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RECENT RESULTS FROM HIGH-TEMPERATURE
LATTICE QCD
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Recent results obtained from numerical computations in lattice regularized QCD are
summarized. The write-up of the talk concentrates on the liberation of strange quarks in
the vicinity of the chiral QCD transition and on certain ratios of cumulants of net electric
charge �uctuations which can be used to determine freeze-out parameters by a comparison
of experimental data from heavy-ion collisions with lattice QCD results.
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INTRODUCTION

Fluctuations and correlations of conserved charges, like baryon number B,
electric charge Q, or strangeness S, are sensitive to the composition of hot and
dense QCD matter [1,2]. Measures of them in general take quite different values
in a phase where the carriers of the quantum numbers are hadrons, opposed to a
phase where those are quarks. It is therefore of interest to compute �uctuation
and correlation quantities from QCD to study the properties of strong-interaction
matter at high temperature and density.

Moreover, �uctuations measured in a heavy-ion collision experiment may
re�ect thermal conditions at the time where the generated medium has expanded,
cooled down, and diluted sufˇciently, so that hadrons form again. Although it may
be questioned whether the thermal medium at this time is in equilibrium and how
well hadronization is localized in time, the success of hadron resonance gas (HRG)
model calculations, performed to describe properties of the medium at the time of
freeze-out [3], seems to suggest that the thermal conditions are well characterized
by a freeze-out temperature Tf and a baryon chemical potential μf

B . The values Tf

and μf
B at freeze-out are usually determined by comparing experimental data on

particle yields with a HRG model calculation [3, 4]. However, it is clearly
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desirable to extract the freeze-out parameters also by comparing experimental
data directly with a QCD calculation.

In the following write-up of the talk we will concentrate on strangeness
liberation and on determining freeze-out parameters with the help of lattice QCD.
Both topics rely on our measurements of �uctuation and correlation variables
performed for two degenerate light quarks and a strange quark. The quark mass
values have been tuned such that the kaon mass acquires its physical value and
that the (Goldstone) pion is of mass 160 MeV. The simulations are based on the
so-called HISQ action [5] for the quarks, a highly improved discretization with
small discretization errors (taste violations). At aspect ratios Nσ/Nτ � 4, the
temporal extents of the N3

σ ×Nτ lattices have been chosen as Nτ = 6, 8, and 12
to address ˇnite lattice spacing effects ∼ (NτT )−1 with T being the temperature.

1. STRANGENESS LIBERATION

The basic quantities calculated on the lattice arise from the Taylor expansion
of the pressure, or equivalently of the logarithm of the partition function,

p

T 4
=

1
V T 3

ln Z(T, μu, μd, μs) =
∑
i,j,k

1
i!j!k!

χijk(T )
(μu

T

)i (μd
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with respect to the quark chemical potentials μu,d,s. The expansion coefˇcients
χijk are computed at vanishing chemical potentials and are readily combined into

generalized susceptibilities∗ χBQS
ijk which are related to correlations between the

conserved quantum numbers B, Q, and S, as well as to cumulants of �uctuations
like, e.g., variance, skewness, or kurtosis.

The generalized susceptibilities can also be obtained in hadron resonance gas
model calculations. In a HRG picture the contribution to the partition function Z
of a meson (M ) or a baryon (B) with quantum numbers and mass indexed by i
is given by

ln Z
M/B
i ∼

∞∑
k=1

(±1)k+1

k2
K2

(
kmi

T

)
cosh (k(Biμ̂B + Qiμ̂Q + Siμ̂S)) (1)

(μ̂X = μX/T , X = B, Q, S), such that the total pressure is obtained as a sum
over of partial pressures M|S| and B|S| of mesons and baryons, respectively,

p

T 4
= M0(T ) + M1(T ) cosh (−μ̂S) + B0(T ) cosh (μ̂B)+

+B1(T ) cosh (μ̂B − μ̂S)+B2(T ) cosh (μ̂B − 2μ̂S)+B3(T ) cosh (μ̂B − 3μ̂S),
(2)

∗Whenever a subscript is zero it will be omitted as is the corresponding superscript.
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where for the strange mesons and the baryons the Boltzmann approximation has
been applied which is good within 2% accuracy. Taking Eq. (2) as a starting
point for HRG computations of χBQS

ijk as appropriate derivatives with respect to
the chemical potentials, it is easily seen that in a gas of uncorrelated hadrons
χB

2 = χB
4 , for instance, whereas the deviation of χS

4 from χS
2 is a measure for the

contribution of |S| > 1 hadrons. This contribution is shown in Fig. 1 to be quite
substantial below the chiral crossover at T = 154(9) MeV [6] indicated as the
grey band. At higher temperature though, the ratio of the susceptibilities χS

4 /χS
2

rapidly approaches the free quark gas value.
Up to fourth order in the derivative with respect to the strangeness chemical

potential, in a hadron resonance gas, Eq. (2), there are six generalized suscep-
tibilities, χBS

11 , χBS
31 , χS

2 , χBS
22 , χBS

13 , and χS
4 , but only four partial pressures.

Thus one can construct two independent combinations of the susceptibilities that
should vanish in a phase where the B and S quantum numbers are carried by
hadrons, e.g.,

v1 = χBS
31 − χBS

11 ,
(3)

v2 =
1
3
(χS

2 − χS
4 ) − 2χBS

13 − 4χBS
22 − 2χBS

31 .

These quantities are also shown in Fig. 1. As can be seen, v1 and v2 are vanishing
up to temperatures in the chiral transition range, in accord with the hadron gas
scenario, but simultaneously rise rapidly beyond. This rise is comparable in size
to the rise in χB

2 − χB
4 shown in Fig. 1, c. This fact shows that the behavior of

the strange degrees of freedom is very similar to the one of light quarks. Both
sets of quantities are approaching the predictions of resummed Hard Thermal
Loop (HTL) perturbation theory [7] at temperatures of about two times the chiral
crossover one∗.

Solving for the partial pressures M|S| and B|S| arising from the strange
hadron sector (|S| � 1) of an HRG leads to

M1(c1, c2) = χS
2 − χBS

22 + c1v1 + c2v2,

B1(c1, c2) =
1
2

(
χS

4 − χS
2 + 5χBS

13 + 7χBS
22

)
+ c1v1 + c2v2,

(4)

B2(c1, c2) = −1
4

(
χS

4 − χS
2 + 4χBS

13 + 4χBS
22

)
+ c1v1 + c2v2,

B3(c1, c2) =
1
18

(
χS

4 − χS
2 + 3χBS

13 + 3χBS
22

)
+ c1v1 + c2v2,

∗For a more detailed discussion, see [8].
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Fig. 1. The quantities χS
4 /χS

2 (a), v1 and v2 of Eq. (3) (b), and χB
2 −χB

4 (c) as a function
of temperature. The grey bands indicate the chiral transition region

where arbitrary linear combinations of v1 and v2 can be added without affecting
the result. These partial pressures are shown in Fig. 2. While at low temperatures
up to the chiral transition region the various linear combinations agree with each
other and with the HRG predictions, the hadronic description of the strange
degrees of freedom breaks down just above Tc.

2. FREEZE-OUT PARAMETERS

As mentioned in the previous section, the lattice results for generalized sus-
ceptibilities depend on temperature and the chemical potentials μB , μQ, and μS .

In order to get access to the freeze-out parameters Tf and μf
B , one needs to ˇx

μQ and μS to the values that characterize a thermal system created in a heavy-ion
collision. These values are determined by assuming that the thermal subvolume,
probed by measuring �uctuations in a certain rapidity and transverse momentum
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Fig. 2 (color online). Partial pressures arising from the strange sector of an HRG, Eq. (4).
The yellow bands indicate the chiral transition region, whereas the colored lines on the
right side denote the quark gas values

window, re�ects the net strangeness content and electric charge to baryon number
ratios of the incident nuclei,

〈nS〉 = 0, 〈nQ〉 = r〈nB〉, (5)

where r is approximately 0.4 for AuÄAu as well as PbÄPb collisions. Expanding
the densities in terms of the chemical potentials, one can solve for μQ and μS

order by order in the expansion, with the result up to the next-to-leading order
(NLO) as

μ̂Q = q1μ̂B + q3μ̂
3
B, μ̂S = s1μ̂B + s3μ̂

3
B. (6)

The leading order expansion coefˇcients for μ̂Q and μ̂S are shown in the top
panels of Fig. 3. Based on spline interpolations of the numerical results obtained
for three different lattice sizes, extrapolations to the continuum limit were carried
out using an ansatz linear in 1/N2

τ . The resulting extrapolations are shown as
bands in these panels. In order to check the importance of NLO corrections,
s3 and q3 were calculated on lattices with temporal extent Nτ = 6 and 8. The
results, expressed in units of the leading order terms, are also shown in Fig. 3.
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Fig. 3. The leading and next-to-leading order expansion coefˇcients of the strangeness
(left) and the negative of the electric charge chemical potentials (right) versus temperature
for r = 0.4. For s1 and q1 the LO-bands show results for the continuum extrapolation.
For s3 and q3 we give an estimate for continuum results (NLO bands) based on spline
interpolations of the Nτ = 8 data. Dashed lines at low temperature are from the HRG
model and at high temperature from a massless, 3-�avor quark gas

It is obvious from this ˇgure that NLO corrections indeed are negligible in the
high-temperature region and smaller than 10% in the temperature interval relevant
for the analysis of freeze-out conditions, i.e., T � (160 ± 10) MeV. For a more
detailed discussion of the errors of these and other quantities presented below, we
refer to [9].

Having thus adjusted the values for μQ and μS to the physical conditions

met in a heavy-ion collision, two further quantites are needed to ˇx T f and μf
B .

Of particular interest are ratios of cumulants which to a large extent eliminate the
dependence of cumulants on the freeze-out volume. Since only proton instead
of baryon �uctuations are available experimentally, electric charge �uctuations
appear to be most appropriate. The simplest of such ratios involve mean MQ,
variance σ2

Q, and skewness SQ. Those can be combined to

MQ(s)
σ2

Q(s)
=

χQ
1 (T, μB)

χQ
2 (T, μB)

= RQ
12(T, μB) = RQ,1

12 (T ) μ̂B + RQ,3
12 (T ) μ̂3

B + . . . , (7)

SQ(s)σ3
Q(s)

MQ(s)
=

χQ
3 (T, μB)

χQ
1 (T, μB)

= RQ
31(T, μB) = RQ,0

31 (T ) + RQ,2
31 (T ) μ̂2

B + . . . (8)

These ratios can be computed in QCD (as well as in the HRG model) and
compared to experimental data in order to determine T f and μf

B . We evaluated
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Fig. 4. The leading (a) and next-to-leading (b) order expansion coefˇcients of the ratio of
ˇrst- to second-order cumulants of net electric charge �uctuations versus temperature for
r = 0.4. The bands and lines are the same as in Fig. 3

them to leading order for RQ
31 and up to O(μ̂3

B) for RQ
12. For the latter case the

leading order and the NLO corrections are shown in Fig. 4. The LO results have
been obtained on lattices with Nτ = 6, 8, and 12. They show small discretization
effects and were extrapolated to the continuum limit. The NLO corrections to the
ratio of electric charge cumulants are below 10%, which makes the leading order
result a good approximation for a large range of μ̂B .

The leading part of the ratio RQ
12 depends linearly on μB such that this ratio

has a strong dependence on μB , but varies little with T for T � (160±10) MeV,
see Fig. 5, a. On the contrary, the leading order RQ

31 depends strongly on T ,
Fig. 5, b, and shows a characteristic temperature dependence for T >∼ 155 MeV
that is quite different from that of HRG model calculations. It receives corrections
only at O(μ̂2

B) an estimate of which has been added as blueish band in this ˇgure.

Fig. 5 (color online). The ratios RQ
12 versus μB/T (a) for three values of the temperature

and RQ
31 versus temperature for μB = 0 (b). The wider band on the data set for Nτ = 8 (b)

shows an estimate of the magnitude of NLO corrections at μB/T = 1
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The idea is now to compare the lattice results for these ratios, which are
functions of T and μB , to experimental data at given center-of-mass energy. A
measurement of RQ

31 lends itself for a determination of the freeze-out temperature,
with small values of RQ

31 favoring large freeze-out temperatures T f and vice versa.
Subsequently, a comparison of experimental data on RQ

12 with Fig. 5, b will allow

one to determine μf
B .

CONCLUSIONS

The lattice QCD results presented here show that up to the chiral crossover
temperature Tc the quantum numbers associated with strange degrees of freedom
are consistent with that of an uncorrelated gas of hadrons. The lattice results
also show that such a hadronic description breaks down just above Tc. More-
over, the behavior of the strange degrees of freedom around Tc is quite similar
to that involving the light up and down quarks, altogether suggesting that the
deconˇnement of strangeness takes place at the chiral crossover temperature.

Furthermore, the ˇrst three cumulants of net electric charge �uctuations are
well suited for a determination of freeze-out parameters in a heavy-ion collision.
Although the ratios RQ

12 and RQ
31 are sufˇcient to determine Tf and μf

B , it
would be advantageous to have several ratios to probe the consistency of an
equilibrium thermodynamic description of freeze-out. When comparing these
results to experimental data, one will however need to take into account the details
of the actual experimental setup. In addition, the thermodynamic relevance of
additional, experimentally yet unobserved strange baryons, as observed in the
meantime after the Symposium [10], also has consequences for the analysis of
freeze-out conditions in heavy-ion experiments.

Acknowledgements. The author is grateful to organizers for the outstanding
atmosphere at the Symposium. The presentation here is based on work within the
BNLÄBielefeld collaboration. Partial ˇnancial support from the European Union
under grant agreement No. 238353 is acknowledged.

REFERENCES

1. Koch V., Majumder A., Randrup J. Baryon-Strangeness Correlations: A Diagnostic of
Strongly Interacting Matter // Phys. Rev. Lett. 2005. V. 95. P. 182301.

2. Ejiri S., Karsch F., Redlich K. Hadronic Fluctuations at the QCD Phase Transition //
Phys. Lett. B. 2006. V. 633. P. 275.

3. Braun-Munzinger P., Redlich K., Stachel J. Particle Production in Heavy-Ion Colli-
sions // Quark Gluon Plasma / Ed. Hwa R. C. et al. P. 491; nucl-th/0304013.

4. Cleymans J. et al. Comparison of Chemical Freeze-Out Criteria in Heavy-Ion Colli-
sions // Phys. Rev. C. 2006. V. 73. P. 034905.



1368 LAERMANN E.

5. Follana E. et al. (HPQCD and UKQCD Collabs.). Highly Improved Staggered Quarks
on the Lattice, with Applications to Charm Physics // Phys. Rev. D. 2007. V. 75.
P. 054502.

6. Bazavov A. et al. The Chiral and Deconˇnement Aspects of the QCD Transition //
Phys. Rev. D. 2012. V. 85. P. 054503.

7. Andersen J. O., Mogliacci S., Su N., Vuorinen A. Quark Number Susceptibilities from
Resummed Perturbation Theory // Phys. Rev. D. 2013. V. 87. P. 074003.

8. Bazavov A. et al. Strangeness at High Temperatures: From Hadrons to Quarks // Phys.
Rev. Lett. 2013. V. 111. P. 082301.

9. Bazavov A. et al. Freeze-Out Conditions in Heavy-Ion Collisions from QCD Thermo-
dynamics // Phys. Rev. Lett. 2012. V. 109. P. 192302.

10. Bazavov A. et al. Additional Strange Hadrons from QCD Thermodynamics and
Strangeness Freeze-Out in Heavy-Ion Collisions // Phys. Rev. Lett. 2014. V. 113.
P. 072001.


