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After discovery of the Higgs boson at CERN, the Standard Model acquired a status
of the theory of elementary particles in the electroweak range (up to about 300 GeV).
What general conclusions can be inferred from the Standard Model? It looks that the
Standard Model teaches us that in the framework of such general principles as local
gauge symmetry, uniˇcation of weak and electromagnetic interactions, and BroutÄEnglertÄ
Higgs spontaneous breaking of the electroweak symmetry, nature chooses the simplest
possibilities. Two-component left-handed massless neutrino ˇelds play crucial role in the
determination of the charged current structure of the Standard Model. The absence of
the right-handed neutrino ˇelds in the Standard Model is the simplest, most economical
possibility. In such a scenario, Majorana mass term is the only possibility for neutrinos
to be massive and mixed. Such a mass term is generated by the lepton-number violating
Weinberg effective Lagrangian. In this approach, three Majorana neutrino masses are
suppressed with respect to the masses of other fundamental fermions by the ratio of the
electroweak scale and the scale of a lepton-number violating physics. The discovery of the
neutrinoless double β-decay and the absence of transitions of �avor neutrinos into sterile
states would be the evidence in favor of the minimal scenario we advocate here.
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INTRODUCTION

The discovery of neutrino oscillations in the atmospheric Super-Kamiokande
experiment [1] in the SNO [2] and other solar neutrino experiments [3Ä5], and
in the long-baseline reactor KamLAND experiment [6] is one of the most im-
portant recent discovery in the particle physics. The phenomenon of the neutrino
oscillations was further investigated in the long-baseline accelerator K2K [7],
MINOS [8] and T 2K [9] experiments, in the reactor experiments Daya Bay [10],
RENO [11] and Double Chooz [12], and in the solar BOREXINO experiment [13].

Neutrino oscillation results imply that the �avor neutrino ˇelds νlL(x) (l =
e, μ, τ ) are the ©mixturesª of the left-handed components of the ˇelds of neutrinos
with deˇnite masses

νlL(x) =
3∑

i=1

UliνiL(x). (1)

Here U is the unitary PMNS mixing matrix [14Ä16], and νi(x) is the ˇeld of
neutrino (Majorana or Dirac) with mass mi. Flavor ˇelds νlL(x) enter into
Standard Model charged current (CC)

LCC
I (x) = − g

2
√

2
jCC
α (x)Wα(x) + h.c. (2)

and neutral current (NC) interactions

LNC
I (x) = − g

2 cos θW
jNC
α (x)Zα(x). (3)

Here
jCC
α (x) = 2

∑
l=e,μ,τ

ν̄lL(x) γαlL(x) (4)

is the leptonic CC and

jNC
α (x) =

∑
l=e,μ,τ

ν̄lL(x) γανlL(x) (5)

is the neutrino NC; Wα(x) and Zα(x) are the ˇelds of W± and Z0 vector
bosons; g is the electroweak interaction constant, and θW is the weak (Weinberg)
angle.
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We will consider now brie�y phenomenon of neutrino oscillations in vacuum
(see, for example, reviews [17, 18]). In the mixing relation (1) quantum ˇelds
enter. What about the states of the �avor neutrinos νe, νμ, ντ in the case of
neutrino mixing?

The �avor neutrino νl is produced in CC weak decays together with l+ or
produces l− in CC neutrino processes (for example, the muon neutrino νμ is
produced in the decay π+ → μ+ + νμ or produces μ− in the process νμ + N →
μ− + X , etc.).

From the Heisenberg uncertainty relation follows that in neutrino production
and detection processes it is impossible to reveal small neutrino mass-squared
differences. The state of the �avor neutrino νl is a coherent superposition of
states of neutrinos with deˇnite masses (see, for example, [19])

|νl〉 =
∑

i

U∗
li |νi〉. (6)

Here |νi〉 is the state of neutrino with mass mi, momentum �p and energy Ei =√
p2 + m2

i � p + m2
i /2E.

Small neutrino mass-squared differences can be revealed in neutrino experi-
ments with large distances between a source and a detector. For the evolution of
the �avor neutrino state we have

|νl〉t = e−iH0t |νl〉 =
∑

i

|νi〉 e−iEit U∗
li =

∑
l′

|νl′〉
(∑

i

Ul′i e−iEit U∗
li

)
. (7)

From (7) for the probability of νl → νl′ transition we ˇnd the following expres-
sions:

P (νl → νl′) =

∣∣∣∣∣∣δl′l +
∑
i�=p

Ul′i(e−i(Ei−Ep)t − 1)U∗
li

∣∣∣∣∣∣
2

, (8)

where p is an arbitrary ˇxed index.
For the ultrarelativistic neutrino we have t � L, where L is the distance

between a neutrino source and a neutrino detector. From (8) it follows that
neutrino oscillations can be observed if

(Ei − Ep)t �
Δm2

piL

2E
� 1, (9)

where Δm2
pi = m2

i − m2
p. The inequality (9) is the timeÄenergy uncertainty

relation applied to neutrino oscillations (see [19]).
In the more general case of the mixing of three-�avor neutrino ˇelds and ns

sterile neutrino ˇelds νsL we have

ναL(x) =
3+ns∑
i=1

UαiνiL(x), α = e, μ, τ, s1, . . . , sns . (10)
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For να → να′ (ν̄α → ν̄α′ ) transition probability we ˇnd the following expres-
sion [20]:

P (
(−)
να → (−)

να′) = δα′α − 4
∑

i

|Uαi|2(δα′α − |Uα′i|2) sin2 Δpi+

+ 8
∑
i>k

Re Uα′iU∗
αiU

∗
α′kUαk cos (Δpi − Δpk) sin Δpi sin Δpk±

± 8
∑
i>k

Im Uα′iU∗
αiU

∗
α′kUαk sin (Δpi − Δpk) sin Δpi sin Δpk. (11)

Here Δpk =
Δm2

pkL

4E
, Δm2

ik = m2
k − m2

i , and α, α′ = e, μ, τ, s1, . . . , sns .

Existing neutrino oscillation data are perfectly described if we assume three-
neutrino mixing. Two neutrino mass spectra are possible in this case:

1) normal spectrum (NS)

m1 < m2 < m3, (Δm2
12 ≡ Δm2

S) � (Δm2
23 ≡ Δm2

A), (12)

2) inverted spectrum (IS)

m3 < m1 < m2, (Δm2
12 ≡ Δm2

S) � (|Δm2
13| ≡ Δm2

A). (13)

For the normal neutrino mass spectrum from (11), we ˇnd the following
expression:

PNS(
(−)
νl →

(−)
νl′) = δl′l − 4 |Ul1|2(δl′l − |Ul′1|2) sin2 ΔS−

− 4 |Ul3|2(δl′l − |Ul′3|2) sin2 ΔA − 8 ReUl′3U
∗
l3U

∗
l′1Ul1×

× cos (ΔA + ΔS) sin ΔA sin ΔS ∓ 8 ImUl′3U
∗
l3U

∗
l′1Ul1×

× sin (ΔA + ΔS) sin ΔA sin ΔS , (14)

where solar and atmospheric neutrino mass-squared differences Δm2
S and Δm2

A

are determined by the relation (12) and we choose p = 2.
In the case of the inverted mass spectrum, we choose p = 1. For the transition

probability from (11) we have

P IS(
(−)
νl →

(−)
νl′) = δl′l − 4 |Ul2|2(δl′l − |Ul′2|2) sin2 ΔS−

− 4 |Ul3|2(δl′l − |Ul′3|2) sin2 ΔA − 8 ReUl′3U
∗
l3U

∗
l′2Ul2×

× cos (ΔA + ΔS) sin ΔA sin ΔS ± 8 ImUl′3U
∗
l3U

∗
l′2Ul2×

× sin (ΔA + ΔS) sin ΔA sin ΔS , (15)

where ΔS and ΔA are determined by (13).
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If neutrinos with deˇnite masses νi are Dirac particles, the 3 × 3 PMNS
mixing matrix is characterized by three mixing angles and one CP phase. In the
standard parameterization it has the following form:

UD =

⎛
⎝ c13c12 c13s12 s13 e−iδ

−c23s12 − s23c12s13 eiδ c23c12 − s23s12s13 eiδ c13s23

s23s12 − c23c12s13 eiδ −s23c12 − c23s12s13 eiδ c13c23

⎞
⎠ .

(16)
Here c12 = cos θ12, s12 = sin θ12, etc.

If neutrinos with deˇnite masses are Majorana particles, the mixing matrix is
given by the expression

UM = UDS, (17)

where S = diag (eiα1 , eiα2 , 1) is a diagonal phase matrix. From (8) follows that
Majorana phases α1,2 do not enter into neutrino transition probabilities [21,22].

In Table 1, we present values of neutrino oscillation parameters obtained
from the recent global analysis of the neutrino oscillation data [23].

Table 1. The values of neutrino oscillation parameters

Parameter Normal spectrum Inverted spectrum

sin2 θ12 0.304+0.013
−0.012 0.304+0.013

−0.012

sin2 θ23 0.452+0.052
−0.028 0.579+0.025

−0.037

sin2 θ13 0.0218+0.0010
−0.0010 0.0219+0.0011

−0.0010

δ, ◦ (306+39
−70) (254+63

−62)

Δm2
S (7.50+0.19

−0.17) · 10−5 eV2 (7.50+0.19
−0.17) · 10−5 eV2

Δm2
A (2.457+0.047

−0.047) · 10−3 eV2 (2.449+0.048
−0.047) · 10−3 eV2

As we see from this Table, existing neutrino oscillation data do not allow one
to distinguish normal and inverted neutrino mass spectra. Neutrino oscillation
parameters are known at present with accuracies from about 3% (Δm2

S,A) to

about 10% (sin2 θ23).
Neutrino oscillation data allow one to determine only neutrino mass-squared

differences. Absolute values of the neutrino masses at present are unknown.
From the measurement of the high-energy part of the β-spectrum of tritium in
Mainz [24] and Troitsk [25] experiments, it was found, respectively,

mβ < 2.3 eV (Mainz), mβ < 2.05 eV (Troitsk). (18)

Here mβ =
(∑

i

|Uei|2m2
i

)1/2

.
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From the recent results of the Planck and other cosmological measurements
for the sum of the neutrino masses, it was obtained the following bound [26]:∑

i

mi < 0.23 eV. (19)

From these bounds it follows that neutrino masses are much smaller than masses
of other fundamental fermions (leptons and quarks). By this reason, it is unlikely
that neutrino masses are of the same Standard Model Higgs origin as masses of
quarks and leptons. Small neutrino masses are commonly considered as a signa-
ture of a beyond the Standard Model physics. However, at present a mechanism
of generation of neutrino masses and neutrino mixing is unknown. In this intro-
ductory section, we will brie�y consider general possibilities for neutrino masses
and mixing (see reviews [17,18]).

Masses and mixing are characterized by a mass term which (in the fermion
case we are interested in) is a sum of Lorentz-invariant products of left-handed
and right-handed components of the ˇelds. For charged particles, only Dirac
mass term is allowed. Since electric charges of neutrinos are equal to zero, three
neutrino mass terms are possible. The left-handed �avor ˇelds νlL(x), which
enter into interaction, must enter also into the neutrino mass term. The type of
the neutrino mass term depends on the presence in it of right-handed ˇelds νlR(x)
and on the total lepton number conservation.

The Standard Dirac Mass Term. If in the Lagrangian there are left-handed
and right-handed ˇelds νlL(x) and νlR(x) and the total lepton number is con-
served, the neutrino mass term has the form

LD(x) = −
∑
l′l

ν̄l′L(x)MD
l′l νlR(x) + h.c. (20)

A complex 3 × 3 matrix MD can be presented in the form

MD = UmV †, (21)

where U and V are unitary mixing matrices, and m is a diagonal matrix.
From (20) and (21) we ˇnd

LD(x) = −
3∑

i=1

miν̄i(x) νi(x). (22)

Thus, νi is the ˇeld of neutrino with mass mi.
The �avor ˇelds νlL(x) are connected with the ˇelds νiL(x) by the mixing

relation

νlL(x) =
3∑

i=1

Uli νiL(x), (23)
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where U is the unitary PMNS mixing matrix which is characterized by three
mixing angles and one CP phase.

In the case of the mass term (20), the invariance under the global gauge
transformations

ν′
lL(x) = eiα νlL(x), ν′

lR(x) = eiα νlR(x),
(24)

l′L,R(x) = eiα lL,R(x), l = e, μ, τ

takes place (α is a constant phase, the same for all �avors). The invariance under
the transformations (24) means that the total lepton number L is conserved, and
νi(x) is the Dirac ˇeld of neutrinos (L(νi) = 1) and antineutrinos (L(ν̄i) = −1).
The mass term (20) is the standard Dirac mass term.

The Most Economical Majorana Mass Term. If there are only left-handed
ˇelds νlL(x) in the Lagrangian, we can build the neutrino mass term if we take
into account that (νlL)c = Cν̄T

lL is a right-handed component (C is the matrix
of the charge conjugation which satisˇes the relations CγT

α C−1 = −γα, CT =
−C). For the mass term we have in this case

LL(x) = −1
2

∑
l′,l

ν̄l′L(x)ML
l′l(νlL)c(x) + h.c. (25)

Here ML is a complex symmetrical 3×3 matrix. The matrix ML can be presented
in the form

ML = UmUT , (26)

where U is a unitary matrix, and mik = miδik, mi > 0. From (25) and (26) we
have

LL(x) = −1
2

3∑
i=1

mi ν̄i(x) νi(x), (27)

where the ˇeld νi(x) (i = 1, 2, 3) satisˇes the condition

νi(x) = νc
i (x) = Cν̄T

i (x). (28)

Thus νi(x) is the ˇeld of the truly neutral
Majorana neutrino (νi ≡ ν̄i) with mass mi. The �avor ˇeld νlL(x) is

connected with left-handed components νiL by the mixing relation

νlL(x) =
3∑

i=1

Uli νiL(x), l = e, μ, τ. (29)

The unitary mixing matrix U is characterized by three mixing angles and three
CP phases.
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The Lagrangian (25) is not invariant under the global gauge transformation
ν′

lL(x) = eiανlL(x). Thus, in the case of the mass term (25), the total lepton
number L is not conserved, and there is no conserved quantum number which
can distinguish neutrino and antineutrino. This is the reason why the ˇelds of
neutrinos with deˇnite masses νi(x) are the Majorana ˇelds.

The Most General Dirac and Majorana Mass Term. The most general
neutrino mass term has the form

LD+M (x) = LL(x) + LD(x) + LR(x). (30)

Here

LR(x) = −1
2

∑
l′l

(νl′R(x))c MR
l′lνlR(x) + h.c. (31)

and LD(x) and LL(x) are given, respectively, by (20) and (25).
The mass term (30) does not conserve the total lepton number L. After the

diagonalization of the mass term we have

LD+M (x) = −1
2

6∑
i=1

mi ν̄i(x) νi(x), (32)

where νi(x) is the Majorana ˇeld with mass mi:

νi(x) = νc
i (x) = Cν̄i(x)T , i = 1, 2, . . . , 6. (33)

The �avor ˇelds νlL(x) and the ˇelds (νlR(x))c are connected with the left-handed
components of the Majorana ˇelds νiL(x) by the following mixing relations:

νlL(x) =
6∑

i=1

Uli νiL(x), (νlR(x))c =
6∑

i=1

Ul̄i νiL(x), l = e, μ, τ. (34)

Here U is a unitary 6 × 6 mixing matrix.
The right-handed neutrino ˇelds νlR(x) do not enter into the SM Lagrangian

and are called sterile ˇelds. As we see from (34), in the case of the Dirac
and Majorana mass term, the �avor ˇelds νlL are mixtures of six left-handed
components of the Majorana ˇelds νiL. Sterile ˇelds (νlR(x))c are mixtures of
the same six left-handed components.

Different possibilities can be considered in the case of the Dirac and Majorana
mass term. The most popular are the following.

1. Transitions into sterile states.
If the number of light Majorana neutrinos νi(x) is larger than three, transitions of
�avor neutrinos into sterile neutrinos become possible. For the neutrino mixing
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we have in this case

ναL(x) =
3+ns∑
i=1

Uαi νiL(x), α = e, μ, τ, s1, . . . , (35)

where ns is the number of the sterile neutrinos.
There exist at present some indications in favor of transitions of �avor neu-

trinos into sterile states. We will discuss these indications later.
2. Seesaw mechanism of the neutrino mass generation.

If in the spectrum of masses of the Majorana particles there are three light
(neutrino) masses and three heavy masses, we can explain smallness of neutrino
masses with respect to the masses of leptons and quarks. This is the famous
seesaw mechanism of the neutrino mass generation [27Ä31]. We will consider
this mechanism later.

The Dirac mass term can be generated by the Standard Higgs mechanism of
the mass generation. This mechanism cannot explain, however, the smallness of
neutrino masses. The Majorana mass term and the Dirac and Majorana mass term
can be generated only by beyond the SM mechanisms. At the moment we do
not know the type of neutrino mixing: all possibilities are open. Later we will
discuss the most plausible and economical possibility.

1. ON THE STANDARD MODEL
OF THE ELECTROWEAK INTERACTION

1.1. Introduction. The Standard Model [32Ä34] is one of the greatest achieve-
ments of the physics of the XX century. It emerged as a result of numerous
experiments and fundamental theoretical principles (local gauge invariance and
others). After discovery of the Higgs boson at LHC, the Standard Model got the
status of the theory of physical phenomena in the electroweak energy scale (up to
about 300 GeV). We will try here to make some general conclusions which can
be inferred from the Standard Model and apply them to neutrinos.

There are many questions connected with the Standard Model: why left-
handed and right-handed quark, lepton and neutrino ˇelds have different trans-
formation properties, why in uniˇed electroweak interaction, the weak CC part
maximally violates parity and the electromagnetic part conserves parity, etc. I sug-
gest here that the CC structure of the Standard Model and such its features are
due to neutrinos.

The Standard Model is based on the following principles:
1) local gauge symmetry,
2) uniˇcation of the electromagnetic and weak interactions into one elec-

troweak interaction,
3) spontaneous breaking of the electroweak symmetry.
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We will demonstrate here that in the framework of these principles, nature chooses
the simplest, most economical possibilities.

1.2. Two-Component Neutrino. From my point of view, the SM started with
the theory of the two-component neutrino. First of all, some historical remark.

In 1929, soon after Dirac proposed his famous equation for four-component
spinors, which describe relativistic particle with spin 1/2, Weyl published a pa-
per [35] in which he introduced two-component spinors. For a particle with
spin 1/2, Weyl wanted to build an equation for the two-component wave func-
tion, like the Pauli one, but Lorentz-invariant. He came to a conclusion that this
is impossible if mass of the particle is not equal to zero. For a massless particle,
he found the equations

iγα∂αψL(x) = 0, iγα∂αψR(x) = 0, (36)

where ψL(x) and ψR(x) are left-handed and right-handed two-component spinors
which satisfy the conditions

γ5ψL,R(x) = ∓ψL,R(x). (37)

Under the inversion of the coordinates, the left-handed (right-handed) spinor is
transformed into right-handed (left-handed) spinor:

ψ′
R,L(x′) = ηγ0ψL,R(x), x′ = (x0,−x). (38)

Here η is a phase factor. Thus, Weyl equations (36) are not invariant under the
inversion (do not conserve parity).

At the time when Weyl proposed equations (36) (and many years later),
physicists believed that the conservation of the parity is the law of the nature.
So, the Weyl theory was rejected∗.

After it was discovered [37, 38] (1957) that parity is not conserved in the
β-decay and other weak processes, Landau [39], Lee and Yang [40], and Sa-
lam [41] proposed the theory of the two-component neutrino. These authors
had different arguments in favor of such a theory. Landau built CP-invariant
neutrino theory, Salam considered γ5 invariant theory and Lee and Yang applied
to neutrino the Weyl theory.

The authors of the two-component neutrino theory assumed that neutrino
mass is equal to zero (which was compatible with the data existed at that time)
and that neutrino ˇeld was νL(x) or νR(x). Such ˇelds satisfy the Weyl equations

iγα∂ανL(x) = 0, iγα∂ανR(x) = 0. (39)

∗Pauli in his book on Quantum Mechanics [36] wrote: ©. . . because the equation for ψL(x)
(ψR(x)) is not invariant under space re�ection, it is not applicable to the physical realityª. Notice,
however, the following statement which belongs to Weyl: ©My work always tried to unite the truth
with the beautiful, but when I had to choose one or the other, I usually choose the beautifulª.
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If neutrino is the two-component particle, in this case:
1. Large violation of the parity in the β-decay, μ-decay and other weak

processes must be observed (in agreement with the results of the Wu et al. and
other experiments [37,38]).

2. Neutrino (antineutrino) helicity is equal to −1 (+1) in the case of the ˇeld
νL(x) and is equal to +1 (−1) in the case of the ˇeld νR(x).

The point 1 is obvious from (38). In order to see that two-component neutrino is
a particle with deˇnite helicity, let us consider the spinor ur(p) which describes
a massless particle with the momentum p and helicity r. We have

γ · pur(p) = 0, Σ · nur(p) = rur(p), r = ±1. (40)

Here Σ = γ5γ
0γ is the operator of the spin, and n = p/|p| is the unit vector in

the direction of the neutrino momentum. From (40) it follows that

γ5u
r(p) = rur(p). (41)

Thus, we have
1
2
(1 ∓ γ5)ur(p) =

1
2
(1 ∓ r)ur(p). (42)

From this relation it follows that r = −1(r = +1) if neutrino ˇeld is νL(x)
(νR(x)). Analogously, it is easy to show that antineutrino helicity is equal to +1
(−1) in the case if neutrino ˇeld is νL(x) (νR(x)).

The neutrino helicity was measured in the spectacular Goldhaber et al. ex-
periment [42]. In this experiment, the neutrino helicity was obtained from the
measurement of the circular polarization of γ-quanta produced in the chain of
reactions

e− + 152Eu → ν + 152Sm∗

↓
152Sm +γ.

The authors of the paper [42] concluded: ©. . . our result is compatible with 100%
negative helicity of neutrino emitted in orbital electron captureª.

Thus, the Goldhaber et al. experiment conˇrmed the two-component neutrino
theory. It was shown that from two possibilities (νL(x) or νR(x)) the nature
chooses the ˇrst one.

Let us notice that at the time when the two-component neutrino theory was
proposed, it was unknown whether there exist three types of neutrino. In 1962, in
the Brookhaven experiment [43] it was shown that muon and electron neutrinos νe

and νμ are different particles. In 2000, the third neutrino ντ was discovered in
the DONUT experiment [44].
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The number of degrees of freedom of the two-component Weyl ˇeld is two
times smaller than the number of the degrees of freedom of the four-component
Dirac ˇeld. It looks plausible that for neutrino the nature chooses this simplest
and most economical possibility.

1.3. Local Gauge Symmetry. The local gauge symmetry is a natural sym-
metry for the Quantum Field Theory with quantum ˇelds which depend on x.
In accordance with the two-component neutrino theory we will assume that the
ˇelds of electron, muon, and tau neutrinos are left-handed two-component Weyl
ˇelds. We will denote them ν′

eL, ν′
μL, ν′

τL. Neutrinos νe, νμ, ντ take part in the
CC weak interaction together with, correspondingly, e, μ, τ . The requirements
of the symmetry can be satisˇed if electron, muon, and tau ˇelds, like neutrino
ˇelds, are also left-handed two-component Weyl ˇelds (e′L, μ′

L, τ ′
L). The simplest

symmetry group is SUL(2) and the simplest possibility for neutrino and lepton
ˇelds is to be, correspondingly, up and down components of the doublets∗:

ψlep
eL =

(
ν′

eL

e′L

)
, ψlep

μL =
(

ν′
μL

μ′
L

)
, ψlep

τL =
(

ν′
τL

τ ′
L

)
. (43)

In order to insure the invariance under the local gauge transformations

(ψlep
l )′(x) = exp

(
i
1
2

τ ·Λ(x)
)

ψlep
l (x) (l = e, μ, τ), (44)

(τ ·Λ(x) =
3∑

i=1

τ iΛi(x), τ i are Pauli matrices, and Λi(x) are arbitrary functions

of x), we need to assume that neutrinoÄlepton ˇelds interact with massless vector
ˇelds Aα(x) and in the free Lagrangian derivatives of the fermion, ˇelds are
changed by the covariant derivatives

∂αψlep
lL (x) →

(
∂α + i g

1
2

τ ·Aα(x)
)

ψlep
lL (x), (45)

where g is a dimensionless constant, and the ˇeld Aα(x) is transferred as follows:

A′
α(x) = Aα(x) − 1

g
∂αΛ(x) − Λ(x) × Aα(x). (46)

With the change (45), we generate the following Lagrangian of the interaction of
the lepton and vector Aα(x) ˇelds:

LI(x) = −gjα(x)Aα(x). (47)

∗We will consider only leptons. Notice also that meaning of primes will be clear later.
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Here

jα =
∑

l=e,μ,τ

ψ̄lep
lL γα

1
2
τψlep

lL (48)

is the isovector current.
The expression (47) can be written in the form

LI(x) =
(
− g

2
√

2
jCC
α (x)Wα(x) + h.c.

)
− gj3

α(x)A3α(x). (49)

Here
jCC
α = 2(j1

α + ij2
α) = 2

∑
l=e,μ,τ

ν̄′
lLγαl′L (50)

is the lepton charged current, and Wα =
A1

α − iA2
α√

2
is the ˇeld of charged, vector

W± bosons.
The following remarks are in order:
1. The local gauge invariance requires existence of the vector ˇeld Aα(x).

This ˇeld is called gauge vector ˇeld.
2. The interaction (47) is the minimal interaction compatible with local gauge

invariance.
3. From (46) it follows that the strength tensor of the vector ˇeld Aα(x) is

given by the expression

Fαβ(x) = ∂αAβ(x) − ∂βAα(x) − gAα(x) × Aβ(x), (51)

where the last term is due to the fact that SU(2)L is a non-Abelian group.
Because interaction constant g enters into expression for the strength tensor, it
must be the same for all doublets ψlep

lL (x) (l = e, μ, τ ). As a result, we came to
e − μ − τ universal charged current weak interaction (49).

1.4. Uniˇcation of the Weak and Electromagnetic Interactions. The Stan-
dard Model is the uniˇed theory of the weak and electromagnetic interactions.
In the electromagnetic current of the charged leptons, the left-handed and right-
handed ˇelds enter:

jem
α =

∑
l

(−1) l̄′γαl′ =
∑

l

(−1) l̄′Lγαl′L +
∑

l

(−1) l̄′Rγαl′R. (52)

Thus, in order to unify weak and electromagnetic interactions, we must enlarge a
symmetry group. A new symmetry group must include not only transformations
of the left-handed ˇelds, but also transformations of the right-handed ˇelds of
charged leptons. There is a fundamental difference between neutrinos and other
fermions: neutrinos electric charges are equal to zero, there is no electromagnetic
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current of neutrinos. The uniˇcation of the weak and electromagnetic interactions
does not require right-handed neutrino ˇelds. A minimal possibility is to assume
that there are no right-handed neutrino ˇelds in the Standard Model.

The minimal enlargement of the SUL(2) group is a direct product SUL(2)×
UY (1). In order to ensure local gauge SUL(2) × UY (1) invariance, we need to
change the free Lagrangian derivatives of the left-handed and right-handed ˇelds
by the covariant derivatives

∂αψlep
lL →

(
∂α + ig

1
2
τ · Aα + ig′

1
2
Y lep

L Bα

)
ψlep

lL ,

(53)

∂αlR →
(

∂α + ig′
1
2
Y lep

R Bα

)
l′R,

where Bα is the vector gauge ˇeld of the UY (1) group.
There are no constraints on the interaction constants of the Abelian UY (1)

local group. In order to unify the weak and electromagnetic interactions, we as-
sume that the interaction constants for lepton doublets and charged lepton singlets
have the form

g′
1
2
Y lep

L , g′
1
2
Y lep

R . (54)

Here g′ is a constant, and hypercharges of left-handed and right-handed ˇelds
Y lep

L and Y lep
R are determined by the Gell-MannÄNishijima relation

Q = T3 +
1
2
Y, (55)

where Q is the electric charge and T3 is the third projection of the isotopic spin.
For the Lagrangian of the minimal interaction of the lepton ˇelds and the

ˇelds A3
α and Bα of neutral vector bosons, we obtain the following expression:

L0
I = −gj3

αA3α − g′
1
2
jY
α Bα. (56)

Here
1
2

jY
α = jem

α − j3
α, (57)

where jem
α is the electromagnetic current of the leptons.

Notice that the electromagnetic current appeared in (57) due to the fact
that electric charges of left-handed components l′L (coming from doublets) and
right-handed components l′R (coming from singlets) are the same. Thus, if we
choose coupling constants of the UY (1) local gauge group in accordance with the
Gell-MannÄNishijima relation, we can combine the electromagnetic interaction,
which conserves parity, and the weak interaction, which violates parity, into one
electroweak interaction.
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In order to separate in (56) the Lagrangian of electromagnetic interaction of
leptons with the electromagnetic ˇeld,

• instead of the ˇelds A3α and Bα, we introduce ©mixedª ˇelds

Zα = cos θW A3α − sin θW Bα, Aα = sin θW A3α + cos θW Bα, (58)

where angle θW is determined by the relation

g′

g
= tan θW ; (59)

• we assume that the following relation holds:

g sin θW = e. (60)

Here e is the proton charge. The relation (60) is called the uniˇcation condition.
Finally, the interaction Lagrangian takes the form

LI = LCC
I + LNC

I + Lem
I . (61)

Here

LCC
I =

(
− g

2
√

2
jCC
α Wα + h.c.

)
(62)

is the charged current Lagrangian,

LNC
I = − g

2 cos θW
jNC
α Zα (63)

is the neutral current Lagrangian,

Lem
I = −ejem

α Aα (64)

is the electromagnetic Lagrangian.
We considered up to now only neutrinos and charged leptons. If we include

also quarks, the total charged, neutral and electromagnetic currents are given by
the following expressions:

jCC
α = 2

∑
l=e,μ,τ

ν̄′
lLγαl′L + 2(ū′

Lγαd′L + c̄′Lγαs′L + t̄′Lγαb′L), (65)

jNC
α = 2j3

α − 2 sin2 θW jem
α , (66)

where

j3
α =

1
2

∑
l=e,μ,τ

ν̄′
lLγαν′

lL − 1
2

∑
l=e,μ,τ

l̄′Lγαl′L+

+
1
2

∑
q=u,c,t

q̄′Lγαq′L − 1
2

∑
q=d,s,b

q̄′Lγαq′L (67)
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and

jem
α = (−1)

∑
l=e,μ,τ

l̄′γαl′ +
(

2
3

) ∑
q=u,c,t

q̄′γαq′ +
(
−1

3

) ∑
q=d,s,b

q̄′γαq′. (68)

Let us stress that the structure of the CC term is determined by the two-component
neutrinos. The structure of the NC term is determined by the uniˇcation of the
CC and EM interactions on the basis of the SUL(2) × UY (1) group.

The Lagrangian of interaction of fundamental fermions and gauge vector
bosons is the minimal, simplest Lagrangian. However, due to requirements of the
local gauge SUL(2) × UY (1) symmetry, there are no mass terms of all fermions
and gauge vector bosons in the Lagrangian.

In order to build a realistic theory of the electroweak interaction, we need
to violate local gauge symmetry and generate masses of W± and Z0 bosons and
mass terms of quarks and charged leptons. The photon must remain massless.
Neutrino masses is a special subject. We will discuss it later.

1.5. BroutÄEnglertÄHiggs Spontaneous Symmetry Breaking. The Standard
Model mechanism of the mass generation is the BroutÄEnglertÄHiggs mecha-
nism [45Ä47]. It is based on the phenomenon of the spontaneous symmetry
breaking. The spontaneous symmetry breaking takes place in the ferromagnetism
and other many-body phenomena. It happens if the Hamiltonian of the system has
some symmetry, and vacuum states are degenerated. It was suggested [48Ä50]
that the phenomenon of the spontaneous symmetry breaking takes place also in
the Quantum Field Theory.

In order to ensure the spontaneous symmetry breaking in addition to the
ˇelds of fundamental fermions and gauge vector bosons, we must include also
the scalar Higgs ˇeld in the system.

We will assume that the Higgs ˇeld

φ(x) =
(

φ+(x)
φ0(x)

)
(69)

is transformed as SUL(2) doublet. Here φ+(x) and φ0(x) are complex charged
and neutral scalar ˇelds. According to the Gell-MannÄNishijima relation the
hypercharge of the doublet φ(x) is equal to one. We will see later that this
assumption gives us the most economical possibility to generate masses of W±

and Z0 vector bosons.
The part of SUL(2) × UY (1) invariant Lagrangian, in which the Higgs ˇeld

enters, has the form

L =
((

∂α + ig
1
2

τ ·Aα + ig′
1
2

Bα

)
φ

)†
×

×
(

∂α + ig
1
2

τ · Aα + ig′
1
2

Bα

)
φ − V (φ†φ), (70)
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where potential V (φ† φ) is given by the expression

V (φ†φ) = −μ2φ†φ + λ (φ†φ)2. (71)

Here μ2 and λ are positive constants. The constant μ has dimension M , and the
constant λ is dimensionless constant.

Existence of the Higgs ˇeld fundamentally changes the properties of the
system: the energy of the system reaches minimum at nonzero values of the
Higgs ˇeld. In fact, the energy reaches the minimum at such values of Higgs
ˇeld which minimize the potential. We can rewrite the potential in the form

V (φ†φ) = λ

(
φ†φ − μ2

2λ

)2

− μ4

4λ
. (72)

From this expression, it is obvious that the potential reaches minimum at

(φ†φ)0 =
v2

2
, (73)

where

v2 =
μ2

λ
. (74)

Taking into account the conservation of the electric charge, for the vacuum values
of the Higgs ˇeld, we have

φ0 =

⎛
⎝ 0

v√
2

⎞
⎠ eiα, (75)

where α is an arbitrary phase. It is obvious that this freedom is due to the gauge
symmetry of the Lagrangian. We can choose

φ0 =

⎛
⎝ 0

v√
2

⎞
⎠ . (76)

With this choice we break the symmetry. Notice that in the quantum case the
constant v, having the dimension M , is the vacuum expectation value (vev) of
the Higgs ˇeld.

The doublet φ(x) can be presented in the form

φ(x) = exp
(

i
1
v

1
2

τ · θ(x)
) ⎛

⎜⎝
0

v + H(x)√
2

⎞
⎟⎠ . (77)
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Here θi(x) (i = 1, 2, 3) and H(x) are real functions which have dimension of the
scalar ˇeld (M ). Vacuum values of these functions are equal to zero.

The Lagrangian (70) is invariant under SUL(2) × UY (1) local gauge trans-
formations. We can choose the arbitrary gauge in such a way that

φ(x) =

⎛
⎜⎝

0

v + H(x)√
2

⎞
⎟⎠ . (78)

Such a gauge is called the unitary gauge. From (78) it follows that the Lagrangian
(70) takes the form

L =
1
2
∂αH∂αH +

1
4
(v + H)2g2W †

α Wα+

+
1
4
(v + H)2(g2 + g′2)

1
2
Zα Zα − λ

4
(2vH + H2)2. (79)

The mass terms of W± and Z0 vector bosons and the scalar Higgs boson are
given by the expression

Lm = m2
W W †

αWα +
1
2
m2

ZZαZα − 1
2
m2

HH2, (80)

where mW , mZ , and mH are the masses of W±, Z0, and Higgs bosons.
From (79) and (80) we ˇnd

mW =
1
2
gv, mZ =

1
2

√
(g2 + g′2) v, mH =

√
2λ v. (81)

Thus, after the spontaneous symmetry breaking, Wα(x) becomes the ˇeld of the
charged vector W± bosons with the mass (1/2)gv, Zα(x) is the ˇeld of neutral
vector Z0 bosons with the mass (1/2)

√
(g2 + g′2) v, Aα(x) remains the ˇeld of

massless photons.
Three (Goldstone) degrees of freedom are necessary to provide longitudinal

components of massive W± and Z0 bosons. The Higgs doublet (two complex
scalar ˇelds, 4 degrees of freedom) is a minimal possibility. One remaining
degree of freedom is the neutral Higgs ˇeld H(x) of scalar particles with the
mass

√
2λ v.

The BroutÄEnglertÄHiggs mechanism of the generation of masses of W± and
Z0 bosons predicts existence of the massive scalar boson. Recent discovery of
the scalar boson at LHC [51,52] is an impressive conˇrmation of this prediction
of the Standard Model.

The expressions (81) for masses of the W± and Z0 bosons are characteristic
expressions for masses of vector bosons in a theory with spontaneous symmetry
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breaking (and covariant derivative of the Higgs ˇeld in the Lagrangian). In fact,
it is evident from (70) that masses of the vector bosons must have a form of a
product of the constant part of the Higgs ˇeld (v) and interaction constants.

The ˇrst relation (81) allows one to connect the constant v with the Fermi
constant GF . In fact, the Fermi constant, which can be determined from the
measurement of time of life of muon and from other CC data, is given by the
expression

GF√
2

=
g2

8m2
W

. (82)

From (81) and (82) we obviously have

v2 =
1√
2GF

. (83)

Thus, we ˇnd
v = (

√
2GF )−1/2 � 246 GeV. (84)

The interaction constant g is connected with the electric charge e and the parameter
sin θW by the uniˇcation condition (60). From (60), (81), and (84) for the mass
of the W boson we ˇnd the following expression:

mW =
(

πα√
2GF

)1/2 1
sin θW

, (85)

where α � 1
137.036

is the ˇne-structure constant. For the mass of the Z0 boson,

we have

mZ =
mW

cos θW
=

(
πα√
2GF

)1/2 1
sin θW cos θW

. (86)

The parameter sin2 θW can be determined from the data on the investigation
of NC weak processes. From existing data it was found the value sin2 θW =
0.23116(12) [53].

Thus, the Standard Model allows one to connect masses of W± and Z0

bosons with constants GF , α, and sin2 θW .
For the average of the measured values of mW and mZ we have [53]

mW = (80.420 ± 0.031) GeV, mZ = (91.1876± 0.0021) GeV. (87)

Using the values of GF , α, and sin2 θW (and taking into account radiative
corrections) for predicted by the SM values of mW and mZ , we have

mW = (80.381 ± 0.014) GeV, mZ = (91.1874± 0.0021) GeV. (88)
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The agreement of the experimental data with one of the basic predictions of the
SM is an important conˇrmation of the idea of the spontaneous breaking of the
electroweak symmetry.

We will consider now the Higgs mechanism of generation of masses of
leptons and quarks. The fermion mass terms can be generated by a SUL(2) ×
UY (1)-invariant Yukawa Lagrangians. We will consider ˇrst the charged leptons.
The most general Yukawa Lagrangian, which can generate the mass term of the
charged leptons, has the following form:

Llep
Y = −

√
2

∑
l1,l2

ψ̄lep
l1LYl1l2 l

′
2Rφ + h.c., (89)

where Y is a 3 × 3 complex nondiagonal matrix. The Standard Model does not
predict elements of the matrix Y : they are parameters of the SM.

After the spontaneous breaking of the symmetry from (43), (76), and (89),
we have

Llep
Y = −

∑
l1,l2

l̄′1LYl1l′2
l′2R(v + H) + h.c. (90)

The term proportional to v is the mass term of charged leptons. In order to
present it in the canonical form, we need to diagonalize matrix Y . The general
complex matrix Y can be diagonalized by the biunitary transformation

Y = VLyV †
R, (91)

where VL and VR are unitary matrices and y is a diagonal matrix with positive
diagonal elements. From (90) and (91) we ˇnd

Llep
Y = −

∑
l=e,μ,τ

l̄LmllR

(
1 +

1
v
H

)
+ h.c. = −

∑
l=e,μ,τ

ml l̄l

(
1 +

1
v
H

)
. (92)

Here

lL =
∑
l1

(V †
L)ll1 l

′
1L, lR =

∑
l1

(V †
R)ll1 l

′
1R, l = lL + lR (93)

and

ml = ylv. (94)

From (93) it follows that l(x) is the ˇeld of the charged leptons l with mass ml

(l = e, μ, τ ). Left-handed and right-handed components of the ˇelds of leptons
with deˇnite masses are connected with primed left-handed ˇelds, components of
the doublets ψlep

lL (x), and primed singlets right-handed ˇelds l′R by the unitary
transformations (93).
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The second term of (92) is the Lagrangian of interaction of leptons and the
Higgs boson

LY = −
∑

l=e,μ,τ

fl l̄ lH, (95)

where dimensionless interaction constants fl are given by the relation

fl =
1
v
ml = (

√
2GF )1/2ml � 4.06 · 10−3 ml

GeV
. (96)

Let us express leptonic electromagnetic, charged, and neutral currents in terms of
the ˇelds of leptons with deˇnite masses l(x). Taking into account the unitarity
of the matrices VL and VR for the EM current, we have

jem
α =

∑
l

(−1)l̄′Lγαl′L +
∑

l

(−1)l̄′Rγαl′R =

=
∑

l

(−1)l̄LγαlL +
∑

l

(−1)l̄RγαlR =
∑

l

(−1)l̄γαl. (97)

For the leptonic charged current we ˇnd

jCC
α = 2

∑
l

ν̄′
lLγαlL = 2

∑
l

ν̄lLγαlL, (98)

where
νlL =

∑
l1

(V †
L)ll1ν

′
l1L. (99)

The ˇeld νl is called �avor neutrino ˇeld.
Finally, for the leptonic NC we obtain the following expression:

jNC
α =

∑
l

ν̄′
lLγαν′

lL −
∑

l

l̄′Lγαl′L − 2 sin2 θW jem
α , (100)

=
∑

l

ν̄lLγανlL −
∑

l

l̄LγαlL − 2 sin2 θW jem
α . (101)

We will consider now brie�y the BroutÄEnglertÄHiggs mechanism of the gener-
ation of masses of quarks. Let us assume that in the total Lagrangian enter the
following SUL(2) × UY (1) invariant Lagrangian of the Yukawa interaction of
quark and Higgs ˇelds

Lquark
Y = −

√
2

∑
k,q1=d,s,b

ψ̄kLY down
kq1

q′1Rφ −
√

2
∑

k,q1=u,c,t

ψ̄kLY up
kq1

q′1Rφ̃ + h.c.

(102)



888 BILENKY S.M.

Here

ψ1L =
(

u′
L

d′L

)
, ψ2L =

(
c′L
s′L

)
, ψ3L =

(
t′L
b′L

)
(103)

are quark doublets,
φ̃ = iτ2φ

∗ (104)

is the conjugated Higgs doublet, and Y down
kq1

, Y up
kq1

are 3× 3 complex nondiagonal
matrices.

After the spontaneous breaking of the symmetry in the unitary gauge we have

φ(x) =

⎛
⎜⎝

0

v + H(x)√
2

⎞
⎟⎠ , φ̃(x) =

⎛
⎜⎝

v + H(x)√
2

0

⎞
⎟⎠ . (105)

From (102) and (105) we ˇnd

Lquark
Y = −

∑
q1,q2=d,s,b

q̄′1LY down
q1q2

q′2R(v + H)−

−
∑

q1,q2=u,c,t

q̄′1L Y up
q1q2

q′2R(v + H) + h.c. (106)

For the complex matrices Y down and Y up we have

Y down = V down
L ydownV down†

R , Y up = V up
L yupV up†

R . (107)

Here V down
L,R and V up

L,R are unitary matrices, and ydown, yup are diagonal matrices
with positive diagonal elements.

Using (107) for the Lagrangian Lquark
Y , we ˇnd

Lquark
Y = −

∑
q=u,d,c,s,t,b

mqq̄q

(
1 +

1
v
H

)
. (108)

Here
mq = yqv, q = u, d, c, s, t, b (109)

are masses of the quarks,

qL =
∑

q1=d,s,b

(V down†
L )qq1q

′
1L (q = d, s, b),

(110)
qL =

∑
q1=u,c,t

(V up†
L )qq1q

′
1L (q = u, c, t)
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and

qR =
∑

q1=d,s,b

(V down†
R )qq1q

′
1R (q = d, s, b),

(111)
qR =

∑
q1=u,c,t

(V up†
R )qq1q

′
1R (q = u, c, t).

The ˇrst terms in the r.h.s. of Eq. (108) is the mass term of the quark

Lquark
m = −

∑
q=u,d,...

mq q̄q. (112)

The second term
Lquark

H = −
∑

q=u,d,...

fqq̄qH (113)

is the Lagrangian of the interaction of quarks and the scalar Higgs boson. The
interaction constants fq are given by the relation

fq =
mq

v
= mq(

√
2GF )1/2 � 4.06 · 10−3 mq

GeV
. (114)

Let us express the electromagnetic current, neutral current, and charged current of
quarks in terms of the ˇelds of quarks with deˇnite masses. Taking into account
the unitarity of the matrices V up

L,R and V down
L,R for the electromagnetic current of

quarks, we have the following expression:

jem
α =

2
3

∑
q=u,c,t

q̄′γαq′ +
(
−1

3

) ∑
q=d,s,b

q̄′γαq′ =
∑

q=u,d,...

eqq̄γαq, (115)

where eq = (2/3) for q = u, c, t and eq = −(1/3) for q = d, s, b.
Analogously, for the neutral current of quarks we ˇnd

jNC
α =

∑
q=u,c,t

q̄′Lγαq′L −
∑

q=d,s,b

q̄′Lγαq′L − 2 sin2 θW jem
α ,

(116)
=

∑
q=u,c,t

q̄LγαqL −
∑

q=d,s,b

q̄LγαqL − 2 sin2 θW jem
α .

Thus, NC of the Standard Model is diagonal over quark ˇelds (conserves
quark �avor).

Finally, for the charged current of quarks we have

jCC
α = ū′

Lγαd′L + c̄′Lγαs′L + t̄′Lγαb′L = ūLγαdmix
L + c̄Lγαsmix

L + t̄Lγαbmix
L . (117)
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Here

dmix
L =

∑
q=d,s,b

VuqqL, smix
L =

∑
q=d,s,b

VcqqL, bmix
L =

∑
q=d,s,b

VtqqL. (118)

The matrix V = V up
L V down†

L is a unitary 3 × 3 CabibboÄKobayashiÄMaskawa
(CKM) matrix. Thus, the ˇelds of down quarks enter into CC in the mixed form.
The mixing is connected with the fact that the unitary matrices V up

L and V down
L

are different.
The CKM matrix is characterized by three mixing angles θ12, θ23, θ13 and

one phase δ responsible for the CP violation in the quark sector. It can be
presented in the same form as the neutrino mixing matrix (see (16)). Existing
data allows one to determine all matrix elements of CKM matrix. From the global
ˇt of the data of numerous experiments it was found [53]

|V | =

⎛
⎝ 0.97427± 0.00015 0.22534± 0.00065 0.00351± 0.00015

0.22520± 0.00065 0.97344± 0.00016 0.0412+0.0011
−0.0005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046

⎞
⎠. (119)

From (96) and (114) for the masses of charged leptons and quarks we have

ml = flv, mq = fqv. (120)

Thus, masses of leptons (quarks) have the form of the product of constant v
(coming from the Higgs ˇeld) and the constants of interaction of leptons (quarks)
and the Higgs bosons. Notice that masses of W± and Z0 vector bosons have the
same form (see (81)).

Masses of leptons and quarks are known. From (120) it follows that the SM
predicts the constants of interaction of leptons and quarks with the Higgs boson.
The ˇrst LHC measurements of the constants fτ and fb are in agreement with
the SM prediction (see [54,55]).

Up to now, we considered the Standard Model BroutÄEnglertÄHiggs mech-
anism of generation of masses of charged leptons and quarks. What about neu-
trinos? As we discussed earlier, in the minimal Standard Model there are no
right-handed neutrino ˇelds. Thus, in the minimal SM there is no Yukawa in-
teraction which can generate the neutrino mass term. This means that after
spontaneous breaking of the electroweak symmetry, neutrino ˇelds in the SM re-
main two-component Weyl ˇelds and neutrino mass term can be generated only
by a beyond the Standard Model mechanism.

In conclusion, we will present some additional arguments in favor of a beyond
the SM origin of the neutrino masses. Let us assume that not only ν′

lL but also ν′
lR

are Standard Model ˇelds. In this case we have the following SUL(2) × UY (1)
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invariant Yukawa interaction of lepton and Higgs ˇelds

Lν
Y = −

√
2
∑
l′l

ψ
lep

l1LY ν
l1l2ν

′
l2Rφ̃ + h.c. (121)

After spontaneous breaking of the electroweak symmetry from (121), we obtain
the Dirac neutrino mass term

LD = −v
∑
l′,l

ν̄′
l′LY ν

l′lν
′
lR + h.c. = −

∑
l′,l

ν̄l′LMD
l′lνlR + h.c. (122)

Here MD = vV †
LY ν , where the matrix VL connects ˇelds ν′

lL and �avor neutrino

ˇelds νlL (see (99)). After the standard diagonalization of the matrix V †
LY ν , we

ˇnd

LD =
3∑

i=1

miν̄iνi, νlL =
∑

i

UliνiL, (123)

where U is a unitary mixing matrix, and νi is a ˇeld of the Dirac neutrinos with
mass mi. For neutrino mass we have

mi = vyi, (124)

where yi is the Yukawa coupling constant.
In order to estimate yi, we need to know neutrino masses. Values of neutrino

masses are determined by the lightest neutrino mass m0 which is unknown at
present. We will consider two extreme cases:

1) normal mass hierarchy m1 � m2 � m3, m1 �
√

Δm2
S � 9 · 10−3 eV,

y1 � y2 � y3 �
√

Δm2
A

v
� 2 · 10−13.

2) inverted mass hierarchy m3 � m1 < m2, m3 �
√

Δm2
A � 5 · 10−2 eV,

y3 � y1 � y3 �
√

Δm2
A

v
� 2 · 10−13.

3) quasi-degenerate mass spectrum m1,3 

√

Δm2
A � 5 · 10−2 eV.

In this case m1 � m2 � m3 �
∑

mi/3 or m1 � m2 � m3 � mβ .
Using (18) and (19) from the cosmological data and tritium β-decay data we

ˇnd, respectively,

y1 � y2 � y3 � 3 · 10−13, y1 � y2 � y3 � 10−11.

Values of the quarks and leptons Yukawa coupling constants depend on gen-
eration. For the particles of the ˇrst, second, and third generation they are of
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the order of 10−6−10−5, 10−3−10−2 and 10−2−1, respectively. Thus, neutrino
Yukawa coupling constants are many orders of magnitude smaller than Yukawa
constants of quarks and leptons. Extremely small neutrino masses and, corre-
spondingly, neutrino Yukawa coupling constants are an evidence that masses of
quarks, leptons, and neutrinos are not of the same SM origin.

2. BEYOND THE STANDARD MODEL NEUTRINO MASSES

In the Standard Model with left-handed, two-component Weyl ˇelds νlL, the
neutrino mass term cannot be generated. The neutrino mass term can be generated
only by a beyond the SM mechanism. There are many approaches to neutrino
masses (see [56]). The most economical possibility of generation of neutrino
masses and mixing is provided by an effective Lagrangian.

The effective Lagrangian method [57, 58] is a general, powerful method
which allows one to describe effects of a beyond the SM physics in the elec-
troweak region. The effective Lagrangian is a SUL(2) × UY (1)-invariant, non-
renormalizable Lagrangian built from SM ˇelds (including the Higgs ˇeld). It has
the following form:

Leff
4+n =

∑
n=1,2,...

O4+n

Λn
+ h.c. (125)

Here O4+n is a SUL(2)×UY (1) invariant operator which has dimension M4+n,
and Λ is a constant of the dimension M . The constant Λ characterizes a scale of
a new, beyond the SM physics.

In order to generate the neutrino mass term we need to build the effective
Lagrangian which is quadratic in the lepton ˇelds. The terms ψ̄lep

lL φ̃ and φ̃†ψlep
lL

(l = e, μ, τ ) are SUL(2)×UY (1) invariants which have dimensions M5/2. After
spontaneous breaking of the symmetry they contain, correspondingly, vν̄′

lL and
vν′

lL. The effective Lagrangian which generates the neutrino mass term has the
following lepton-number violating form [57]:

Leff
5 = − 1

Λ

∑
l1,l2

(ψ̄lep
l1Lφ̃)Y ′

l1l2(φ̃
T (ψlep

l2L)c) + h.c. (126)

Here Y ′ = (Y ′)T is a symmetric dimensionless 3×3 matrix, and Λ is a parameter
which characterizes a scale of a beyond the SM lepton-number violating physics.

After spontaneous breaking of the electroweak symmetry, from (105)
and (126) we ˇnd

Leff
I = − 1

2Λ

∑
l1,l2

ν̄′
l1LY ′

l1l2(ν
′
l2L)c(v + H)2 + h.c. (127)

The term proportional to v2 is the neutrino mass term.
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The �avor neutrino ˇelds νlL, which enter into the leptonic charged and
neutral currents, are connected with ˇelds ν′

lL by the relation (99). In terms of
the �avor neutrino ˇelds from (127) we obtain the Majorana mass term (25) in
which the matrix MM is given by the following expression:

MM =
v2

Λ
Y, (128)

where
Y = V †

LY ′(V †
L)T (129)

is a symmetrical 3 × 3 matrix. We have

Y = UyUT , (130)

where U †U = 1 and yik = yiδik, yi > 0.
From (128) and (130) for the Majorana neutrino mass we ˇnd the following

expression:

mi =
v

Λ
(yiv), i = 1, 2, 3. (131)

Majorana neutrino mass mi, generated by the effective Lagrangian (126), is
a product of a ©typical fermion massª vyi and a suppression factor which is
given by the ratio of the electroweak scale v and a scale Λ of a lepton-number
violating physics (Λ 
 v). Thus, effective Lagrangian approach provides a
natural framework for generation of neutrino masses which are much smaller
than the masses of leptons and quarks. Let us stress that such a scheme does not
put any constraints of the mixing matrix U .

In order to estimate the parameter Λ, we need to know neutrino masses mi

and Yukawa coupling constant yi. Let us assume hierarchy of neutrino masses
m1 � m2 � m3. For the mass of the heaviest neutrino we have in this case
m3 �

√
Δm2

A � 5 · 10−2 eV. Assuming also that y3 is of the order of one, we
ˇnd the following estimate Λ � 1015 GeV. Thus, small Majorana neutrino masses
could be a signature of a very large lepton-number violating scale in physics∗.

Effective Lagrangian (126) could be a result of exchange of virtual super-
heavy Majorana leptons between lepton-Higgs pairs [59]∗∗.

∗Let us stress that for the dimensional arguments we used, it is important that Higgs is not
composite particle and there exists the scalar Higgs ˇeld having dimension M . Discovery of the
Higgs boson at CERN [51, 52] conˇrms this assumption.

∗∗An example of the effective Lagrangian is the Fermi Lagrangian which describes β-decay and
other low-energy processes. This effective Lagrangian is generated by the exchange of the virtual
W -boson between e − ν and p − n pairs. It is a product of the Fermi constant which has dimension
M−2 and dimension six four-fermion operator.
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In fact, let us assume that there exist heavy Majorana leptons Ni (i =
1, 2, . . . , N ), singlets of SUL(2)×UY (1) group, which have the following Yukawa
lepton-number violating interaction:

LY
I = −

√
2

∑
l,i

ψ̄lep
lL φ̃y′

liNiR + h.c. (132)

Here y′
li are dimensionless Yukawa coupling constants, and Ni = N c

i is the
Majorana ˇeld with mass Mi (Mi 
 v).

In the second order of the perturbation theory with virtual Ni at the elec-
troweak energies (Q2 � M2

i ), the interaction (132) generates the following
effective Lagrangian:

Leff = −
∑
l′,l

(ψ̄lep
l′Lφ̃)

(∑
i

y′
l′i

1
Mi

y′
li

)
(φ̃T (ψlep

lL )c) + h.c. (133)

After spontaneous breaking of the electroweak symmetry from (133) we obtain
Majorana neutrino mass term

LL = −1
2

∑
l′,l

ν̄′
l′L

(∑
i

y′
l′i

v2

Mi
y′

li

)
(ν′

lL)c + h.c. (134)

In terms of �avor neutrino ˇelds νlL from (134) we ˇnd

LL = −1
2

∑
l′,l

ν̄l′LML
l′l(νlL)c + h.c. (135)

Here
ML = y

v2

M
yT , (136)

where y = V †
Ly′. From (26) and (136) for the Majorana neutrino mass mi

(i = 1, 2, 3), we ˇnd the following expression:

mi =
N∑

k=1

(U †y)2ik
v2

Mk
. (137)

The scale of a new lepton-number violating physics is determined by masses of
heavy Majorana leptons Ni. It follows from (137) that Majorana neutrino masses
are suppressed with respect to the masses of other fundamental fermions by the
factors v/Mk � 1.

Let us summarize our discussion of the generation of the neutrino masses by
the Weinberg effective Lagrangian.

1. There is one possible lepton-number violating effective Lagrangian. After
spontaneous breaking of the symmetry it leads to the Majorana neutrino mass term
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which is the only possible (in the case of the left-handed ˇelds νlL) neutrino mass
term (see [60]). Neutrino masses in this approach are suppressed with respect to
the masses of lepton and quarks by the ratio of the electroweak scale v and the
scale Λ of a new lepton-number violating physics (Λ 
 v). The Lagrangian (126)
is the only effective Lagrangian of the dimension 5 (proportional to 1/Λ). This
means that neutrino masses are the most sensitive probe of a new physics at a
scale which is much larger than the electroweak scale.

2. Number of Majorana neutrinos with deˇnite masses is determined by the
number of lepton �avors and is equal to three.

3. Heavy Majorana leptons with masses much larger than v could exist.
Alternative mechanism of generation of small Majorana neutrino masses is

the famous seesaw mechanism [27Ä31]. This mechanism is based on GUT models
(like SO(10)) with multiplets which contain not only left-handed neutrino ˇelds
νlL but also right-handed ˇelds. In such models, the most general lepton-number
violating Dirac and Majorana mass term (30) is generated. If we assume that

1) ML = 0,
2) the elements of the matrix MD are proportional to v (the Dirac term MD

is generated by the standard Higgs mechanism),
3) the right-handed Majorana term MR (which can be always diagonalized)

is given by MR
ik = Mkδik, Mk 
 v,

then we come to the Majorana neutrino mass term

LL = −1
2

∑
l′,l

ν̄l′L(ML
l′l)seesaw(νlL)c + h.c., (138)

where
(ML)seesaw = −MD(MR)−1(MD)T . (139)

In the seesaw case, in the mass spectrum there are three light (neutrino) Majorana
masses mi and heavy lepton Majorana masses Mk. From (139) it follows that
the scale of neutrino masses is determined by the factor v2/Mk � v.

The seesaw mechanism of generation of the neutrino masses is equivalent
to the effective Lagrangian mechanism considered before. Let us notice that
the mechanism based on the interaction (132) is called type I seesaw. The
effective Lagrangian (126) can also be generated by the Lagrangian of interaction
of lepton-Higgs doublets with the heavy triplet leptons (type III seesaw) and by
the Lagrangian of interaction of lepton doublets and Higgs doublets with heavy
triplet scalar bosons (type II seesaw).

3. IMPLICATIONS OF THE STANDARD SEESAW MECHANISMS
OF NEUTRINO MASS GENERATION

In this section we will brie�y discuss practical implications of the effective
Lagrangian (seesaw) mechanism of the neutrino mass generation.



896 BILENKY S.M.

3.1. Neutrinoless Double β-Decay. The search for neutrinoless double
β-decay (0νββ-decay)

(A, Z) → (A, Z + 2) + e− + e− (140)

of 76Ge, 130Te, 136Xe and other evenÄeven nuclei is the most practical way which
allows one to reveal the nature of neutrinos with deˇnite masses (Majorana or
Dirac?) (see [17,61Ä63]).

The expected half-life of this process is extremely large (many orders of
magnitude larger than the time of life of the Universe). There are two main
reasons for that.

1. The process (140) is the second order of the perturbation theory process
with the exchange of the virtual neutrinos between n → pe− vertexes. The matrix
element of the process is proportional to G2

F .
2. Because in the Hamiltonian of the standard weak interaction there enter

left-handed neutrino ˇelds
νeL =

∑
i

UeiνiL, (141)

neutrino propagator has the form

∑
i

U2
ei

1 − γ5

2
γ · q + mi

q2 − m2
i

1 − γ5

2
� mββ

q2

1 − γ5

2
. (142)

Here
mββ =

∑
i

U2
eimi (143)

is the effective Majorana mass, and q is the momentum of virtual neutrinos.
From neutrino data it follows that |mββ| � 1 eV. An average momentum of the
virtual neutrino is about 100 MeV [17,61]. Thus, the factor mββ/q2 gives strong
suppression of the matrix element of 0νββ-decay∗.

In the case of Majorana neutrino mixing (141), the half-life of the
0νββ-decay T 0ν

1/2(A, Z) has the following general form (see [17,61]):

1
T 0ν

1/2(A, Z)
= |mββ|2|M0ν(A, Z)|2G0ν(Q, Z). (144)

Here M0ν(A, Z) is the nuclear matrix element (NME), which is determined by
the nuclear properties and does not depend on elements of the neutrino mixing
matrix and small neutrino masses, and G0ν(Q, Z) is the known phase space factor

∗It follows from (142) that for massless neutrinos 0νββ-decay is forbidden. This corresponds
to the theorem on the equivalence of theories with massless Dirac and Majorana neutrinos [64, 65].
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which includes the Fermi function describing ˇnal state Coulomb interaction of
two electrons and nuclei.

The calculation of NME is a very complicated many-body nuclear problem.
At present, NME for the 0νββ-decay of 76Ge, 130Te, 136Xe and other nuclei were
calculated in the framework of NSM, QRPA, IBM, EDF, and PHFB many-body
approximate schemes (see review [63] and references thereby). Results of these
calculations are signiˇcantly different. In Table 2, we present ranges of NME for
76Ge and other nuclei, ratios of maximal and minimal values of NME and ranges
of half-lives calculated under the assumption that |mββ | = 0.1 eV (see [63] for
details).

Table 2. Ranges of calculated values of |M0ν |, ratios |M0ν |max/|M0ν |min and ranges of
half-lives (calculated for mββ = 0.1 eV) for the neutrinoless double β-decay of several
nuclei of experimental interest

0νββ-decay |M0ν | |M0ν |max

|M0ν |min

T 0ν
1/2(mββ = 0.1 eV),

1026 y
76Ge → 76Se 3.59−10.39 2.9 1.0−8.6
100Mo → 100Ru 4.39−12.13 2.8 0.1−0.8
130Te → 130Xe 2.06−8.00 3.9 0.3−4.3
136Xe → 136Ba 1.85−6.38 3.4 0.4−5.2

Up to now, 0νββ-decay was not observed and rather stringent lower bounds
on half-life of the 0νββ-decay of different nuclei were obtained. We will present
here some recent results.

In the EXO-200 experiment [66], the 0νββ-decay of 136Xe (with 80.6%
enrichment in 136Xe) was searched for in the liquid time-projection chamber.
After 100 kg · y exposure, the following lower bound was obtained:

T 0ν
1/2(

136Xe) > 1.1 · 1025 y (90% C.L.). (145)

Using different calculations of NME from this result for the effective Majorana
mass the following upper bounds were found:

|mββ | < (1.9−4.5) · 10−1 eV. (146)

In the KamLAND-Zen experiment [67], 383 kg of liquid 136Xe (enriched to
90.77%) was loaded in the liquid scintillator. After 115 days of exposure, for the
half-life of 136Xe the following lower bound was inferred:

T 0ν
1/2(

136Xe) > 1.3 · 1025 y (90% C.L.). (147)
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Combining this result with the result of the previous run, for the half-life of 136Xe
there was obtained

T 0ν
1/2(

136Xe) > 2.6 · 1025 y (90% C.L.). (148)

From this bound, for the effective Majorana mass it was found

|mββ | < (1.4−2.8) · 10−1 eV. (149)

In the germanium GERDA experiment [68], the 0νββ-decay of 76Ge was studied.
In the Phase-I of the experiment, the germanium target mass was 21.6 kg (86%
enriched in 76Ge). Very law background (10−2 cts/keV · kg · y) was reached. For
the lower bound of the half-life of 76Ge there was obtained the value∗

T 0ν
1/2(

76Ge) > 2.1 · 1025 y (90% C.L.). (150)

Combining (150) with the results of HeidelbergÄMoscow [70] and IGEX [71]
experiments we found

T 0ν
1/2(

76Ge) > 3.0 · 1025 y (90% C.L.). (151)

From this bound, for the effective Majorana mass there was obtained the following
bound:

|mββ| < (2−4) · 10−1 eV. (152)

The value of the effective Majorana mass strongly depends on the character of
neutrino mass spectrum. Two mass spectra are of special interest.

1. Normal hierarchy of neutrino masses (m1 � m2 � m3).
In this case

m2 �
√

Δm2
S , m3 �

√
Δm2

A, m1 �
√

Δm2
S � 8.7 · 10−3 eV (153)

and for the effective Majorana mass we ˇnd

|mββ | =
∣∣∣∣sin2 θ12 e2iα

√
Δm2

S + sin2 θ13

√
Δm2

A

∣∣∣∣, (154)

where 2α is the relative phase. Using best-ˇt values of the parameters, we ˇnd

sin2 θ12

√
Δm2

S � 3 · 10−3 eV, sin2 θ13

√
Δm2

A � 1 · 10−3 eV. (155)

∗This result allowed one to refute the claim of the observation of the 0νββ-decay of 76Ge
made in [69].
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From (154) and (155) we ˇnd the following upper bound:

|mββ | � 4 · 10−3 eV. (156)

This bound is too small to be reached in the next generation of experiments on
the search for 0νββ-decay.

2. Inverted hierarchy of neutrino masses (m3 � m1 < m2).
In this case for the neutrino masses we have

m1 � m2 �
√

Δm2
A, m3 �

√
Δm2

A � 5 · 10−2 eV, (157)

and the effective Majorana mass is equal to

|mββ| =
√

Δm2
A(1 − sin2 2θ12 sin2 α)1/2. (158)

Thus, we have √
Δm2

A cos 2θ12 � |mββ| �
√

Δm2
A. (159)

From this inequality it follows that in the case of the inverted hierarchy of the
neutrino masses the value of the effective Majorana mass lies in the range

2 · 10−2 � |mββ | � 5 · 10−2 eV. (160)

More detailed calculations (see, for example, [63]) show that this result is valid
for the inverted mass spectrum at m3 � 1 · 10−2 eV.

The aim of the future experiments on the search for 0νββ-decay is to probe
the predicted by the inverted hierarchy of neutrino masses range (160).

3.2. On the Search for Transitions into Sterile Neutrinos. All data on
atmospheric, solar, reactor and accelerator neutrino oscillation experiments are
perfectly described by three-neutrino mixing with two neutrino mass-squared
differences Δm2

S � 7.5 · 10−5 eV2 and Δm2
A � 2.4 · 10−5 eV2. There exist,

however, indications in favor of neutrino oscillations with much larger neutrino
mass-squared difference(s) about 1 eV2. These indications were obtained in the
following short baseline neutrino experiments.

1. The LSND [72] and MiniBooNE [73, 74] experiments. In the LSND
experiment, neutrinos are produced in decays at rest of π+'s and μ+'s. Electron
antineutrinos, presumably produced in the transition ν̄μ → ν̄e, were detected. In
the MiniBooNE experiment, low energy excess of νe (ν̄e) was observed in the νμ

(ν̄μ) experiments.
2. Reactor neutrino experiments. Indications in favor of disappearance of

the reactor ν̄e's were obtained from the new analysis of the data of old reactor
neutrino experiments [75] in which recent calculations of the reactor neutrino
�ux [76,77] were used.
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3. Radiative source experiments. In the calibration experiments, performed
with radiative sources by the GALLEX [78] and SAGE [79] collaborations, a
deˇcit of νe's was observed.

In order to interpret these data in terms of neutrino oscillations, we must
assume that there exist more than three neutrinos with deˇnite masses and in
addition to the �avor νe, νμ, ντ sterile neutrinos exist also.

In the case of the simplest 3 + 1 scheme with three light neutrinos and one
neutrino with mass about 1 eV, for short baseline experiments, sensitive to large

Δm2
14, from (14) we ˇnd the following expression for

(−)
να → (−)

να′ transition
probability:

P (
(−)
να → (−)

να′) = δα,α′ − 4(δα,α′ − |Uα′4|2)|Uα′4|2 sin2 Δm2
14L

4E
, (161)

where Δm2
14 = m2

4 − m2
1.

From this expression for
(−)
νμ → (−)

νe appearance probability and
(−)
νe → (−)

νe

and
(−)
νμ → (−)

νμ disappearance probabilities, we have, respectively, the following
expressions:

P (
(−)
νμ → (−)

νe) = sin2 2θeμ sin2 Δm2
14L

4E
, (162)

P (
(−)
νe → (−)

νe) = 1 − sin2 2θee sin2 Δm2
14L

4E
, (163)

and

P (
(−)
νμ → (−)

νμ) = 1 − sin2 2θμμ sin2 Δm2
14L

4E
. (164)

Here

sin2 2θeμ = 4|Ue4|2|Uμ4|2,
sin2 2θee = 4|Ue4|2(1 − |Ue4|2), (165)

sin2 2θμμ = 4|Uμ4|2(1 − |Uμ4|2).

The Global analysis of all existing short baseline neutrino data was performed
recently in [80, 81]. These analyses reveal inconsistency (tension) of existing
short baseline data. The reason for this tension is connected with the fact that the
amplitudes of the oscillations are constrained by the relation

sin2 2θeμ � 1
4

sin2 2θee sin2 2θμμ, (166)

which can be easily obtained from (165) if we take into account that |Ue4|2 � 1
and |Uμ4|2 � 1.
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Allowed regions of the parameters sin2 2θeμ and sin2 2θee, determined by
(−)
νμ → (−)

νe and
(−)
νe → (−)

νe data, require disappearance of
(−)
νμ (due to the con-

straint (166)). However, there are no indications in favor of
(−)
νμ → (−)

νμ disap-
pearance in short baseline experiments [82Ä84].

Notice that in more complicated neutrino mixing and oscillation schemes with
ˇve neutrinos, this problem of tension between data still exists.

Many new neutrino oscillation experiments designed to check existing
indications in favor of short baseline neutrino oscillations are proposed or in
preparation at present (see recent review [85]). Proposed radioactive source
experiments will be based on existing large detectors: Borexino [86],
KamLAND [87], Daya Bay [88,89]. Important feature of these new experiments

is a possibility of studying the L/E dependence of
(−)
νe survival probability. In-

dications in favor of the disappearance of reactor ν̄e's will be checked in several
future reactor neutrino experiments [85, 90, 91]. In these experiments, spectral
distortion as a function of the distance from the reactor core will be studied.
Anomaly, observed in the LSND experiment, will be investigated in the future
MiniBooNE+ experiment [92], in FermiLab experiment on the measurement of
νμ disappearance [93], in ICARUS/NESSiE experiment [94, 95] with two LAr
detectors. Direct test of the LSND anomaly is planned to be performed at the
Spallation Neutron Source of the Oak Ridge Laboratory [96, 97]. There exist
proposals to use, for the search of sterile neutrinos, the muon storage ring, a
source of νe and ν̄μ (or ν̄e and νμ) [98]. There is no doubt that in a few years
the problem of the existence of light sterile neutrinos will be fully clariˇed.

3.3. On the Baryogenesis through Leptogenesis. Indirect indications in favor
of existence of heavy Majorana leptons can be obtained from the cosmological
data. From existing cosmological data it follows that our Universe predominantly
consists of matter. For the baryonÄantibaryon asymmetry we have

ηB =
nB − nB̄

nγ
� nB

nγ
= (6.11 ± 0.19) · 10−10. (167)

Here nB , nB̄ , and nγ are baryon, antibaryon and photon number densities,
respectively.

In the standard Big Bang scenario, initial numbers of baryons and antibaryons
are equal. The observed baryonÄantibaryon asymmetry has to be generated during
the evolution of the Universe. A mechanism of the generation of the baryonÄ
antibaryon asymmetry must satisfy the following Sakharov criteria [99]:

1. The barion number has to be violated at some stage of the evolution.
2. C and CP must be violated.
3. Departure from thermal equilibrium must take place.
The interaction (132) with complex Yukawa couplings is a source of the

CP violation. Out of equilibrium, CP violating lepton-Higgs decays of heavy
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Majorana leptons, produced in the hot expanding Universe, could create leptonÄ
antilepton asymmetry. This asymmetry, due to the Standard Model nonperturba-
tive sphaleron transitions in which B and L are violated, could be converted into
baryonÄantibaryon asymmetry (see reviews [100Ä103]).

There are many models based on this general scenario of baryogenesis
through leptogenesis. Existence of heavy Majorana leptons is their common
feature.

CONCLUSION

The Standard Model successfully describes all observed physical phenomena
in a wide range of energies up to a few hundreds of GeV. After the discovery
of the Higgs boson at LHC, the Standard Model was established as a theory of
physical phenomena at the electroweak scale. We suggest here that neutrinos
play exceptional role in the Standard Model. Neutrinos apparently are crucial in
the determination of symmetry properties of the Standard Model.

The Standard Model is based on
Å the local gauge symmetry;
Å the uniˇcation of the weak and electromagnetic interactions;
Å BroutÄEnglertÄHiggs mechanism of the spontaneous breaking of the

symmetry.
The Standard Model teaches us that in the framework of these general prin-

ciples, nature chooses the simplest possibilities. The simplest, most econom-
ical possibility for neutrinos is to be two-component Weyl particles (LandauÄ
LeeÄYangÄSalam two-component neutrinos). The experiment showed that from
two possibilities (left-handed or right-handed) the nature chooses the left-handed
possibility.

In order to ensure symmetry, ˇelds of quarks and leptons must be also two-
component, left-handed and the symmetry group must be non-Abelian. This
allows one to include charged particles and ensure the universality of the minimal
CC interaction of the fundamental fermions and the gauge ˇelds. The simplest
possibility is SUL(2) with doublets of the left-handed ˇelds.

The uniˇcation of weak and electromagnetic interactions requires enlargement
of the symmetry group. The simplest possibility is the SUL(2) × UY (1) group.
Since the electromagnetic current includes left-handed and right-handed ˇelds of
the charged particles, charged right-handed ˇelds must be SM ˇelds (singlets of
the SUL(2) group). Electric charges of neutrinos are equal to zero. The uniˇca-
tion of the weak and electromagnetic interactions does not require right-handed
neutrino ˇelds. Minimal possibility is that there are no right-handed neutrino
ˇelds in the SM. Nonconservation of P and C in the weak interaction apparently
is connected with that. Since there are no right-handed SM neutrino ˇelds, there
is no Yukawa interaction which can generate neutrino mass term: neutrinos are
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the only particles which after spontaneous breaking of the electroweak symmetry
remain two-component left-handed ones.

With two-component left-handed neutrino ˇelds νlL, only a beyond the Stan-
dard Model, lepton-number violating Majorana mass term can be built. This is
the most economical possibility. It is generated by the unique, beyond the Stan-
dard Model dimension ˇve Weinberg effective Lagrangian. Due to a suppression
factor which is a ratio of the electroweak vacuum expectation value v and the
parameter Λ, which characterizes the scale of a new lepton-number violating
physics, such approach naturally explains the smallness of neutrino masses.

In the framework of the effective Lagrangian values of neutrino masses,
mixing angles and CP phases cannot be predicted. The same is true for leptons
and quarks: the Higgs mechanism of generation of masses and mixing of leptons
and quarks does not predict the values of masses, mixing angles and CP phase.
However, there are three general consequences of this mechanism of the neutrino
mass generation.

1. Neutrino with deˇnite masses νi are Majorana particles.
2. Number of neutrinos with deˇnite masses is equal to the number of the

�avor neutrinos (three).
The neutrino nature (Majorana or Dirac?) can be inferred from the experi-

ments on the search for neutrinoless double β-decay of 76Ge, 136Xe and other
nuclei. If this process will be observed, it will be a proof that neutrinos with
deˇnite masses are Majorana particles, i.e., that neutrino masses have a beyond
the SM origin. Future experiments will probe inverted neutrino mass spectrum
region (mββ � a few 10−2 eV). In the case of normal mass hierarchy, the prob-
ability of the neutrinoless double β-decay will be so small that new methods of
the detection of the process must be developed (see [104]).

A possibility that the number of the neutrinos with deˇnite masses is more
than three, will be tested in future reactor, radioactive source and accelerator
experiments on the search for sterile neutrinos.

The effective Lagrangian, responsible for the Majorana neutrino mass term,
can be a result of the exchange of virtual heavy Majorana leptons between lepton-
Higgs pairs. The CP violating, out of equilibrium decays of heavy Majorana
leptons in the early Universe, could be the origin of the baryonÄantibaryon asym-
metry of the Universe.

The value of the parameter Λ, which characterizes the scale of a new lepton-
number violating physics, is an open problem. It is natural to assume that the
Yukawa coupling constant is of the order of one. In this case Λ � 1015 GeV.
However, much smaller values of Λ cannot be excluded. If Λ is of the order
of TeV, lepton-number violating decays of Majorana leptons can be observed at
LHC (see, for example, [105Ä109]).

The Standard Model teaches us that the simplest possibilities are more likely
to be correct. Two-component left-handed Weyl neutrinos and absence of the
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right-handed neutrino ˇelds in the Standard Model is the simplest, most elegant
and most economical possibility. In this case, generated by the effective, dimen-
sion ˇve Lagrangian (or by the standard seesaw mechanism) Majorana mass term
(three Majorana neutrinos with deˇnite masses, absence of sterile neutrinos), is
the simplest, most economical possibility. Future experiments will show whether
this possibility is realized in nature.
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