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PHASE TRANSITIONS
IN STRONGLY INTERACTING MATTER∗

H. Satz∗∗

Bielefeld University, Bielefeld, Germany

We discuss the phase structure of hadronic matter in terms of the basic dynamical
and geometrical features of hadrons. Increasing the density of constituents of ˇnite spatial
extension, by increasing the temperature T or the baryochemical potential μ, eventually
©ˇlls the boxª and eliminates the physical vacuum. The corresponding transition as
function of T and μ can be determined through percolation theory. At low baryon density,
this means a fusion of overlapping mesonic bags to one large bag, while at high baryon
density, hard-core repulsion restricts the spatial mobility of baryons. As a consequence,
there are two distinct limiting regimes for hadronic matter.

PACS: 12.38.Mh; 25.75.Nq

INTRODUCTION

In recent years, the general features of the phase diagram of strongly inter-
acting matter have become increasingly well established [1]. Lattice QCD studies
at ˇnite temperature and now also for some range of ˇnite baryon density [2Ä5],
combined with chiral symmetry restoration arguments [6Ä12], lead for physical
quark masses to the phase structure illustrated in Fig. 1 as function of temper-
ature T and baryochemical potential μ. Following a region of nonsingular but
rapid crossover of thermodynamic observables around a quasi-critical temperature
of 170Ä190 MeV, increasing μ leads to a critical point, beyond which the system
shows a ˇrst-order transition from conˇned to deconˇned matter.

We want to show here how to deduce such behavior from the basic dynamical
and geometrical features of hadronic matter [13]. Our question thus is the follow-
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Fig. 1. Phase structure of QCD matter in
the TÄμ plane

ing: what conceptual aspects of hadronic
interactions lead to the observed behav-
ior, and, in particular, what features in
hadronic dynamics result in the observed
changes of the transition structure as
function of T and μ?

At low baryon density, the con-
stituents of hadronic matter are mostly
mesons, and the dominant interaction is
resonance formation; with increasing tem-
perature, different resonance species of
increasing mass are formed, leading to a
gas of ever increasing degrees of free-
dom. They are all of a typical hadronic

size (with a radius Rh � 1 fm) and can overlap or interpenetrate each other.
For μ � 0, the contribution of baryons/antibaryons and baryonic resonances is
relatively small, but with increasing baryon density, they form an ever larger
section of the species present in the matter, and beyond some baryon density,
they become the dominant constituents. Finally, at vanishing temperature, the
medium consists essentially of nucleons.

At high baryon density, the dominant interaction is nonresonant. Nuclear
forces are short-range and strongly attractive at distances of about 1 fm; but for
distances around 0.5 fm, they become strongly repulsive. The former is what
makes nuclei, the latter (together with Coulomb and Fermi repulsion) prevents
them from collapsing. The repulsion between a proton and a neutron shows the
purely baryonic ©hard-coreª effect and is connected neither to Coulomb repulsion
nor to Pauli blocking of nucleons. As a consequence, the volumes of nuclei
grow linearly with the sum of its protons and neutrons. With increasing baryon
density, the mobility of baryons in the medium becomes strongly restricted by the
presence of other baryons, leading to a ©jammedª state, as shown in Fig. 2 [14].

a b

Fig. 2. Hard sphere states: full mobility (a), ©jammedª (b)
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Increasing the density of constituents by increasing temperature, baryon den-
sity or both, leads to clustering of hadrons of spatial extension, and these clusters
will eventually span the entire available volume. This onset of connectivity and
the associated geometric critical behavior is the central topic of percolation theory,
where the relevant thresholds have been determined for permeable spheres which
can overlap (mesons), as well as for those which have an impenetrable hard core
(baryons). In particular, one ˇnds in both cases a geometric transition from a
state in which the vacuum forms a ˇnite part of the system to one in which only
isolated bubbles of vacuum remain in a world of fully or partially overlapping
hadrons. We shall consider this point of ©disappearanceª of a large-scale vacuum
as the end of hadronic matter and calculate the corresponding limiting curve in
the TÄμ plane.

Our question therefore addresses two distinct situations. We have to consider
the percolation of mesons, allowing full overlap, and then that of baryons with
a hard core. In the next section, we shall ˇrst recall the salient features of
percolation theory for the two cases. Following this, we will use a very simplistic
toy model to illustrate the underlying concepts. In Sec. 3, we then turn to the
realistic case of a hadronic resonance gas with baryon number and strangeness
conservation. In the last section, we then consider the nature of the transition.

1. PERCOLATION

Here we brie�y recall the essential results for the percolation of spheres, in
three space dimensions, for the case of arbitrary overlap [15] and for spheres
with an impenetrable hard core, allowing only partial overlap [16]. Consider N
spheres of radius R0 and hence volume V0 = (4π/3)R3

0 in a ©boxª of size V ,
with V � V0. Percolation is said to occur when a connected and hence at least
partially overlapping set of spheres spans the volume, or, in other words, when
the volume occupied by the largest cluster of connected spheres reaches a ˇnite
fraction of V .

We address ˇrst the case of permeable spheres, i.e., with arbitrary overlap. In
this case, when the density n = N/V increases, clusters of overlapping spheres
form, and for

nm =
ηm

V0
, (1)

with ηm � 0.35, the largest cluster ˇrst spans the system, i.e., percolation oc-
curs [15]. At this point, the fraction

φm = 1 − e−ηm � 0.30 (2)

of space is occupied by spheres; the complementary 70% remain empty space
(©vacuumª), which also still spans V . The largest cluster therefore has a density
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of about 1.2/V0. In other words, at the percolation point, a randomly created
state of a system of N spheres is very inhomogeneous, consisting mainly of one
dense cluster and much empty space. A random distribution of extended con-
stituents thus leads to something like a ©geometric attractionª between point-like
constituents with clustering as a result. We shall see later that in the percolation
of hard-core spheres, this attraction is competing with an intrinsic repulsion.

For n < nm, the clusters of overlapping spheres form only isolated bubbles
in V . From Eq. (1) we see that at the percolation point, the total volume of all
spheres adds up to 35% of the total volume; this is covered by the spheres to
only 30%, indicating 5% ©overlapª. After a further increase of density, a second
percolation point is reached at

nv =
ηv

V0
, (3)

where ηv � 1.22. Now
φv = 1 − e−ηv � 0.70 (4)

is the fraction of space covered by spheres, with only 0.30 remaining empty. Here
the sum of the sphere volumes is with 1.22 V considerably larger than the total
volume, due to increased overlap. For n � nv, the vacuum percolates, above nv ,
only isolated bubbles of vacuum remain. In other words, for n > nv, the vacuum
has ©disappearedª as a large-scale entity.

The existence of two percolation thresholds, one for the formation of the
ˇrst spanning cluster of spheres and another for the disappearence of a spanning
vacuum ©clusterª, is a general feature of percolation theory in three or more
dimensions.

We now turn to the percolation of spheres (again of radius R0) having
an impenetrable spherical hard core [16], which we assume to have the radius
Rc = R0/2. Each sphere now deˇnes a volume V0 = (4π/3)R3

0, which is not
accessible to the center of any other sphere. The spheres can partially overlap:
the distance between their centers has to remain greater than R0 = 2 Rc. With
increasing density, we now have again two percolation thresholds. At

nm =
η̄m

V0
(5)

the spheres form a spanning cluster, and at

nv =
η̄v

V0
(6)

the vacuum last spans the volume. Numerical studies [16] show that η̄m � 0.34,
practically the same as found above for permeable spheres of the same size. The
percolation threshold for spheres with a hard core is on the dilute side, thus not
much affected by the presence of the hard core, and we have a similar geometric
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attraction. The vacuum percolation threshold, however, now is given by η̄v � 2.0,
in contrast to ηv � 1.24 for permeable spheres. In other words, the disapperance
of the vacuum requires for hard-core spheres a higher density than needed for
permeable spheres. This is directly related to the hard-core repulsion, which tends
to move the spheres apart and thus at high density counteracts tight clustering.

2. A TOY MODEL

In our simpliˇed toy model, we want to compare the percolation behavior of
an ideal gas of massless pions of radius Rh to that of an ideal gas of massive
nucleons of the same size, but having a hard core of a (smaller) radius Rc = Rh/2.
The density of pions is speciˇed by the temperature T of the medium, that of
the nucleons by the temperature T and the baryochemical potential μ, ˇxing the
overall baryon number (nucleons minus antinucleons).

Consider ˇrst the system of pions. With three charge states, the density is
given by

nπ(T ) = 3
π2

90
T 3. (7)

With increasing temperature, they will overlap and eventually ˇll the given volume
with one big connected bag. When only isolated vacuum bubbles remain, we
assume the system to have reached the limit of pionic matter. In the previous
section it was shown that this occurs for

nf =
1.22
Vh

� 0.57 fm−3, (8)

where Vh = (4π/3)R3
h, and we have used Rh = 0.8 fm. Solving nh(T ) = nf

yields

Tπ � 0.96
Rh

� 240 MeV (9)

as the limiting temperature obtained through pion fusion. This value will drop
slightly when we include nucleons and antinucleons, and it will decrease consid-
erably when resonances are brought in, as we shall see in the next section.

The density of point-like nucleons of mass M is at T = 0 (when there are
no antinucleons) determined in terms of the baryochemical potential μ,

nb(μ, T = 0) =
2

3π2
(μ2 − M2)3/2. (10)

In the presence of a hard core of volume Vc = Vh/8, the density has to be calcu-
lated taking into account the reduction of the available volume. We approximate
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this by a van der Waals approach [17], taking∗

nB(μ, T = 0) =
nb(T, μ)

1 + nb(T, μ)Ve
(11)

for the density of extended nucleons, where Ve � 2Vc denotes the excluded
volume at random dense packing of hard spheres [19]. With increasing nucleon
density, the box becomes more and more ˇlled, and we saw above that the empty
vacuum disappears for

n̄v � 2
Vh

� 0.93 fm−3, (12)

taking the same radius for nucleons as for pions; this corresponds to about 5.5
times standard nuclear density ρ0 � 0.17 fm−3. Solving nB(T = 0, μ) = n̄v

yields
μv � 1.12 GeV (13)

for the limiting baryochemical potential at T = 0.
In the region of low to intermediate μ in the TÄμ diagram, we approximate

the density of point-like nucleons by the Boltzmann limit

nb(μ, T ) � 2T 3

π2

(
M

T

)2

K2

(
M

T

)
eμ/T � T 3

2

(
2M

πT

)3/2

e(μ−M)/T , (14)

where we have also used the large M/T form of the Bessel function K2(M/T ).
At μ = 0, we can use this to add nucleons and antinucleons to the pions considered
so far for ˇlling the box. From

nπ + 2 nB =
1.22
Vh

(15)

we then ˇnd a limiting temperature of hadronic matter

Th � 230 MeV (16)

slightly lower than for pions alone. The small change is due to the fact that
nucleons amount to only about 6% of all hadrons at μ = 0. If we there wanted
to ˇll the box with only nucleons and antinucleons, we would have to go to the
much higher temperature of about 430 MeV.

Using the approximation (14), we can ask for the value of μ at which the nu-
cleon percolation curve crosses the hadronic limit Th. Solving nB(T = Th, μ) =
2/Vh for μ, we ˇnd μ � 0.8 GeV for the crossing point. The comparative

∗A thermodynamically consistent implementation of hard-core repulsion requires in addition a
shift of μ [18], which for simplicity is neglected here.
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Fig. 3. Limit from massless pion perco-
lation and from that of massive hard-core
nucleons; the curve labelled ©mixtureª in-
dicates the result expected of a combined
percolation study

behavior of the two curves is illustrated
in Fig. 3. It is evident that at low nu-
cleon density, pion percolation limits the
hadronic matter density, while at high
nucleon density, the percolation of hard
spheres and the resulting jamming pro-
vide the limit. It should be emphasized,
however, that the separate calculation of
a (permeable) pion and a (hard-core) nu-
cleon curve is obviously not the ˇnal so-
lution, since a dilute admixture of nucle-
ons and antinucleons contributes in the
low density regime, just pions will help
to reach percolation in the nucleonic re-
gion. We have followed an additive pic-
ture here, since so far (to our knowledge),
continuum percolation studies have been
performed either for permeable spheres or
for spheres with a hard core. Evidently,
what is needed here is a study allowing both types of constituents in a degree
of mixture speciˇed by μ, and this will lead to modiˇcations in the intermediate
region, as schematically included in Fig. 3.

We note here brie�y that we can determine a conˇnementÄdeconˇnement
limit also by comparing the hadronic pressure to that of a quarkÄgluon plas-
ma [17, 20]. Such a comparison leads by construction to a ˇrst-order transition
in the entire TÄμ plane. For μ = 0, we then have

Pπ = 3
π2

90
T 4 (17)

for the pressure of an ideal massless pion gas, to be compared to

Pq = 37
π2

90
T 4 − B (18)

for that of an ideal massless plasma of two quark �avours; here B denotes the bag
pressure specifying the difference between coloured and physical vacua. Equating
the two pressures (see Fig. 4, a) gives

Tc(B) =
(

90
34π2

)1/4

B1/4, (19)

so that by suitably tuning the bag pressure, we can obtain reasonable values for
the transition temperature Tc.
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Fig. 4. Pressure comparison at μ = 0 (a) and at T = 0 (b)

For T = 0, the pressure of extended nucleons is given by

PB(μ, T = 0) =
Pb(T = 0, μ)

1 − nB(T = 0, μ)Ve
, (20)

where nB denotes the corresponding density (Eq. (11)) and Pb is the pressure of
point-like nucleons of mass M [20],

Pb(μ, T = 0) =
(

μ4

6π2

) ⎧⎨
⎩

[
1 −

(
M

μ

)2
]1/2 [

1 − 5
2

(
M

μ

)2
]

+

+
3
2

(
M

μ

)4

ln

[( μ

M

) (
1 +

[
1 − M2

μ2

]1/2
)]}

. (21)

The corresponding expression for massless quarks is

Pq(μ, T = 0) =
1

2π2

(μ

3

)4

− B, (22)

where we have converted the quark baryochemical potential to that of nucleons,
μq = μ/3. Again, we equate the two pressures (see Fig. 4, b) to obtain a critical
baryochemical potential μc(B, Vc). Here one can as well try to tune bag pressure
and hard-core volume to obtain a reasonable threshold.

However, our point in presenting such a toy model hadronÄquark pressure
comparison is not a quantitative determination of Tc(B) and μc(B, Vc). We only
want to illustrate that here in the low baryon density region, the conˇning bag
pressure (as counterpart of the hadron size in percolation) provides the transition
and sets the transition scale, whereas at low temperature and high baryon density,
this is achieved by two competing effects, the conˇning bag pressure and the
hard-core repulsion.
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Obviously, these considerations are a gross oversimpliˇcation, since we have
neglected the resonance interactions of both pions and nucleons, as well as the
role of strange mesons and baryons. We shall include these in the following.

3. THE HADRONIC RESONANCE GAS

For vanishing or low baryon number density, the interactions in a hot hadronic
medium are resonance dominated, and hence the system can be described as
an ideal gas of all possible resonance species [21, 22], contained in an overall
spatial volume V . The grand canonical partition function for such a gas is given
by [23, 24]

ln Z(T, μ, μS, V ) = ln ZM (T, V, μS) + ln ZB(T, μ, μS, V ), (23)

where the ˇrst term gives the meson and the second, the baryon contributions
to the partition function. Baryon number and strangeness are accounted for by
the corresponding chemical potentials μ and μS , respectively. For the meson
contributions, we sum over all possible states i

ln ZM (T, V, μS) =
∑

mesons i

ln Zi
M (T, V, μS), (24)

with

ln Zi
m(T, V, μS) = di

V T

2π2
m2

i

∞∑
n=1

n−2K2

(nmi

T

)
εnSiμS/T , (25)

where di speciˇes the spinÄisospin degeneracy and Si the strangeness of the
state i. For the baryon contributions we have

ln ZB(T, μ, μS , V ) =
∑

baryons i

ln Zi
B(T, μ, μS , V ), (26)

with

ln Zi
B(T, μ, V ) = di

V T

2π2
m2

i

∞∑
n=1

(−1)n+1 n−2 K2

(nmi

T

)
εn(Biμ+SiμS)/T ,

(27)
where Bi is the corresponding baryon number of the state i. The above form
incorporates BoseÄEinstein and FermiÄDirac statistics; the ˇrst term of the sums
in Eqs. (25) and (27) is the Boltzmann limit. In all actual calculations we en-
force both baryon number and strangeness conservation with a vanishing overall
strangeness.
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The resonances are conˇned (colour singlet) qq̄ or qqq states of hadronic
spatial size. As above, we consider the transition from a conˇned to a deconˇned
medium to occur when the hadrons as little bags fuse into one big bag, the quarkÄ
gluon plasma [25]; the critical transition density is given by Eq. (8). If we ignore
for the moment the contribution of baryons and antibaryons, we can estimate the
transition curve in the resonant, low baryon density region by limiting the meson
density nM , obtained from Eq. (25),

nM (T, μ) =
1.22
Vh

� 0.57 fm−3. (28)

This equation can be solved using a resonance gas summation code, summing
over all meson states up to mass 2.5 GeV [23]; it leads for μ = 0 to a transition
temperature Tc � 177 MeV, a value considerably lower than that of pure pion
gas case in the previous section.

Just as in the toy model, however, the temperature obtained from Eq. (28)
is presumably somewhat too high, since we had required the box to be ˇlled by
mesons alone, while in fact baryons and antibaryons can contribute to forming a
connecting cluster of hadronic matter. But including the density of baryons and
antibaryons in the limiting relation (28) gives at μ = 0 a limiting temperature

200

100

0 0.2 0.4 0.6 0.8 1.0

�B, GeV

T, MeV

Fig. 5. Transition line in the resonance
regime

Tc � 170 MeV, only slightly lower,
so that the role of the baryons and an-
tibaryons in establishing the boundary is
again quite small.

If we neglect the interrelation of
strangeness and baryon number due to
associated production, the mesonic part
of the partition function is independent
of μ, and hence Eq. (28) leads to a con-
stant Tc for all μ. Taking associated pro-
duction into account, however, implies
with increasing μ an increasing density
of strange mesons and thus a (slightly)
decreasing temperature. The resulting
behavior is shown in Fig. 5.

The deconˇnement transition in the
resonant region is conceptually a con-
sequence of hadron size and clustering,

leading to the fusion into one connected volume [25], and it occurs, as we saw
above, already for a pion gas, though at a higher temperature. Thus, the existence
of the limit is due to the basic hadronic size [26], the actual value of the transition
temperature to the scale specifying the resonance spectrum [22].
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An interacting hadron medium can be replaced by an ideal resonance gas
only if the interactions are dominantly of resonance nature. As the baryon density
increases, however, there are more and more nonresonant contributions, and in the
limit of low temperature T and large baryochemical potential μ, i.e., for cold and
dense nuclear matter, the nonresonant nuclear forces are the dominant interaction.

We therefore assume as above that in the region of large baryon density, the
jamming of baryons with a hard core deˇnes the limit, so that the relevant rela-

200

100

�B, GeV

T, MeV

Bag fusion

Hard-core repulsion

0 0.5 1.0 1.5

Fig. 6. Bag fusion vs. hard-core transition
lines

tion is Eq. (12). To connect this geo-
metric argument with thermodynamics,
we again follow the van der Waals ap-
proach (11) for baryons and antibaryons,
with Ve = 2Vc and Rc = 0.4 fm.
The resulting hard-core transition curve
is shown in Fig. 6, together with the
bag fusion curve. The TÄμ plane thus
shows two distinct regimes: at low μ,
hadron percolation through bag fusion, at
large μ a ˇrst-order mobility or jamming
transition.

As already mentioned above, the sep-
arate calculation of a bag fusion and a
hard-core curve is only an attempt to ar-
rive at a schematic picture as long as we
do not have continuum percolation stud-
ies for a (μ-determined) mixture of per-
meable spheres with spheres having a hard core. The curve expected from such
a calculation will presumably lead to a transition from one regime to the other at
somewhat lower values of μ. In fact, the baryon density becomes equal to the
meson density at μ � 0.45 GeV, and therefore this may be close to the point at
which the change in the nature of the transition occurs.

4. THE NATURE OF THE TRANSITION

Our considerations up to now speciˇed the limit of hadronic matter, deˇned
as the point of disappearance of the vacuum as a large-scale feature. This point
was determined through percolation studies, and the percolation limit is in gen-
eral not a thermodynamic phase transition. Percolation can thus naturally provide
a way to produce a rapid crossover not associated with any singularity of the
partition function [27, 28]. It should be noted, however, that for spin systems,
thermal critical behavior can be formulated in terms of percolation [29Ä31]. It
seems possible to extend this to gauge systems, and ˇrst such studies relate the
onset of deconˇnement at μ = 0 to Polyakov loop percolation [32], analogous to
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the onset of magnetization as the percolation of spin clusters. Here it is the onset
of large scale disorder, i.e., of the vacuum, which induces critical behavior. From
the conˇned side, we thus have hadronic bag fusion leading to the disappearence
of the physical vacuum, while on the deconˇned side, formation of disordered
clusters in an ordered medium corresponds to the appearence of the vacuum.
Based on the spinÄgauge universality [33], deconˇnement as Polyakov loop per-
colation could occur as ˇrst (SU(3)) or second-order (SU(2)) phase transition,
corresponding to the spontaneous breaking of a global center Z3 or Z2 symmetry.

In the case of hard-core percolation, a connection to thermodynamic critical
behavior has also been discussed [16]. If a system with hard-core repulsion
between its constituents is in addition subjected to a density-dependent negative
background potential, ˇrst order critical behavior can appear. A classical case is
the van der Waals equation. The pressure in our hard-core medium is given by

P (T, μ) =
P0(T, μ)

1 − n(T, μ)Ve
, (29)

where P0 denotes the pressure of point-like constituents. The density n of the
hard-core constituents is given by Eq. (11), and Ve again denotes the random dense
packing volume. If we add to this purely repulsive form the density-dependent
attractive term

PvdW(T, μ) = P (T, μ) − an2, (30)

with constant a, we obtain the van der Waals equation of state with a ˇrst-order
phase transition ending in a second-order critical point speciˇed by the parameters
a and Ve.

5. SUMMARY

We have argued that as function of T and μ, hadronic matter ˇnds itself in two
distinct regimes. At low baryon density, the behavior of the system is governed by
resonance formation and clustering, with hadronic size and resonance spectrum as
relevant parameters. The interaction here is essentially attractive. At high baryon
density, in addition to this, there is a repulsive contribution, on the conˇned side
as nuclear repulsion, on the deconˇned side as Fermi repulsion between quarks.
In our approach, the resulting limit of hadronic matter is in the low baryon density
region determined by the percolation of permeable (overlapping) mesons and at
high baryon density by the percolation of hard-core baryons. In the latter case,
the competition between repulsion and clustering can provide a ˇrst-order phase
transition. In mesonic percolation there is only clustering; while in general not
resulting in thermodynamics critical behavior, it can in speciˇc cases (depending
on details of the dynamics) also result in ˇrst- or second-order phase transitions.
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