∫

χ(p, t)∗Aj(p,p′)χ(p′, t) d3p d3p′,

x2
j (t) =

∫ ∫ ∫
χ(p′′, t)∗Aj(p,p′′)∗Aj(p,p′)χ(p′, t) d3p d3p′′ d3p′,

(45)

and in the case of IR, the uncertainty of the quantity xj is Δxj(t) = [x2
j (t) −

xj(t)2]1/2. At the same time, if Xj(t) and X2
j (t) are the mean values of the

operators Xj and X2
j , respectively, then

Xj(t) = (Ψ(t), XjΨ(t)), X2
j (t) = (Ψ(t), X2

j Ψ(t)), (46)

and the uncertainty of the quantity Xj is ΔXj(t) = [X2
j (t) − Xj(t)2]1/2. Our

goal is to express ΔXj(t) in terms of xj(t), x2
j(t) and Δxj(t).

If the function χ(p, t) is normalized to one (see Eq. (6)), then, as follows
from Eq. (37), ||Ψ(t)|| = 1 if

∞∑
n=0

n!|cn|2 = 1. (47)
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A direct calculation using Eqs. (37), (44), (45), and (46) gives

Xj(t) = xj(t)
∞∑

n=1

n!|cn|2,

X2
j (t) =

∞∑
n=1

(n − 1)!|cn|2
[
x2

j (t) + (n − 1)xj(t)2
]
.

(48)

It now follows from Eq. (47) and the deˇnitions of the quantities Δxj(t) and
ΔXj(t) that

ΔXj(t)2 = (1 − |c0|2)|c0|2xj(t)2 +
∞∑

n=1

(n − 1)!|cn|2Δxj(t)2. (49)

Equation (49) is the key result of this section. It has been derived without
using a speciˇc choice of the single-photon position operator. The consequence
of this result follows. If the main contribution to the state Ψ(t) in Eq. (43) is
given by very large values of n, then |c0| is very small and the ˇrst term in this
expression can be neglected. Suppose that the main contribution is given by terms
where n is of the order of n̄. Then, as follows from Eqs. (47) and (49), ΔXj(t)
is of the order of Δxj(t)/n̄1/2. This means that for coherent states where the
main contribution is given by very large numbers of photons, the effect of WPS
is pronounced in a much less extent than for single photons.

9. EXPERIMENTAL CONSEQUENCES
OF WPS IN STANDARD THEORY

The problem of explaining the redshift phenomenon has a long history. Dif-
ferent competing approaches can be divided into two big sets which we call
Theory A and Theory B. In Theory A, the redshift has been originally explained
as a manifestation of the Doppler effect, but in recent years the cosmological and
gravitational redshifts have been added to the consideration. In this theory, the
interaction of photons with the interstellar medium is treated as practically not
important, i.e., it is assumed that with a good accuracy we can treat photons as
propagating in empty space. On the contrary, in Theory B, which is often called
the tired-light theory, the interaction of photons with the interstellar medium is
treated as a main reason for the redshift. At present the majority of physicists
believe that Theory A explains the astronomical data better than Theory B. Even
some physicists working on Theory B acknowledged that any sort of scattering of
light would predict more blurring than is seen (see, e.g., the article ©Tired Lightª
in Wikipedia).

A problem arises whether or not WPS of the photon wave function is impor-
tant for explaining the redshift. One might think that this effect is not important
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since a considerable WPS would also blur the images more than what is seen.
However, as shown in the previous discussion, WPS is an inevitable consequence
of standard quantum theory and, moreover, this effect also exists in classical
electrodynamics. Hence, it is not sufˇcient to just say that a considerable WPS
is excluded by observations. One should try to estimate the importance of WPS
and to understand whether our intuition is correct or not.

As follows from these remarks, in Theory A it is assumed that with a good
accuracy we can treat photons as propagating in empty space. It is also reasonable
to expect (see the discussion in the next section) that photons from distant stars
practically do not interact with each other. Hence, the effect of WPS can be
considered for each photon independently and the results of the preceding sections
make it possible to understand what experimental consequences of WPS are.

A question arises what can be said about characteristics of photons coming to
the Earth from distance objects. Since wave lengths of such photons are typically
much less than characteristic dimensions of obstacles, one might think that the
radiation of stars can be described in the geometrical optics approximation. As
discussed in Sec. 6, this approximation is similar to semiclassical approximation
in quantum theory. This poses a question whether this radiation can be approxi-
mately treated as a collection of photons moving along classical trajectories.

Consider, for example, the Lyman transition 2P → 1S in the hydrogen atom
on the Sun. In this case, the mean energy of the photon is E0 = 10.2 eV,
its wave length is λ = 121.6 nm and the lifetime is τ = 1.6 · 10−9 s. The
phrase that the lifetime is τ is interpreted such that the uncertainty of the energy
is �/τ , the uncertainty of the longitudinal momentum is �/cτ and b is of the
order of cτ ≈ 0.48 m. In this case the photon has a very narrow energy
distribution since the mean value of the momentum p0 = E0/c satisˇes the
condition p0b � �. At the same time, since the orbital angular momentum of
the photon is a small quantity, the direction of the photon momentum cannot
be semiclassical. Qualitative features of such situations can be described by the
following model.

Suppose that the photon momentum wave function is spherically symmetric
and has the form

χ(p) = C exp
[
−1

2
(p − p0)2b2 − i

�
pr0

]
, (50)

where C is a constant, and p is the magnitude of the momentum. Then, the
main contribution to the normalization integral is given by the region of p, where
|p − p0| is of the order of �/b, and in this approximation the integration over p
can be taken from −∞ to ∞. As a result, the function normalized to one has the
form

χ(p) =
b1/2

2π3/4p0
exp

[
− 1

2�2
(p − p0)2b2 − i

�
pr0

]
. (51)
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The dependence of this function on t is χ(p, t) = exp (−iE(p)t/�)χ(p), where
E(p) = pc. Hence

χ(p, t) =
b1/2

2π3/4p0
exp

[
− 1

2�2
(p − p0)2b2 − i

�
pr0(t)

]
, (52)

where r0(t) = r0 + ct.
The coordinate wave function is

ψ(r, t) =
1

(2π�)3/2

∫
χ(p, t) eipr/� d3p. (53)

Since χ(p, t) is spherically symmetric, it is convenient to decompose eipr/� as a
sum of spherical harmonics and take into account that only the term corresponding
to l = 0 contributes to the integral. This term is j0(pr/�) = sin (pr/�)/(pr/�).
Then the integral can be again taken from −∞ to ∞ and the result is

ψ(r, t) =
1

2iπ3/4r0(t)b1/2
exp

[
− (r − r0(t))2

2b2
+

i

�
p0(r − r0(t))

]
. (54)

We assume that r0(t) � b and hence the term with exp [−(r + r0(t))2/2b2] can
be neglected and r in the denominator can be replaced by r0(t). As follows from
the above results, the mean value of r is r0(t). If λ is deˇned as λ = 2π�/p0,
then the requirement that p0b � � implies that b � λ. The conditions p0b/� � 1
and r0(t) � b imply that the radial part of the photon state is semiclassical, while
the angular part is obviously strongly nonclassical.

Suppose that we want to detect the photon inside the volume V where the
coordinates are x ∈ [−dx, dx], y ∈ [−dy, dy], z ∈ [r0(t) − dz, r0(t) + dz ]. Let
g(r) be the characteristic function of V , i.e., g(r) = 1, when r ∈ V and g(r) = 0
otherwise. Let P be the projector acting on wave functions as Pψ(r) = g(r)ψ(r).
Then

Pψ(r, t) =
1

2iπ3/4r0(t)b1/2
g(r) exp

[
− (r − r0(t))2

2b2
+

i

�
p0(r − r0(t))

]
. (55)

Assume that r0(t) � dx, dy. Then r − r0(t) ≈ z − r0(t) + (x2 + y2)/2r0(t). We
also assume that r0(t) is so large, then r0(t)λ � (d2

x + d2
y). Then

Pψ(r, t) ≈ 1
2iπ3/4r0(t)b1/2

g(r) exp
[
− (z − r0(t))2

2b2
+

i

�
p0(z − r0(t))

]
. (56)

We also assume that dz � b. Then a simple calculation shows that

||Pψ(r, t)||2 =
S

4πr0(t)2
, (57)
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where S = 4dxdy is the area of the cross section of V by the plane z = r0(t).
The meaning of Eq. (57) is obvious: ||Pψ(r, t)||2 is the ratio of the cross section
to the area of the sphere with the radius r0(t).

Let us now calculate the momentum distribution in the function Pψ(r, t).
This distribution is deˇned as

χ̃(p) =
1

(2π�)3/2

∫
[Pψ(r, t)] e−ipr/� d3r. (58)

As follows from Eq. (55),

χ̃(p) = A(t) exp
[
− 1

2�2
(pz − p0)2b2

]
j0

(
pxdx

�

)
j0

(
pydy

�

)
, (59)

where A(t) is a function of t. This result is similar to the well-known result
in optics that the best angular resolution is of the order of λ/d, where d is
the dimension of the optical device (see, e.g., textbooks [33, 35]). As noted in
Sec. 1, the reason of the similarity is that in quantum theory the coordinate and
momentum representations are related to each other by the Fourier transform by
analogy with classical electrodynamics. Note also that since the fall off of the
function j0(x) = sin x/x is not rapid enough when x increases, in the case when
many photons are detected, a considerable part of them might be detected in the
angular range much greater than λ/d.

Let L be the distance to a point-like source of spherically symmetric photons.
From geometrical consideration one might expect that photons from this source
will be detected in the angular range of the order of d/L. This quantity does not
depend on λ, while the quantity λ/d does not depend on L. Therefore the result
given by Eq. (59) is counterintuitive. This problem is discussed in Sec. 13.

If R is the radius of a star, then one might expect that the star will be visible
in the angular range (R + d)/L ≈ R/L. Hence the standard result predicts that
if λ/d � R/L, then the image of the star will be blurred. The experimental ver-
iˇcation of this prediction is problematic since the quantities R/L are very small
and at present star radii cannot be measured directly. Conclusions about them are
made from the data on luminosity and temperature assuming that the major part
of the radiation from stars comes not from transitions between atomic levels but
from processes which can be approximately described as a blackbody radiation.

A theoretical model describing blackbody radiation (see, e.g., [36]) is such
that photons are treated as an ideal Bose gas weakly interacting with matter and
such that typical photon energies are not close to energies of absorption lines for
that matter (hence the energy spectrum of photons is almost continuous). It is
also assumed that the photons are distributed over states with deˇnite values of
momenta. With these assumptions, one can derive the famous Planck formula
for the spectral distribution of the black-body radiation (this formula is treated as
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marking the beginning of quantum theory). As explained in [36], when the pho-
tons leave the black body, their distribution in the phase space can be described
by the Liouville theorem; in particular, it implies that the photons are moving
along classical trajectories.

Although the black-body model is not ideal, numerous experimental data
indicate that it works with a good accuracy. One of the arguments that the
major part of the radiation consists of semiclassical photons is that the data on
de
ection of light by the Sun are described in the eikonal approximation which
shows that the light from stars consists mainly of photons approximately moving
along classical trajectories.

If we accept those arguments, then the main part of photons emitted by stars
can be described in the formalism considered in Sec. 5. In that case we cannot
estimate the quantity b as above and it is not clear what criteria can be used
for estimating the quantity a. The estimation a ≈ b ≈ 0.48 m seems to be
very favorable since one might expect that the value of a is of atomic size, i.e.,
much less than 0.48 m. With this estimation for yellow light (with λ = 580 nm)
N⊥ = a/λ ≈ 8 · 105. So the value of N⊥ is rather large, and in view of Eq. (32),
one might think that the effect of spreading is not important. However, this is
not the case because, as follows from Eq. (32), t∗ ≈ 0.008 s. Since the distance
between the Sun and the Earth is approximately t = 8 light minutes and this time
is much greater than t∗, the value of a(t) (which can be called the half-width
of the wave packet) when the packet arrives to the Earth is v∗t ≈ 28 km. In
this case standard geometrical interpretation does not apply. In addition, if we
assume that the initial value of a is of the order of several wave lengths, then
the value of N⊥ is much less and the width of the wave packet coming to the
Earth is much greater. An analogous estimation shows that even in the favorable
scenario, the half-width of the wave packet coming to the Earth from Sirius
will be approximately equal to 15 · 106 km, but in less favorable situations the
half-width will be much greater. Hence, we come to the conclusion that even
in favorable scenarios the assumption that photons are moving along classical
trajectories does not apply and a problem arises whether or not this situation is
in agreement with the experiment.

For illustration, we consider the following example. Let the Earth be at
point A and the center of Sirius be at point B. Suppose for simplicity that the
Earth is a point-like particle. Suppose that Sirius emitted a photon such that
its wave function in momentum space has a narrow distribution around the mean
value directed not along BA but along BC such that the angle between BA and BC
is α. As noted in Sec. 5, there is no WPS in momentum space but, as follows from
Eq. (31), the function a(t) deˇning the mean value of the radius of the coordinate
photon wave function in perpendicular directions is a rapidly growing function
of t. Let us assume for simplicity that α � 1. Then if L is the length of AB, the
distance from A to BC is approximately d = Lα. So, if this photon is treated as
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a point moving along the classical trajectory, then the observer on the Earth will
not see the photon. Let us now take into account the effect of WPS in directions
perpendicular to the photon momentum. The front of the photon wave function
passes the Earth when t ≈ t1 = L/c. As follows from Eq. (31) and the deˇnition
of the quantity N⊥, if t1 � t∗, then a(t1) = L/(2πN⊥). If a(t1) is of the order
of d or greater and we look in the direction AD such that AD is antiparallel
to BC, then there is a nonzero probability that we will detect this photon. So we
can see photons coming from Sirius in the angular range which is of the order of
a(t1)/L. If R is the radius of Sirius and a(t1) is of the order of R or greater, the
image of Sirius will be blurred. As noted above, a very optimistic estimation of
a(t1) is 15 · 106 km. However, one can expect that a more realistic value of N⊥
is not so large and then the estimation of a(t1) gives a much greater value. Since
R = 1.1 · 106 km, this means that the image of Sirius will be extremely blurred.
Moreover, in the above angular range we can detect photons emitted not only by
Sirius but also by other objects. Since the distance to Sirius is ©onlyª 8.6 light
years, for the majority of stars the effect of WPS will be pronounced even to a
much greater extent. So, if WPS is considerable, then we will see not separate
stars but an almost continuous background from many objects.

In the case of planets, it is believed that we see a light re
ected according
to the laws of geometrical optics. Therefore photons of this light are in wave
packet states and WPS for them can be estimated by using Eq. (31). The effect of
blurring depends on the relation between the radii of planets and the corresponding
quantities a(t1) = L/(2πN⊥). Then it is obvious that if N⊥ is not very large,
then even the images of planets will be blurred.

In the infrared and radio astronomy, wave lengths are much greater than in
the optical region but typical values of aph are expected to be much greater. As a
consequence, predictions of standard quantum theory on blurring of astronomical
images are expected to be qualitatively the same as in the optical region.

In the case of gamma-ray bursts (GRBs) wave lengths are much less than in
the optical region but this is outweighed by the facts that, according to the present
understanding of the GRB phenomenon (see, e.g., [37]), gamma quanta created
in GRBs typically travel to Earth for billions of years and typical values of aph

are expected to be much less than in the optical region. The location of sources
of GBRs are determined with a good accuracy and the data can be explained only
assuming that the gamma quanta are focused into narrow jets (i.e., GRBs are not
spherically symmetric) which are observable when the Earth lies along the path of
those jets. However, in view of the above discussion, the results on WPS predicted
by standard quantum theory are fully incompatible with the data on GRBs.

A striking example illustrating the problem with the WPS effect follows.
The phenomenon of the relic (CMB) radiation is treated as a case where the
approximation of the black-body radiation works with a very high accuracy. As
noted above, photons emitted in this radiation are treated as moving along classical
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trajectories, i.e., that they are in wave packet states. Since their wave lengths are
much greater than wave lengths in the optical region and the time of their travel
to the Earth is several billions of years, the quantity a(t1) should be so large
that no anisotropy of CMB should be observable. Meanwhile, the anisotropy
is observable and in the literature different mechanisms of the anisotropy are
discussed (see, e.g., [38]). However, the effect of WPS is not discussed.

On the other hand, the effect of WPS is important only if a particle travels a
rather long distance. Hence, one might expect that in experiments on the Earth
this effect is negligible. Indeed, one might expect that in typical experiments on
the Earth, the quantity t1 is so small that a(t1) is much less than the size of any
macroscopic source of light. However, a conclusion that the effect of WPS is
negligible for any experiment on the Earth might be premature.

As an example, consider the case of protons in the LHC accelerator. Ac-
cording to [39], protons in the LHC ring injected at the energy E = 450 GeV
should be accelerated to the energy E = 7 TeV within one minute during which
the protons will turn around the 27 km ring approximately 674729 times. Hence,
the length of the proton path is of the order of 18 ·106 km. The protons cannot be
treated as free particles since they are accelerated by strong magnets. A problem
of how the width of the proton wave function behaves in the presence of strong
electromagnetic ˇeld is very complicated and the solution of the problem is not
known yet. It is always assumed that the WPS effect for the protons can be
neglected. We will consider a model problem of the WPS for a free proton which
moves for t1 = 1 min with the energy in the range of [0.45, 7] TeV.

In nuclear physics, the size of the proton is usually assumed to be a quantity
of the order of 10−13 cm. Therefore for estimations we take a = 10−13 cm. Then
the quantity t∗ deˇned after Eq. (30) is not greater than 10−19 s, i.e., t∗ � t1.
Hence, as follows from Eq. (30), the quantity a(t1) is of the order of 500 km if
E = 7 TeV, and in the case when E = 450 GeV this quantity is by a factor of
7/0.45 ≈ 15.6 greater. This fully unrealistic result cannot be treated as a paradox
since, as noted above, the protons in the LHC ring are not free. Nevertheless,
it shows that a problem of what standard theory predicts on the width of proton
wave functions in the LHC ring is far from being obvious.

Consider now WPS effects for radio wave photons. In radiolocation, it is
important that a beam from a directional antenna has a narrow angular distribution
and a narrow distribution of wave lengths. Hence photons from the beam can
be treated as (approximately) moving along classical trajectories. This makes it
possible to communicate even with very distant space probes. For this purpose
a set of radio telescopes can be used but for simplicity we consider a model
where signals from a space probe are received by one radio telescope having the
diameter D of the dish.

The Cassini spacecraft can transmit to the Earth at three radio wavelengths:
14, 4, and 1 cm [40]. A radio telescope on the Earth can determine the position of
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Cassini with a good accuracy if it detects photons having momenta in the angular
range of the order of D/L, where L is the distance to Cassini. The main idea
of using a system of radiotelescopes is to increase the effective value of D. As
a consequence of the fact that the radio signal sent from Cassini has an angular
divergence which is much greater than D/L, only a small part of photons in the
signal can be detected.

Consider ˇrst the problem on classical level. For the quantity a = acl we take
the value of 1 m which is of the order of the radius of the Cassini antenna. If α =
λ/(2πa) and L(t) is the length of the classical path, then, as follows from Eq. (31),
acl(t) ≈ L(t)α. As a result, even for λ = 1 cm we have acl(t) ≈ 1.6 · 106 km.
Hence if the photons in the beam are treated as (approximately) point-like parti-
cles, one might expect that only a [D/acl(t)]2 part of the photons can be detected.

Consider now the problem on quantum level. The condition t � t∗ is
satisˇed for both, the classical and quantum problems. Then, as follows from
Eq. (31), aph(t) = acl(t)acl/aph, i.e., the quantity aph(t) is typically greater than
acl(t), and in Sec. 7, this effect is called the WPW paradox. The fact that only
photons in the angular range D/L can be detected can be described by projecting
the states χ = χ(p, t) (see Eqs. (25) and (26)) onto the states χ1 = Pχ, where
χ1(p, t) = ρ(p)χ(p, t), and the form factor ρ(p) is signiˇcant only if p is in
the needed angular range. We choose ρ(p) = exp (−p2

⊥a2
1/2�

2), where a1 is of
the order of �L/(p0D). Since a1 � aph, it follows from Eqs. (25) and (26)
that ||Pχ||2 = (aph/a1)2. Then, as follows from Eq. (31), (aph/a1)2 is of the
order of [D/aph(t)]2 as expected and this quantity is typically much less than
[D/acl(t)]2. Hence, the WPW paradox would make communications with space
probes much more difˇcult.

Consider now the effect called Shapiro time delay. The meaning of the
effect follows. An antenna on the Earth sends a signal to Mercury, Venus or an
interplanetary space probe and receives the re
ected signal. If the path of the
signal nearly grazes the Sun, then the gravitational in
uence of the Sun de
ects
the path from a straight line. As a result, the path becomes longer by S ≈ 75 km
and the signals arrive with a delay S/c ≈ 250 μs. This effect is treated as the
fourth test of General Relativity and its theoretical consideration is based only on
classical geometry. In particular, it is assumed that the radio signal is moving
along the classical trajectory.

However, in standard quantum theory, the length of the path has an uncer-
tainty which can be deˇned as follows. As a consequence of WPS, the uncertainty
of the path is

ΔL(t) = [L(t)2 + a(t)2]1/2 − L(t) ≈ a(t)2

2L(t)
=

L(t)α2

2
.

In contrast to the previous example, this quantity is quadratic in α and one might
think that it can be neglected. However, this is not the case. For example, in the
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ˇrst experiment on measuring the Shapiro delay [41] signals with the frequency
of 8 GHz were sent by the MIT Haystack radar antenna [42] having the diameter
of 37 m. If we take for aph a very favorable value which equals the radius of
the antenna, then α2 ≈ 10−7. As a result, when the signal is sent to Venus,
ΔL(t) ≈ 25 km but since aph is typically much less than acl, then, in view of
the WPW paradox, the value of ΔL(t) will be much greater. However, even the
result 25 km is incompatible with the fact that the accuracy of the experiment
was of the order of 5%.

In classical consideration, the Shapiro delay is deˇned by the parameter γ
which depends on the theory and in General Relativity γ = 1. At present, the
available experimental data are treated such that the best test of γ has been
performed in measuring the Shapiro delay when signals from the DSS-25 an-
tenna [43] with the frequencies of .175 and 34.136 GHz were sent to the Cassini
spacecraft when it was 7 AU away from the Earth. The results of the experi-
ment are treated such that γ − 1 = (2.1 ± 2.3) · 10−5 [44]. For estimating the
quantity ΔL(t) in this case we take a favorable scenario when the frequency is
34.136 GHz and aph equals the radius of the DSS-25 antenna which is 17 m.
Then α ≈ 8 · 10−5 and ΔL(t) ≈ 6.7 km but, in view of the WPW effect, this
quantity will be much greater. This is obviously incompatible with the fact that
the accuracy of computing γ is of the order of 10−5.

The last example follows. The astronomical objects called pulsars are treated
such that they are neutron stars with radii much less than radii of ordinary stars.
Therefore, if mechanisms of pulsar electromagnetic radiation were the same as
for ordinary stars, then the pulsars would not be visible. The fact that pulsars are
visible is explained as a consequence of the fact that they emit beams of light
which can only be seen when the light is pointed in the direction of the observer
with some periods which are treated as periods of rotation of the neutron stars.
In popular literature this is compared with the light of a lighthouse. However, by
analogy with the case of a signal sent from Cassini, only a small part of photons
in the beam can reach the Earth. At present the pulsars have been observed in
different regions of the electromagnetic spectrum but the ˇrst pulsar called PSR
B1919+21 was discovered in 1967 as a radio wave radiation with λ ≈ 3.7 m [45].
This pulsar is treated as the neutron star with the radius R = 0.97 km, and the
distance from the pulsar to the Earth is 2283 light years. If for estimating acl(t)
we assume that acl = R, then we get α ≈ 6 · 10−4 and acl(t) ≈ 1.3 ly ≈
12 · 1012 km. Such an extremely large value of spreading poses a problem
whether even predictions of classical electrodynamics are compatible with the fact
that pulsars are observable. However, in view of the WPW paradox, the value of
aph(t) will be even much greater and no observation of pulsars would be possible.

Our conclusion is that we have several fundamental paradoxes posing a
problem whether predictions of standard quantum theory for the WPS effect are
correct.
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10. DISCUSSION: IS IT POSSIBLE TO AVOID
THE WPS PARADOXES IN STANDARD THEORY?

As shown in the preceding section, if one assumes that photons coming to
the Earth do not interact with the interstellar or interplanetary medium and with
each other, then a standard treatment of the WPS effect contradicts the facts that
there is no blurring of astronomical images, anisotropy of the CMB radiation,
GRBs and pulsars are observable, communication with space probes is possible
and the Shapiro delay can be explained in classical theory. Hence, a question
arises whether this assumption is legitimate.

As shown in textbooks on quantum optics (see, e.g., [33,35]), quantum states
describing the laser emission are strongly coherent and the approximation of
independent photons is not legitimate. As shown in Sec. 8, the WPS effect in
coherent states is pronounced in a much less extent than for individual photons.
However, laser emission can be created only at very special conditions when
energy levels are inverted, the emission is ampliˇed in the laser cavity, etc. At the
same time, the main part of the radiation emitted by stars is understood such that
it can be approximately described as the blackbody radiation and in addition a part
of the radiation consists of photons emitted from different atomic energy levels.
In that case the emission of photons is spontaneous rather than induced and one
might think that the photons can be treated independently. Several authors (see,
e.g., [46] and references therein) discussed a possibility that at some conditions
the inverted population and ampliˇcation of radiation in stellar atmospheres might
occur and so a part of the radiation can be induced. This problem is now under
investigation. Hence we adopt a standard assumption that a main part of the
radiation from stars is spontaneous. In addition, there is no reason to think that
radiation of GRBs, radio antennas, space probes or pulsars is laser-like.

The next question is whether the interaction of photons in the above phe-
nomena is important or not. As explained in standard textbooks on QED (see,
e.g., [29]), the photonÄphoton interaction can go only via intermediate creation of
virtual electronÄpositron or quarkÄantiquark pairs. If ω is the photon frequency,
m is the mass of the charged particle in the intermediate state and e is the electric
charge of this particle, then in the case when �ω � mc2 the total cross section
of the photonÄphoton interaction is [29]

σ =
56

5πm2

139
902

(
e2

�c

)4 (
�ω

mc2

)6

. (60)

For photons of visible light the quantities �ω/(mc2) and σ are very small and
for radio waves they are even smaller by several orders of magnitude. At present
the effect of the direct photonÄphoton interaction has not been detected, and
experiments with strong laser ˇelds were only able to determine the upper limit
of the cross section [47].
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The problem of WPS in the ultrarelativistic case has been discussed in a
wide literature. As already noted, in [32] the effect of WPS has been discussed
in the Fresnel approximation for a two-dimensional model, and the author shows
that in the direction perpendicular to the group velocity of the wave spreading is
important. He considers WPS in the framework of classical electrodynamics. We
believe that considering this effect from quantum point of view, is even simpler
since the photon wave function satisˇes the relativistic Schréodinger equation
which is linear in ∂/∂t. As noted in Sec. 6, this function also satisˇes the wave
equation but it is simpler to consider an equation linear in ∂/∂t than that quadratic
in ∂/∂t. However, in classical theory there is no such an object as the photon
wave function and hence one has to solve either a system of the Maxwell equations
or the wave equation. There is also a number of works where the authors consider
WPS in view of propagation of classical waves in a medium such that dissipation
is important (see, e.g., [48]). In [49], the effect of WPS has been discussed in
view of a possible existence of superluminal neutrinos. The authors consider only
the dynamics of the wave packet in the longitudinal direction in the framework of
the Dirac equation. They conclude that wave packets describing ultrarelativistic
fermions do not experience WPS in this direction. However, the authors do not
consider WPS in perpendicular directions.

In view of the above discussion, standard treatment of WPS leads to several
fundamental paradoxes of modern theory. To the best of our knowledge, those
paradoxes have never been discussed in the literature. For resolving the paradoxes,
one could discuss several possibilities. One of them might be such that the interac-
tion of light with the interstellar or interplanetary medium cannot be neglected. On
quantum level a process of propagation of photons in the medium is rather com-
plicated because several mechanisms of propagation should be taken into account.
For example, a possible process is such that a photon can be absorbed by an atom
and reemitted. This process makes it clear why the speed of light in the medium is
less than c: because the atom which absorbed the photon is in an excited state for
some time before reemitting the photon. However, this process is also important
from the following point of view: even if the coordinate photon wave function had
a large width before absorption, as a consequence of the collapse of the wave func-
tion, the wave function of the emitted photon will have in general much smaller
dimensions since after detection the width is deˇned only by parameters of the cor-
responding detector. If the photon encounters many atoms on its way, this process
does not allow the photon wave function to spread out signiˇcantly. Analogous
remarks can be made about other processes, for example, about rescattering of
photons on large groups of atoms, rescattering on elementary particles if they are
present in the medium, etc. However, such processes have been discussed in The-
ory B and, as noted in Sec. 9, they probably result in more blurring than is seen.

The interaction of photons with the interstellar or interplanetary medium
might also be important in view of hypotheses that the density of the medium is
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much greater than usually believed. Among the most popular scenarios are dark
energy, dark matter, etc. As shown in our papers (see, e.g., [8,9,50] and references
therein), the phenomenon of the cosmological acceleration can be easily and
naturally explained from the ˇrst principles of quantum theory without involving
dark energy, empty space-background and other artiˇcial notions. However, the
other scenarios seem to be more realistic and one might expect that they will be
intensively investigated. A rather hypothetical possibility is that the propagation
of photons in the medium has something in common with the induced emission
when a photon induces emission of other photons in practically the same direction.
In other words, the interstellar medium ampliˇes the emission as a laser. This
possibility seems to be not realistic since it is not clear why the energy levels in
the medium might be inverted.

We conclude that at present in standard theory there are no realistic scenarios
which can explain the WPS paradoxes. In the remaining part of the paper we
propose a solution of the problem proceeding from a consistent deˇnition of the
position operator.

11. CONSISTENT CONSTRUCTION OF POSITION OPERATOR

The above results give grounds to think that the reason of the paradoxes
which follow from the behavior of the coordinate photon wave function in per-
pendicular directions is that standard deˇnition of the position operator in those
directions does not correspond to realistic measurements of coordinates. Before
discussing a consistent construction, let us make the following remark. On ele-
mentary level students treat the mass m and the velocity v as primary quantities
such that the momentum is mv and the kinetic energy is mv2/2. However,
from the point of view of Special Relativity, the primary quantities are the mo-
mentum p and the total energy E and then the mass and velocity are deˇned as
m2c4 = E2−p2c2 and v = pc2/E, respectively. This example has the following
analogy. In standard quantum theory, the primary operators are the position and
momentum operators and the orbital angular momentum operator is deˇned as
their cross product. However, the operators P and L are consistently deˇned
as representation operators of the Poincare algebra, while the deˇnition of the
position operator is a problem. Hence, a question arises whether the position
operator can be deˇned in terms of P and L.

One might seek the position operator such that on classical level the relation
r×p = L will take place. Note that on quantum level this relation is not necessary.
Indeed, the very fact that some elementary particles have a half-integer spin shows
that the total angular momentum for those particles does not have the orbital nature
but on classical level the angular momentum can be always represented as a cross
product of the radius-vector and standard momentum. However, if the values
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of p and L are known and p �= 0, then the requirement that r × p = L does not
deˇne r uniquely. One can deˇne parallel and perpendicular components of r as
r = r||p/p + r⊥, where p = |p|. Then the relation r × p = L deˇnes uniquely
only r⊥. Namely, as follows from this relation, r⊥ = (p × L)/p2. On quantum
level r⊥ should be replaced by a self-adjoint operator R⊥ deˇned as

R⊥j =
�

2p2
ejkl(pkLl + Llpk) =

�

p2
ejklpkLl −

i�

p2
pj =

= i�
∂

∂pj
− i

�

p2
pjpk

∂

∂pk
− i�

p2
pj , (61)

where ejkl is the absolutely antisymmetric tensor, e123 = 1, a sum over repeated
indices is assumed, and we assume that if L is given by Eq. (13) then the orbital
momentum is �L.

We deˇne the operators F and G such that R⊥ = �F/p and G is the
operator of multiplication by the unit vector n = p/p. A direct calculation shows
that these operators satisfy the following relations:

[Lj, Fk] = iejklFl, [Lj , Gk] = iejklFl, G2 = 1, F2 = L2 + 1,

[Gj , Gk] = 0, [Fj , Fk] = −iejklLl, ejkl{Fk, Gl} = 2Lj, (62)

LG = GL = LF = FL = 0, FG = −GF = i.

The ˇrst two relations show that F and G are the vector operators as expected.
The result for the anticommutator shows that on classical level F×G = L and the
last two relations show that on classical level the operators in the triplet (F,G,L)
are mutually orthogonal.

Note that if the momentum distribution is narrow and such that the mean
value of the momentum is directed along the z axis, then it does not mean that
on the operator level the z component of the operator R⊥ should be zero. The
matter is that the direction of the momentum does not have a deˇnite value.
One might expect that only the mean value of the operator R⊥ will be zero or
very small.

In addition, an immediate consequence of the deˇnition (61) follows: Since
the momentum and angular momentum operators commute with the Hamiltonian,
the distribution of all the components of r⊥ does not depend on time. In particular,
there is no WPS in directions deˇned by R⊥. This is also clear from the fact
that R⊥ = �F/p, where the operator F acts only over angular variables and
the Hamiltonian depends only on p. On classical level, the conservation of R⊥
is obvious since it is deˇned by the conserving quantities p and L. It is also
obvious that since a free particle is moving along a straight line, a vector from
the origin perpendicular to this line does not change with time.
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The above deˇnition of the perpendicular component of the position operator
is well substantiated since on classical level the relation r×p = L has been ver-
iˇed in numerous experiments. However, this relation does not make it possible
to deˇne the parallel component of the position operator and a problem arises
what physical arguments should be used for that purpose.

A direct calculation shows that if ∂/∂p is written in terms of p and angular
variables, then

i�
∂

∂p
= GR|| + R⊥, (63)

where the operator R|| acts only over the variable p:

R|| = i�

(
∂

∂p
+

1
p

)
. (64)

The correction 1/p is related to the fact that the operator R|| is Hermitian since
in variables (p,n) the scalar product is given by

(χ2, χ1) =
∫

χ2(p,n)∗χ1(p,n) p2 dp do, (65)

where do is the element of the solid angle.
While the components of standard position operator commute with each other,

the operators R|| and R⊥ satisfy the following commutation relation:

[R||,R⊥] = − i�

p
R⊥, [R⊥j ,R⊥k] = − i�2

p2
ejklLl. (66)

An immediate consequence of these relation follows: Since the operator R|| and
different components of R⊥ do not commute with each other, the corresponding
quantities cannot be simultaneously measured and hence there is no wave function
ψ(r||, r⊥) in coordinate representation.

In standard theory, −�
2(∂/∂p)2 is the operator of the quantity r2. As follows

from Eq. (11), the two terms in Eq. (63) are not strictly orthogonal and on the
operator level −�

2(∂/∂p)2 �= R2
|| + R2

⊥. A direct calculation using Eqs. (11)
and (63) gives

∂2

∂p2
=

∂2

∂p2
+

2
p

∂

∂p
− L2

p2
, −�

2 ∂2

∂p2
= R2

|| + R2
⊥ − �

2

p2
, (67)

in agreement with the expression for the Laplacian in spherical coordinates. In
semiclassical approximation, (�2/p2) � R2

⊥ since the eigenvalues of L2 are
l(l + 1), in semiclassical states l � 1 and, as follows from Eq. (11), R2

⊥ =
[�2(l2 + l + 1)/p2].
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As follows from Eq. (66), [R||, p] = −i�, i.e., in the longitudinal direction
the commutation relation between the coordinate and momentum is the same as
in standard theory. One can also calculate the commutators between the different
components of R⊥ and p. Those commutators are not given by such simple
expressions as in standard theory but it is easy to see that all of them are of the
order of � as it should be.

Equation (63) can be treated as an implementation of the relation r =
r||p/|p| + r⊥ on quantum level. As argued in Secs. 1 and 2, the standard
position operator i�∂/∂pj in the direction j is not consistently deˇned if pj

is not sufˇciently large. One might think however that since the operator R||
contains i�∂/∂p, it is deˇned consistently if the magnitude of the momentum is
sufˇciently large.

In summary, we propose to deˇne the position operator not by the set
(i�∂/∂px, i�∂/∂py, i�∂/∂pz) but by the operators R|| and R⊥. Those oper-
ators are deˇned from different considerations. As noted above, the deˇnition of
R⊥ is based on solid physical facts, while the deˇnition of R|| is expected to be
more consistent than the deˇnition of standard position operator. However, this
does not guarantee that the operator R|| is consistently deˇned in all situations.
As argued in [51], in a quantum theory over a Galois ˇeld an analogous deˇnition
is not consistent for macroscopic bodies (even if p is large) since in that case
semiclassical approximation is not valid. In the remaining part of the paper we
assume that for elementary particles the above deˇnition of R|| is consistent in
situations when semiclassical approximation applies.

One might pose the following question. What is the reason to work with
the parallel and perpendicular components of the position operator separately if,
according to Eq. (63), their sum is the standard position operator? The explana-
tion follows.

In quantum theory every physical quantity corresponds to a self-adjoint op-
erator but the theory does not deˇne explicitly how a quantity corresponding to
a speciˇc operator should be measured. There is no guaranty that for each self-
adjoint operator there exists a physical quantity which can be measured in real
experiments.

Suppose that there are three physical quantities corresponding to the self-
adjoint operators A, B, and C such that A+B = C. Then in each state the mean
values of the operators are related as Ā+ B̄ = C̄, but in situations when the oper-
ators A and B do not commute with each other there is no direct relation between
the distributions of the physical quantities corresponding to the operators A, B,
and C. For example, in situations when the physical quantities corresponding
to the operators A and B are semiclassical and can be measured with a good
accuracy, there is no guaranty that the physical quantity corresponding to the
operator C can be measured in real measurements. As an example, the physical
meaning of the quantity corresponding to the operator Lx + Ly is problematic.
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Another example is the situation with WPS in directions perpendicular to the
particle momentum. Indeed, as noted above, the physical quantity correspond-
ing to the operator R⊥ does not experience WPS and, as shown in Sec. 13, in
the case of ultrarelativistic particles there is no WPS in the parallel direction as
well. However, standard position operator is a sum of noncommuting operators
corresponding to well-deˇned physical quantities and, as a consequence, there
are situations when standard position operator deˇnes a quantity which cannot be
measured in real experiments.

12. NEW POSITION OPERATOR AND SEMICLASSICAL STATES

As noted in Sec. 2, in standard theory, states are treated as semiclassical in
the greatest possible extent if ΔrjΔpj = �/2 for each j and such states are called
coherent. The existence of coherent states in standard theory is a consequence
of commutation relations [pj , rk] = −i�δjk. Since in our approach there are no
such relations, a problem arises how to construct states in which all physical
quantities p, r||, n, and r⊥ are semiclassical.

One can calculate the mean values and uncertainties of the operator R||
and all the components of the operator R⊥ in the state deˇned by Eq. (25).
The calculation is not simple since it involves three-dimensional integrals with
the Gaussian functions divided by p2. The result is that these operators are
semiclassical in the state (25) if p0 � �/b, p0 � �/a and r0z has the same order
of magnitude as r0x and r0y.

However, a more natural approach follows. Since R⊥ = �F/p, the opera-
tor F acts only over the angular variable n and R|| acts only over the variable p,
it is convenient to work in the representation where the Hilbert space is the space
of functions χ(p, l, μ) such that the scalar product is

(χ2, χ1) =
∑
lμ

∞∫
0

χ2(p, l, μ)∗χ1(p, l, μ) dp (68)

and l and μ are the orbital and magnetic quantum numbers, respectively, i.e.,

L2χ(p, l, μ) = l(l + 1)χ(p, l, μ), Lzχ(p, l, μ) = μχ(p, l, μ). (69)

The operator L in this space does not act over the variable p and the action
of the remaining components is given by

L+χ(l, μ) = [(l + μ)(l + 1 − μ)]1/2χ(l, μ − 1),

L−χ(l, μ) = [(l − μ)(l + 1 + μ)]1/2χ(l, μ + 1),
(70)



100 LEV F.M.

where the ± components of vectors are deˇned such that Lx = L+ + L−,
Ly = −i(L+ − L−).

A direct calculation shows that, as a consequence of Eq. (61),

F+χ(l, μ) = − i

2

[
(l + μ)(l + μ − 1)
(2l − 1)(2l + 1)

]1/2

lχ(l − 1, μ − 1)−

− i

2

[
(l + 2 − μ)(l + 1 − μ)

(2l + 1)(2l + 3)

]1/2

(l + 1)χ(l + 1, μ − 1),

F−χ(l, μ) =
i

2

[
(l − μ)(l − μ − 1)
(2l − 1)(2l + 1)

]1/2

lχ(l − 1, μ + 1)+

+
i

2

[
(l + 2 + μ)(l + 1 + μ)

(2l + 1)(2l + 3)

]1/2

(l + 1)χ(l + 1, μ + 1), (71)

Fzχ(l, μ) = i

[
(l − μ)(l + μ)

(2l − 1)(2l + 1)

]1/2

lχ(l − 1, μ)−

− i

[
(l + 1 − μ)(l + 1 + μ)

(2l + 1)(2l + 3)

]1/2

(l + 1)χ(l + 1, μ).

The operator G acts on such states as follows:

G+χ(l, μ) =
1
2

[
(l + μ)(l + μ − 1)
(2l − 1)(2l + 1)

]1/2

χ(l − 1, μ − 1)−

− 1
2

[
(l + 2 − μ)(l + 1 − μ)

(2l + 1)(2l + 3)

]1/2

χ(l + 1, μ − 1),

G−χ(l, μ) = −1
2

[
(l − μ)(l − μ − 1)
(2l − 1)(2l + 1)

]1/2

χ(l − 1, μ + 1)+

+
1
2

[
(l + 2 + μ)(l + 1 + μ)

(2l + 1)(2l + 3)

]1/2

χ(l + 1, μ + 1), (72)

Gzχ(l, μ) = −
[

(l − μ)(l + μ)
(2l − 1)(2l + 1)

]1/2

χ(l − 1, μ)−

−
[
(l + 1 − μ)(l + 1 + μ)

(2l + 1)(2l + 3)

]1/2

χ(l + 1, μ),

and now the operator R|| has a familiar form R|| = i�∂/∂p.
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Therefore, by analogy with Secs. 2 and 3, one can construct states which
are coherent with respect to (r||, p), i.e., such that Δr||Δp = �/2. Indeed (see
Eq. (5)), the wave function

χ(p) =
b1/2

π1/4�1/2
exp

[
− (p − p0)2b2

2�2
− i

�
(p − p0)r0

]
(73)

describes a state where the mean values of p and r|| are p0 and r0, respectively,

and their uncertainties are �/(b
√

2) and b/
√

2, respectively. Strictly speaking,
the analogy between the given case and that discussed in Secs. 2 and 3 is not full
since in the given case the quantity p can be in the range [0.∞), not in (−∞,∞)
as momentum variables used in those sections. However, if p0b/� � 1, then the
formal expression for χ(p) at p < 0 is extremely small and so the normalization
integral for χ(p) can be formally taken from −∞ to ∞.

In such an approximation one can deˇne wave functions ψ(r) in the r||
representation. By analogy with the consideration in Secs. 2 and 3 we deˇne

ψ(r) =
∫

exp
(

i

�
pr

)
χ(p)

dp

(2π�)1/2
, (74)

where the integral is formally taken from −∞ to ∞. Then

ψ(r) =
1

π1/4b1/2
exp

[
− (r − r0)2

2b2
+

i

�
p0r

]
. (75)

Note that here the quantities r and r0 have the meaning of coordinates in the
direction parallel to the particle momentum, i.e., they can be positive or negative.

Consider now states where the quantities F and G are semiclassical. One
might expect that in semiclassical states the quantities l and μ are very large. In
this approximation, as follows from Eqs. (71) and (72), the action of the operators
F and G can be written as

F+χ(l, μ) = − i

4
(l + μ)χ(l − 1, μ − 1) − i

4
(l − μ)χ(l + 1, μ − 1),

F−χ(l, μ) =
i

4
(l − μ)χ(l − 1, μ + 1) +

i

4
(l + μ)χ(l + 1, μ + 1),

Fzχ(l, μ) = − i

2l
(l2 − μ2)1/2[χ(l + 1, μ) + χ(l − 1, μ)],

G+χ(l, μ) =
l + μ

4l
χ(l − 1, μ − 1) − l − μ

4l
χ(l + 1, μ − 1),

G−χ(l, μ) = − l − μ

4l
χ(l − 1, μ + 1) +

l + μ

4l
χ(l + 1, μ + 1),

Gzχ(l, μ) = − 1
2l

(l2 − μ2)1/2[χ(l + 1, μ) + χ(l − 1, μ)].

(76)
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In view of the remark in Sec. 2 about semiclassical vector quantities, consider
a state χ(l, μ) such that χ(l, μ) �= 0 only if l ∈ [l1, l2], μ ∈ [μ1, μ2], where
l1, μ1 > 0, δ1 = l2 + 1 − l1, δ2 = μ2 + 1 − μ1, δ1 � l1, δ2 � μ1 μ2 < l1 and
μ1 � (l1 − μ1). This is the state where the quantity μ is close to its maximum
value l. As follows from Eqs. (69) and (70), in this state the quantity Lz is
much greater than Lx and Ly and, as follows from Eq. (76), the quantities Fz and
Gz are small. So on classical level this state describes a motion of the particle
in the xy plane. The quantity Lz in this state is obviously semiclassical since
χ(l, μ) is the eigenvector of the operator Lz with the eigenvalue μ. As follows
from Eq. (76), the action of the operators (F+, F−, G+, G−) on this state can be
described by the following approximate formulas:

F+χ(l, μ) = − il0
2

χ(l − 1, μ − 1), F−χ(l, μ) =
il0
2

χ(l + 1, μ + 1),
(77)

G+χ(l, μ) =
1
2
χ(l − 1, μ − 1), G−χ(l, μ) =

1
2
χ(l + 1, μ + 1),

where l0 is a value from the interval [l1, l2].
Consider a simple model when χ(l, μ) = exp [i(lα − μβ)]/(δ1δ2)1/2, l ∈

[l1, l2] and μ ∈ [μ1, μ2]. Then a simple direct calculation using Eq. (77) gives

Ḡx = cos γ, Ḡy = − sinγ, F̄x = −l0 sin γ, F̄y = −l0 cos γ,
(78)

ΔGx = ΔGy =
(

1
δ1

+
1
δ2

)1/2

, ΔFx = ΔFy = l0

(
1
δ1

+
1
δ2

)1/2

,

where γ = α − β. Hence, the vector quantities F and G are semiclassical since
either | cos γ| or | sin γ| or both are much greater than (δ1 + δ2)/(δ1δ2).

13. NEW POSITION OPERATOR AND WAVE PACKET SPREADING

If the space of states is implemented according to the scalar product (68),
then the dependence of the wave function on t is

χ(p, k, μ, t) = exp
[
− i

�
(m2c2 + p2)1/2ct

]
χ(p, k, μ, t = 0). (79)

As noted in Secs. 3 and 5, there is no WPS in momentum space and this is natural
in view of momentum conservation. Then, as already noted, the distribution of the
quantity r⊥ does not depend on time and this is natural from the considerations
described in Sec. 11.
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At the same time, the dependence of the r|| distribution on time can be
calculated in full analogy with Sec. 3. Indeed, consider, for example, a function
χ(p, l, μ, t = 0) having the form

χ(p, l, μ, t = 0) = χ(p, t = 0)χ(l, μ). (80)

Then, as follows from Eqs. (74) and (79),

ψ(r, t) =
∫

exp
[
− i

�
(m2c2 + p2)1/2ct +

i

�
pr

]
χ(p, t = 0)

dp

(2π�)1/2
. (81)

Suppose that the function χ(p, t = 0) is given by Eq. (73). Then in full
analogy with the calculations in Sec. 3, we get that in the nonrelativistic case
the r|| distribution is deˇned by the wave function

ψ(r, t) =
1

π1/4b1/2

(
1 +

i�t

mb2

)−1/2

×

× exp

⎡
⎢⎢⎣− (r − r0 − v0t)2

2b2

(
1 +

�
2t2

m2b4

) (
1 − i�t

mb2

)
+

i

�
p0r −

ip2
0t

2m�

⎤
⎥⎥⎦ , (82)

where v0 = p0/m is the classical speed of the particle in the direction of the
particle momentum. Hence the WPS effect in this direction is similar to that
given by Eq. (9) in standard theory.

In the opposite case, when the particle is ultrarelativistic, Eq. (81) can be
written as

ψ(r, t) =
∫

exp
[

i

�
p(r − ct)

]
χ(p, t = 0)

dp

(2π�)1/2
. (83)

Hence, as follows from Eq. (75):

ψ(r, t) =
1

π1/4b1/2
exp

[
− (r − r0 − ct)2

2b2
+

i

�
p0(r − ct)

]
. (84)

In particular, for an ultrarelativistic particle there is no WPS in the direction of
particle momentum and this is in agreement with the results of Sec. 5.

We conclude that in our approach an ultrarelativistic particle (e.g., the photon)
experiences WPS neither in the direction of its momentum nor in perpendicular
directions, i.e., the WPS effect for an ultrarelativistic particle is absent at all.

Let us note that the absence of WPS in perpendicular directions is simply a
consequence of the fact that a consistently deˇned operator R⊥ commutes with
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the Hamiltonian, i.e., r⊥ is a conserving physical quantity. On the other hand,
the longitudinal coordinate is not a conserved physical quantity since a particle
is moving along the direction of its momentum. However, in a special case
of ultrarelativistic particle the absence of WPS is simply a consequence of the
fact that the wave function given by Eq. (83) depends on r and t only via a
combination of r − ct.

Consider now the model discussed in Sec. 9 when the momentum wave
function is described by Eq. (50). As noted in Sec. 9, the standard choice leads to
the result given by Eq. (59) which is counterintuitive. In view of the discussion
at the end of Sec. 11, one might think that this result is a consequence of the
fact that standard position operator is a sum of the operators corresponding to
different noncommuting physical quantities the contributions of which should be
considered separately.

The wave function given by Eq. (50) is spherically symmetric and is the
eigenstate of the momentum operator L such that all the eigenvalues equal zero.
Hence, the physical quantity deˇned by the operator R⊥ is not semiclassical
and the problem arises whether in this situation the operator R⊥ should be
modiˇed. It follows from Eq. (61) that ||R⊥χ|| � λ||χ||. As noted in Sec. 4, one
can expect that the coordinate wave function cannot deˇne coordinates with the
accuracy better than the wave length. Hence, a reasonable approximation in this
case is that the position operator contains only the parallel part GR||. In this
approximation different components of the position operator commute with each
other. Therefore one can deˇne the coordinate wave function which in the given
case again has the form (54).

Since p = Gp, G acts only on angular variables and R|| acts only on the
variable p, we conclude that in the given case the angular parts of the position
and momentum operators are the same in contrast to the situation in standard
theory where those parts are related to each other by the Fourier transform.

As noted in Sec. 9, in standard theory the angular resolution corresponding
to Eq. (59) is a quantity of the order of λ/d, while from obvious geometrical
considerations this quantity should be of the order of d/L. As noted in Sec. 9,
for calculating the angular resolution one should project the coordinate wave
function on the state having the support inside the volume V where the photon
will be measured. Suppose that the volume V is inside the element do of the
solid angle. Then, in view of the fact that angular variables in the coordinate
and momentum wave functions are the same, any measurement of the photon
momentum inside V can give only the results where the direction of the photon
momentum is inside do.

Therefore, as noted in Sec. 9, for a point-like source of light the angular
resolution is of the order of d/L and for a star with the radius R the resolution is
of the order of R/L. Hence, in contrast to the situation discussed in Sec. 9, there
is no blurring of astronomical images because the angular resolution is always
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ideal and does not depend on d. However, details of astronomical objects will
be distinguishable only if d is rather large because, as follows from Eq. (57), the
norm of the function Pψ(r, t) is of the order of d/L.

14. DISCUSSION AND CONCLUSION

In the present paper we consider a problem of constructing position operator
in quantum theory. As noted in Sec. 1, this operator is needed in situations where
semiclassical approximation works with a high accuracy and the example with the
spherically symmetric case discussed at the end of the preceding section indicates
that this operator can be useful in other problems.

A standard choice of the position operator in momentum space is i�∂/∂p.
A motivation for this choice is discussed in Sec. 2. We note that this choice is
not consistent since i�∂/∂pj cannot be a physical position operator in directions
where the momentum is small. Physicists did not pay attention to the incon-
sistency probably for the following reason: as explained in textbooks, transition
from quantum to classical theory can be performed such that if the coordinate
wave function contains a rapidly oscillating exponent exp (iS/�), where S is the
classical action, then in the formal limit � → 0 the Schréodinger equation becomes
the HamiltonÄJacobi equation.

However, an inevitable consequence of standard quantum theory is the effect
of wave packet spreading (WPS). This fact has not been considered as a drawback
of the theory. Probably the reasons are that for macroscopic bodies this effect
is extremely small while in experiments on the Earth with atoms and elemen-
tary particles spreading probably does not have enough time to manifest itself.
However, for photons travelling to the Earth from distant objects, this effect is
considerable, and it seems that this fact has been overlooked by physicists.

As shown in Sec. 9, if the WPS effect for photons travelling to the Earth from
distant objects is as given by standard theory, then we have several fundamental
paradoxes: a) if the major part of photons emitted by stars are in wave packet
states (what is the most probable scenario), then we should see not stars but only
an almost continuous background from all stars; b) no anisotropy of the relic
radiation could be observable; c) the effect of WPS is incompatible with the data
on gamma-ray bursts; d) communication with distant space probes could not be
possible; e) the Shapiro delay could not be explained only in the framework of
classical theory; f) the fact that we can observe pulsars could not be explained.
In addition, the consideration in Secs. 9 and 13 poses the following questions:
g) how is it possible to verify that the angular resolution of a star in the part of
the spectrum corresponding to transitions between atomic levels is of the order of
λ/d rather than R/L?; h) are predictions of standard theory on the WPS effect
for protons in the LHC ring compatible with experimental data? We have also
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noted that in the scenario when the quantities N⊥ are not very large, even images
of planets will be blurred.

In Sec. 7, it is shown that, from the point of view of standard quantum theory,
there exists the WPW paradox that after some period of time the transversal widths
of the coordinate wave functions for photons comprising a classical wave packet
will be typically much greater than the transversal width of the classical packet
as a whole. This situation seems to be fully unphysical since, as noted in Sec. 7,
different photons in a classical wave packet do not interfere with each other.
The calculations in Sec. 5 show that the reason of the WPW paradox is that in
directions perpendicular to the particle momentum, the standard position operator
is deˇned inconsistently. At the same time, as shown in Sec. 8, for coherent states
the WPS effect is pronounced in a much less extent than for individual photons.

We propose a new deˇnition of the position operator which we treat as
consistent for the following reasons. Our position operator is deˇned by two
components Å in the direction along the momentum and in perpendicular direc-
tions. The ˇrst part has a familiar form i�∂/∂p and is treated as the operator
of the longitudinal coordinate if the magnitude of p is rather large. At the
same condition, the position operator in the perpendicular directions is deˇned
as a quantum generalization of the relation r⊥ × p = L. So, in contrast to the
standard deˇnition of the position operator, the new operator is expected to be
physical only if the magnitude of the momentum is rather large.

As a consequence of our construction, WPS in directions perpendicular to the
particle momentum is absent regardless of whether the particle is nonrelativistic
or relativistic. Moreover, for an ultrarelativistic particle, the effect of WPS is
absent at all.

As noted in Sec. 7, in standard quantum theory, photons comprising a classi-
cal electromagnetic wave packet cannot be (approximately) treated as point-like
particles in view of the WPW paradox. However, in our approach, in view of the
absence of WPS for massless particles, the usual intuition is restored and photons
comprising a divergent classical wave packet can be (approximately) treated as
point-like particles. Moreover, the phenomenon of divergence of a classical wave
packet can now be naturally explained simply as a consequence of the fact that
different photons in the packet have different momenta.

Our result resolves the above paradoxes and, in view of the above discussion,
also poses a problem whether the results of classical electrodynamics can be
applied for wave packets moving for a long period of time. For example, as
noted in Sec. 9, even classical theory predicts that when a wave packet emitted
in a gamma-ray burst or by a pulsar reaches the Earth, the width of the packet
is extremely large (while the value predicted by standard quantum theory is even
much greater) and this poses a problem whether such a packet can be detected.
A natural explanation of why classical theory does not apply in this case follows.
As noted in Sec. 4, classical electromagnetic ˇelds should be understood as a
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result of taking mean characteristics for many photons. Then the ˇelds will be
(approximately) continuous if the density of the photons is high. However, for
a divergent beam of photons, their density decreases with time. Hence after a
long period of time, the mean characteristics of the photons in the beam cannot
represent continuous ˇelds. In other words, in this situation, the set of photons
cannot be effectively described by classical electromagnetic ˇelds.

A picture that a classical wave packet can be treated as a collection of (almost)
point-like photons also sheds new light on the explanation of known phenomena.
Suppose that a wide beam of visible light falls on a screen which is perpendicular
to the direction of light. Suppose that the total area of the screen is S but the
surface contains slits with the total area S1. We are interested in the question of
what part of the light will pass the screen. The answer that the part equals S1/S
follows from the picture that the light consists of many almost point-like photons
moving along geometrical trajectories and hence only the S1/S part of the photons
will pass the surface. Numerous experiments show that deviations from the above
answer begin to manifest in interference experiments where dimensions of slits
and distances between them have the order of tens or hundreds of microns or
even less. In classical theory, interference is explained as a phenomenon arising
when the wave length of the classical electromagnetic wave becomes comparable
to dimensions of slits and distances between them. However, as noted in Sec. 1,
the notion of wave length does not have the usual meaning on quantum level.
From the point of view of particle theory, the phenomenon of interference has a
natural explanation that it occurs when dimensions of slits and distances between
them become comparable to the typical width of the photon wave function.

Our results on the position operator also pose a problem how the interference
phenomenon should be explained on the level of single photons. The usual
qualitative explanation follows. Suppose that the mean momentum of a photon
is directed along the z axis perpendicular to a screen. If the (x, y) dependence
of the photon wave function is highly homogeneous, then the quantities Δpx

and Δpy are very small. When the photon passes the screen with holes, its
wave function is not homogeneous in the xy plane anymore. As a result, the
quantities Δpx and Δpy become much greater and the photon can be detected
in points belonging to the geometrical shadow. However, such an explanation
is problematic for the following reason. Since the mean values of the x and y
components of the photon momentum are zero, as noted in Secs. 2 and 4, the
(px, py) dependence of the wave function cannot be semiclassical and, as it has
been noted throughout the paper, in that case standard position operator in the xy
plane is not consistently deˇned.

The new position operator might also have applications in the problem of
neutrino oscillations. As pointed out by several authors (see, e.g., [27, 52, 53]),
this problem should be considered from the point of view that for describing
observable neutrinos one should treat them as quantum superpositions of wave
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packets with different neutrino 
avors. Then the choice of the position operator
might play an important role.

Different components of the new position operator do not commute with
each other and, as a consequence, there is no wave function in coordinate repre-
sentation. In particular, there is no quantum analog of the coordinate Coulomb
potential (see the discussion in Sec. 1). A possibility that coordinates can be
noncommutative has been ˇrst discussed by Snyder [54] and it is implemented
in several modern theories. In those theories, the measure of noncommutativity
is deˇned by a parameter l called the fundamental length (the role of which can
be played, e.g., by the Planck length or the Schwarzschild radius). In the for-
mal limit l → 0, the coordinates become standard ones related to momenta by a
Fourier transform. As shown in the present paper, this is unacceptable in view
of the WPS paradoxes. One of ideas of those theories is that with a nonzero l
it might be possible to resolve difˇculties of standard theory where l = 0 (see,
e.g., [55] and references therein). At the same time, in our approach there can be
no notion of fundamental length since commutativity of coordinates takes place
only in the formal limit � → 0.

The position operator proposed in the present paper is also important in view
of the following. There exists a wide literature discussing the EinsteinÄPodolskyÄ
Rosen paradox, locality in quantum theory, quantum entanglement, Bell's theorem
and similar problems (see, e.g., [24] and references therein). Consider, for ex-
ample, the following problem in standard theory. Let at t = 0 particles 1 and
2 be localized inside ˇnite volumes V1 and V2, respectively, such that the vol-
umes are very far from each other. Hence the particles do not interact with each
other. However, as follows from Eq. (17), their wave functions will overlap at
any t > 0 and hence, the interaction can be transmitted even with an inˇnite
speed. This is often characterized as quantum nonlocality, entanglement and/or
action at a distance.

Consider now this problem in the framework of our approach. Since in
this approach there is no wave function in coordinate representation, there is no
notion of a particle localized inside a ˇnite volume. Hence a problem arises
whether on quantum level the notions of locality or nonlocality have a physical
meaning. In addition, spreading does not take place in directions perpendicular to
the particle momenta and for ultrarelativistic particles spreading does not occur at
all. Hence, at least in the case of ultrarelativistic particles, this kind of interaction
does not occur in agreement with classical intuition that no interaction can be
transmitted with the speed greater than c. This example poses a problem whether
the position operator should be modiˇed not only in directions perpendicular to
particle momenta but also in longitudinal directions such that the effect of WPS
should be excluded at all.

A problem discussed in a wide literature is whether evolution of a quantum
system can be always described by the time-dependent Schréodinger equation. We
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will discuss this problem in view of the statements (see, e.g., [56,57]) that t cannot
be treated as a fundamental physical quantity. The reason is that all fundamental
physical laws do not require time and the quantity t is obsolete on fundamental
level. A hypothesis that time is an independently 
owing fundamental continuous
quantity has been ˇrst proposed by Newton. However, a problem arises whether
this hypothesis is compatible with the principle that the deˇnition of a physical
quantity is a description of how this quantity can be measured.

Consider ˇrst the problem of time in classical mechanics. A standard treat-
ment of this theory is that its goal is to solve equations of motion and get classical
trajectories where coordinates and momenta are functions of t. In Hamiltonian
mechanics, the action can be written as S = S0 −

∫
Hdt, where S0 does not

depend on t and is called the abbreviated action. Then, as explained in textbooks,
the dependence of the coordinates and momenta on t can be obtained from a
variational principle with the action S. Suppose now that one wishes to consider
a problem which is usually treated as less general: to ˇnd not the dependence of
the coordinates and momenta on t but only possible forms of trajectories in the
phase space without mentioning time at all. If the energy is a conserved physical
quantity, then, as described in textbooks, this problem can be solved by using the
Maupertuis principle involving only S0.

However, the latter problem is not less general than the former one. For
illustration we ˇrst consider the one-body case. Here the phase space can be
described by the quantities (r||, r⊥,G, p) discussed in Sec. 11. Suppose that by
using the Maupertuis principle one has solved the problem with some initial
values of coordinates and momenta. One can choose r|| such that it is zero at
the initial point and increases along the trajectory. Then r|| = s, where s is the
length along the spacial trajectory and a natural parameterization for the trajectory
in the phase space is such that (r⊥,G, p) are functions of r|| = s. This is an
additional indication that our choice of the position operator is more natural than
the standard one. At this stage the problem does not contain t yet. We can
note that in standard case ds/dt = |v(s)| = |p(s)|/E(s). Hence, in the problem
under consideration one can deˇne t such that dt = E(s) ds/|p(s)| and hence the
value of t at any point of the trajectory can be obtained by integration. In the
case of many bodies, one can deˇne t by using the spatial trajectory of any body
and the result does not depend on the choice of the body. Hence, the general
problem of classical mechanics can be formulated without mentioning t while if
one wishes to work with t, then, by deˇnition, this value can 
ow only in positive
direction.

Consider now the problem of time in quantum theory. In the case of one
strongly quantum system (i.e., the system which cannot be described in classical
theory), a problem arises whether there exists a quantum analog of the Mauper-
tuis principle and whether time can be deˇned by using this analog. This is a
difˇcult unsolved problem. A possible approach for solving this problem has
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been proposed in [56]. However, one can consider a situation when a quantum
system under consideration is a small subsystem of a big system where the other
subsystem Å the environment, is strongly classical. Then one can deˇne t for
the environment as described above. The author of [57] considers a scenario
when the system as a whole is described by the stationary Schréodinger equation
HΨ = EΨ, but the small quantum subsystem is described by the time-dependent
Schréodinger equation, where t is deˇned for the environment as t = ∂S0/∂E.

One might think that this scenario gives a natural solution of the problem of
time in quantum theory. Indeed, in this scenario it is clear why a quantum system
is described by the Schréodinger equation depending on the classical parameter t
which is not an operator: because t is the physical quantity characterizing not the
quantum system but the environment. This scenario seems also natural because it
is in the spirit of the Copenhagen interpretation of quantum theory: the evolution
of a quantum system can be characterized only in terms of measurements which
in the Copenhagen interpretation are treated as interactions with classical objects.
However, this scenario encounters the following problems. As noted in [57], it
does not solve the problem of quantum jumps. For example, as noted in Sec. 4,
the 21 cm transition in the hydrogen atom cannot be described by the evolution
operator depending on the continuous parameter t. Another problem is that the
environment can be a classical object only in some approximation and hence t
can be only an approximately continuous parameter. Finally, the Copenhagen
interpretation cannot be universal in all situations. For example, if the Big Bang
hypothesis is correct, then at the early stage of the Universe there were no classical
objects but nevertheless physics should somehow describe evolution even in this
situation.

Our result for ultrarelativistic particles can be treated as ideal: quantum
theory reproduces the motion along a classical trajectory without any spreading.
However, this is only a special case of one free elementary particle. If quantum
theory is treated as more general than the classical one, then it should describe
not only elementary particles and atoms but even the motion of macroscopic
bodies in the Solar System and in the Universe. We believe that the assumption
that the evolution of macroscopic bodies can be described by the Schréodinger
equation is unphysical. For example, if the motion of the Earth is described by
the evolution operator exp [−iH(t2 − t1)/�], where H is the Hamiltonian of the
Earth, then the quantity H(t2 − t1)/� becomes of the order of unity when t2 − t1
is a quantity of the order of 10−68 s if the Hamiltonian is written in nonrelativistic
form and 10−76 s if it is written in relativistic form. Such time intervals seem to
be unphysical and so in the given case the approximation when t is a continuous
parameter seems to be unphysical too. In modern theories (e.g., in the Big Bang
hypothesis) it is often stated that the Planck time tP ≈ 10−43 s is a physical
minimum time interval. However, at present there are no experiments conˇrming
that time intervals of the order of 10−43 s can be measured.
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The time-dependent Schréodinger equation has not been experimentally veri-
ˇed and the major theoretical arguments in favor of this equation are as follows:
a) the Hamiltonian is the generator of the time translation in the Minkowski
space; b) this equation becomes the HamiltonÄJacobi one in the formal limit
� → 0. However, as noted in Sec. 1, quantum theory should not be based on the
space-time background and the conclusion b) is made without taking into account
the WPS effect. Hence, the problem of describing evolution in quantum theory
remains open.

Let us now return to the problem of the position operator. As noted above,
in directions perpendicular to the particle momentum, the choice of the position
operator is based only on the requirement that semiclassical approximation should
reproduce the standard relation r⊥ × p = L. This requirement seems to be
beyond any doubts since on classical level this relation is conˇrmed in numerous
experiments. At the same time, the choice i�∂/∂p of the coordinate operator in
the longitudinal direction is analogous to that in standard theory and hence one
might expect that this operator is physical if the magnitude of p is rather large
(see, however, the above remark about the entanglement caused by WPS).

It will be shown in a separate publication that the construction of the position
operator described in this paper for the case of Poincare invariant theory can
be generalized to the case of de Sitter (dS) invariant theory. In this case the
interpretation of the position operator is even more important than in Poincare
invariant theory. The reason is that even the free two-body mass operator in the
dS theory depends not only on the relative two-body momentum but also on the
distance between the particles.

As argued in [51], in dS theory over a Galois ˇeld the assumption that the dS
analog of the operator i�∂/∂p is the operator of the longitudinal coordinate is not
valid for macroscopic bodies (even if p is large), since in that case semiclassical
approximation is not valid. We have proposed a modiˇcation of the position
operator such that quantum theory reproduces for the two-body mass operator
the mean value compatible with the Newton law of gravity and precession of
Mercury's perihelion. Then a problem arises how quantum theory can reproduce
classical evolution for macroscopic bodies.

The above examples show that at macroscopic level a consistent deˇnition of
the transition from quantum to classical theory is the fundamental open problem.
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