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This is a brief survey of the all-years research activity in the Sector ©Supersymmetryª
(the former Markov Group) at the Bogoliubov Laboratory of Theoretical Physics. The
focus is on the issues related to gauge ˇelds, spontaneously broken symmetries in the
nonlinear realizations approach, and diverse aspects of supersymmetry.
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INTRODUCTION

The concepts which composed the title of this paper lie in the ground of mod-
ern mathematical theoretical physics. From their very invention [1Ä7], they are
constantly among the most priority directions of research in Sector 3 of the Labo-
ratory of Theoretical Physics. This Sector was originally named ©Markov Groupª,
after its ˇrst head, Academician Moisei Alexandrovich Markov (1908Ä1994).
Later on, for more than 20 years, it was headed by Professor Victor Isaakovich
Ogievetsky (1928Ä1996) and, since the early 1990s, by the present author. The
aim of the overview is to focus on the milestones of this long-lasting research
activity, with short explanations of their meaning and signiˇcance for further
worldwide developments of the relevant subjects. Besides the studies concentrated
around the title issues, for the years passed since 1956 there were many consid-
erable contributions of Sector 3 members to other areas of theoretical physics, in-
cluding the phenomenology of elementary particles, the conceptual and mathemat-
ical basics of quantum mechanics, the renowned Ising model, etc. The choice of

∗E-mail: eivanov@theor.jinr.ru



GAUGE FIELDS, NONLINEAR REALIZATIONS, SUPERSYMMETRY 943

the topics of this overview was determined by the preferences of the author and the
fact that his scientiˇc interests always bore upon just these lines of investigations.

The structure of the paper is as follows. In Sec. 1, we deal with the period
before invention of supersymmetry. Section 2 describes the most sound results
obtained in the domain of supersymmetry before the advent of Harmonic Super-
space. The latter and related issues are the subject of Sec. 3. In Sec. 4, we give
a brief account of some other contributions of the Dubna group to the directions
related to the title.

Since many signiˇcant achievements go back to the pre-internet era, we de-
scribe them in some detail, with the hope that they could be of interest for the
modern generation of theorists. This concerns the spin principle (Subsec. 1.1), the
©notophª and ©inverse Higgs phenomenonª (Subsecs. 1.2 and 1.6), an interpre-
tation of gravity and YangÄMills theories as nonlinear realizations (Subsecs. 1.5
and 1.7), the complex superˇeld geometry of N = 1 supergravity (Subsec. 2.3),
the relation between the linear (superˇeld) and nonlinear (VolkovÄAkulov) real-
izations of supersymmetry (Subsec. 2.4), and the whole Sec. 3.

The present review partly overlaps with the review [8] which was devoted
mainly to the supersymmetry issues and so had a more narrow scope. Like in [8],
the author apologizes for the inevitable incompleteness of the reference list and
a possible involuntary bias in exposition of the investigations parallel to those
performed in Dubna.

1. GAUGE FIELDS, GRAVITY AND NONLINEAR REALIZATIONS

The ˇrst studies in the directions claimed in the title are dated the early 1960s,
and they were inspired by the invention of non-Abelian gauge ˇelds by Yang and
Mills in 1954 [1]. During a long time since its discovery, the YangÄMills theory
was apprehended merely as a kind of elegant mathematical toy, since no sign
of non-Abelian counterparts of the U(1) gauge ˇeld, photon, was observed and
nobody knew to which class of physical phenomena such a theory could be
applied. The situation changed in the early 1960s after detection of strongly
interacting massive vector bosons. It was suggested that they can be analogs of
photon for strong interactions and can be described by a mass-deformed YangÄ
Mills theory, with the minimally broken gauge invariance∗.

∗Now we know that the genuine theory of strong interactions is the quantum chromodynamics
which is the YangÄMills theory for exact gauged ©colorª SU(3) symmetry, with massless gluons as
the relevant gauge ˇelds. The second cornerstone of the Standard Model is the electroweak theory
which is the YangÄMills theory for the gauge group U(2) = SU(2) × U(1), with the photon and
the triplet of intermediate vector bosons as the gauge ˇelds. The intermediate bosons are massive on
account of the BroutÄEnglertÄHiggs effect within a linear realization of the spontaneous breaking of
U(2) symmetry. This mechanism of appearance of mass of the gauge ˇelds does not break gauge
invariance and preserves the remarkable property of YangÄMills theory to be renormalizable, like
quantum electrodynamics.
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1.1. Spin Principle. The sharp growth of interest in non-Abelian gauge
theories motivated Victor Isaakovich Ogievetsky and Igor Vasil'evich Polubari-
nov (1929Ä1998) (under the approval and support of M.A.Markov) to carefully
elaborate on the nature and role of gauge ˇelds. In the brilliant papers [9Ä11]
they put forward the so-called ©spin principleª as the basis of gauge theories.
Namely, they showed that requiring one or another nonzero spin of ˇeld to be
preserved in the interacting theory uniquely ˇxes the latter as a gauge theory and
the ˇeld with the preserved spin as the relevant gauge ˇeld. The requirement
of preservation of the spin 1 by the massless vector ˇeld uniquely reproduces
Maxwell theory in the Abelian U(1) case and YangÄMills theory in the case of
few vector bosons [9, 10]. Analogously, the theory of self-interacting massless
spin 2 ˇeld proved to be just the Einstein gravity (treated as a ˇeld theory in
Minkowski space-time) [12]. It is the relevant gauge invariances that ensure the
neutralization of super
uous spins which the gauge ˇeld can carry (spin 0 in the
vector ˇeld, spins 0 and 1 in the tensor ˇeld, etc.). Moreover, the spin principle
applied to the theories with the gauge invariance broken by the mass terms ˇxes
the latter in such a way that the ©would-beª gauge ˇeld proves to be coupled to
a conserved current, and this condition ensures the preservation of the given spin
in the massive case as well.

The spin of interacting ˇelds was the pioneer concept introduced by Ogievet-
sky and Polubarinov. Before their papers, it was a common belief that the
quantum numbers of mass and spin characterizing the irreducible representations
of the Poincar�e group are applicable only to the free particles and on shell (with
the evident substitution of the notion of helicity for that of spin for the mass-
less particles). Ogievetsky and Polubarinov were the ˇrst to realize that the spin
square Casimir operator of the Poincar�e group C(2) can equally be deˇned for the
interacting ˇelds, as opposed to the mass square operator∗ C(1) = PmPm, which
cannot take any deˇnite value on the interacting ˇelds.

As an instructive example, we consider the case of vector ˇeld. The Casimir
C(2) obtained as the square of the PauliÄLubanski vector (divided by P 2 �= 0 for
further convenience) is in general expressed as

C(2) =
1
2
SmnSmn − 1

P 2
SmnSq

nPmPq, (1.1)

where Smn = −Snm is the matrix (spin) part of the full Lorentz generator
Jmn = Smn + Lmn, with Lmn = i(xm∂n − xn∂m), and Pm = (1/i)∂m. The
operator P 2 = −� does not take any deˇnite value in the theory with interaction,
P 2 �= 0. For the vector ˇeld bi

m, where i is an index of some internal symmetry,

∗Hereafter, our conventions are as in the book [13]: ηmn = diag (1,−1,−1,−1), ε0123 = 1,
m, n = 0, 1, 2, 3.
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we have (Spq) n
m = i(δp

mηqn − δq
mηpn) and

C(2) bi
m = C n

(2)m bi
n = 2

[
bi
m − 1

�
∂m(∂nbi

n)
]

, (1.2)

i.e., we obtain that the ˇeld bi
m is not an eigenfunction of C(2). Let us decompose

bi
m as

bi
m = bi

m + ∂mφi, bi
m :=

(
δn
m − 1

�
∂m∂n

)
bi
n, φi :=

1
�

(∂nbi
n). (1.3)

It is easy to see that

C(2) bi
m = s(s + 1)bi

m, s = 1, C(2) ∂mφi = 0. (1.4)

Thus, (1.3) is the decomposition of the vector ˇeld bi
m into the transverse (spin 1)

part bi
m and the longitudinal (spin 0) part ∂mφ. The question was how to arrange

a theory in such a way that the vector ˇeld carries only spin 1 in the case of
nontrivial interaction.

Ogievetsky and Polubarinov started from a general Lagrangian for the mas-
sive vector ˇelds interacting with themselves and some matter ˇelds ΨA, where
A = 1, 2, . . . is an index of the same internal symmetry as for bi

m,

L(b, Ψ) = −1
4
Fmn iF i

mn +
1
2
m2bmibi

m + Lint(b, Ψ) + Lfree(Ψ),
(1.5)

F i
mn = ∂mbi

n − ∂nbi
m.

The equations of motion for bi
m read

∂mF i
mn + J i

n + m2bi
n = 0, J i

n :=
∂Lint

∂bi
n

− ∂p
∂Lint

∂(∂pbi
n)

, (1.6)

where it is assumed that Lint(b, Ψ) does not include higher-order derivatives of
bi
m. As the necessary and sufˇcient condition for bi

m to possess only spin 1
in the interacting theory, Ogievetsky and Polubarinov rigorously proved that the
equations of motion (including those for ΨA) should imply

m2 ∂nbi
n = 0. (1.7)

This condition works for both the massive and the massless cases. If m2 �= 0,
one has ∂nbi

n = 0, which just means that C(2)b
i
n = 2bi

n, i.e., bi
n carries only

spin 1. At m = 0, (1.7) is satisˇed at any ∂mbi
m, which means that the latter

quantity is arbitrary and so is not physical. Its arbitrariness is ensured by the
gauge invariance which is thus the device to make bi

m carry only spin 1 in the
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massless case. One can always choose the gauge ∂mbi
m = 0, which implies that

bi
n = bi

n, ∂nbi
n = 0, and so only spin 1 is really carried by the interacting bi

n

(this is true, of course, in any gauge).
The condition (1.7) amounts to the conservation of the current J i

n deˇned
in (1.6),

∂nJ i
n = 0, (1.8)

which means that the spin 1 ˇelds bi
m couple to the conserved current. Using

only this property, Ogievetsky and Polubarinov were able to uniquely restore the
interaction Lagrangian Lint in (1.5). Together with the free F Lagrangian in (1.5)
and modulo the extra ˇelds ΨA, this Lagrangian is reduced in the general case
to a sum of YangÄMills Lagrangian for a semisimple gauge group and a number
of the Abelian U(1) Lagrangians, such that the dimension d{i} of the variety,
where the indices i take their values, equals to the dimension of the adjoint
representation of the YangÄMills gauge group plus the dimension of the Abelian
factors. For instance, if d{i} = 2, only U(1) × U(1) gauge group is possible, if
d{i} = 3, the gauge group is either SU(2) or [U(1)]3, etc∗. For the ˇelds ΨA,
there naturally arise minimal gauge-invariant couplings to the ˇelds bi

m. These
structures are also uniquely ˇxed from the requirement that bi

m are coupled to the
conserved current.

To be more precise, the solution obtained by Ogievetsky and Polubarinov
(ignoring trivial Abelian factors and the matter ˇelds Ψ) is

L(b) = − 1
4g2

Gmn iGi
mn +

1
2
m2bmibi

m,

(1.9)
Gi

mn = ∂mbi
n − ∂nbi

m − ciltbl
mbt

n,

where g is a coupling constant; cilt are the structure constants of some semi-
simple gauge group, with the Hermitian generators T i satisfying the algebra
[T i, T l] = iciltT t. Ignoring the mass term, this Lagrangian is invariant under
the gauge transformations with an arbitrary parameter λi(x): δbi

n = −∂nλi +
cikl bk

nλl. So in the limit m = 0 it becomes the standard massless gauge-
invariant YangÄMills Lagrangian. The mass term breaks the gauge invariance,
but still retains the most important property of bi

n to be coupled to the conserved
current.

It is interesting that the approach based on the requirement of preservation
of spins 1 in the interaction does not assume in advance any gauge group, the
latter naturally arises, when revealing the structure of Lint from this requirement,
as the invariance group of the full Lagrangian constructed in this way, modulo

∗It is assumed that the gauge groups contain no solvable factors.
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the mass term. The systematic use of the condition of coupling of bi
m to the

conserved vector currents plays the crucial role in this derivation of the YangÄ
Mills Lagrangians (both massless and massive) from the spin principle.

The same machinery was used in [12] to derive the Einstein theory as a
theory of symmetric tensor ˇeld carrying the spin 2 in interaction∗. Ogievetsky
and Polubarinov showed that the EinsteinÄHilbert Lagrangian can be consistently
derived by requiring the spin 2 ˇeld to be coupled to the conserved tensor current.
Once again, not only the massless Lagrangian with the exact DiffR4 gauge
symmetry can be restored in this way, but also the appropriate mass deformations
thereof. In both cases, the crucial role was played by the requirement of coupling
to the conserved current. It is worth noting that [12] was one of the ˇrst papers
where the gravity theory was treated on equal footing with other gauge theories
as a ˇeld theory in the 
at background space-time. It is distinguished by the
property of preservation of the deˇnite spin 2 in interaction, quite analogously
to the treatment of the YangÄMills theory as a ˇeld theory of deˇnite spin 1 in
interaction. Now such a treatment of gravity theories, as well as supergravities,
is of common use.

The spin principle-inspired view of gauge invariance as just a way to ensure
a deˇnite spin of the interacting ˇeld proved to be very fruitful for further
developments of gauge theories, including supergravity which is the unique self-
consistent theory of interacting gauge ˇelds of the spin 2 (graviton) and spin 3/2
(gravitino). Actually, in the lectures [11] Ogievetsky and Polubarinov have posed
the question as to what could be the gauge theory in which the RaritaÄSchwinger
ˇeld carries spin 3/2 in the interacting case. They made serious efforts to ˇnd an
answer [14], but failed because nobody was aware of supersymmetry that time.

The careful analysis of how the spin principle is obeyed in the course of quan-
tization, on the examples of quantum electrodynamics and the theory of massive
neutral gauge ˇeld, was accomplished by I. V. Polubarinov in the remarkable re-
view [15]∗∗. There, also a comparative detailed description of various approaches
to quantizing the electrodynamics, including the historically ˇrst ones, was pre-
sented.

1.2. Notoph. While thinking on the group-theoretical grounds of gauge the-
ories, Ogievetsky and Polubarinov discovered a new gauge theory, the gauge
ˇeld of which is an antisymmetric rank two tensor ˇeld still propagating spin 1
off shell and describing on shell a massless particle with zero helicity, the ©no-
tophª [16]. Later on, the notoph was rediscovered by Kalb and Ramond [17].
Now such gauge ˇelds yielding an alternative off-shell description of zero spin,

∗To be more exact, in this case there is an admixture of spin 0. The pure spin 2 in interaction
corresponds to the conformal gravity.

∗∗This review was originally published in Russian as the JINR Preprint P-2421 (1965).
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as well as their higher-rank p-form generalizations, are necessary ingredients of
diverse superstring and supergravity theories.

It is instructive to dwell on the notoph theory in some detail. It is described
by the following Lagrangian:

L = −1
2
AmAm + Lint(fmn, . . .),

(1.10)

Am :=
1
2
εmnpq∂nfpq ⇐⇒ ∂mAm = 0.

The antisymmetric tensor ˇeld fmn is the notoph gauge potential, it possesses the
following gauge transformation law:

δfmn = ∂mλn − ∂nλm, (1.11)

where λm(x) is an arbitrary vector gauge parameter. The vector Am = (1/2)×
εmnpq∂nfpq is the relevant gauge invariant ˇeld strength and the condition
∂mAm = 0 is the corresponding Bianchi identity. The equation of motion for
fmn reads

1
2
εmnst∂sAt = −Jmn or �fmn − ∂m∂pf

pn + ∂n∂pf
pm = 2Jmn, (1.12)

Jmn :=
∂Lint

∂fmn
. (1.13)

For the compatibility of the left-handed and right-handed parts of (1.12), the
tensor current Jmn should be conserved,

∂mJmn = 0. (1.14)

To see how many on-shell degrees of freedom the gauge ˇeld fmn carries,
one should take into account that the gauge freedom (1.11) actually involves
three independent gauge parameters because of the additional freedom λm →
λm + ∂mλ. So the ˇeld fmn involves three independent off-shell degrees of
freedom, like an Abelian gauge ˇeld, and represents spin 1 off shell. On shell,
two additional degrees of freedom are eliminated by two analogs of the Gauss
law in electrodynamics:

Δf0b + ∂0(∂afab) + ∂b(∂af0a) = −2J0b,
(1.15)

Δ = −∂a∂a = ∂a∂a (a, b = 1, 2, 3).

To be convinced that this relation indeed amounts to the two independent equa-
tions, one can check that, in virtue of the conservation law (1.14), ∂aJ0a = 0,



GAUGE FIELDS, NONLINEAR REALIZATIONS, SUPERSYMMETRY 949

only the transverse part f0b
tr of f0b, ∂bf

0b
tr = 0, gives contribution to (1.15). As

a result, we conclude that fmn indeed comprises only one degree of freedom
on shell.

An alternative way to demonstrate that the notoph presents just another de-
scription of massless particle with zero helicity is to perform the duality trans-
formation relating the notoph theory to the theory of a single scalar ˇeld. For
simplicity, we limit ourselves to the free theory, Lint = 0, and modify the
free Lagrangian in (1.10) by adding to it, with the Lagrange multiplier ϕ, the
4-divergence ∂mAm going to become the Bianchi identity:

L0 = −1
2
AmAm =⇒ Ldual = −1

2
AmAm + ϕ∂mAm. (1.16)

When varying Ldual with respect to ϕ, we obtain the Bianchi identity ∂mAm = 0,
after solving which through fmn as in (1.10), the free Lagrangian of notoph is
recovered. On the other hand, eliminating Am from (1.16) by its algebraic
equation of motion, Am = −∂mϕ, we obtain the free kinetic Lagrangian of the
scalar ˇeld ϕ

Ldual =⇒ Lϕ =
1
2
∂mϕ∂mϕ. (1.17)

Note that in the case of nontrivial Lint this duality holds in a local way only if
Lint depends on fmn through the covariant gauge ˇeld strength. So in general
the descriptions of the massless spin-zero particle through the scalar ˇeld and
through the notoph ˇeld result in physically nonequivalent theories. It is just the
description by the antisymmetric gauge ˇelds that naturally appears in superstring
theory and some extended supergravities.

One more interesting property of the notoph theory is that its massive version
is equivalent to the massive deformation of the Abelian U(1) theory and so de-
scribes three independent degrees of freedom on shell. Once again, for simplicity
we will consider the case without interaction and modify the free action of the
notoph as

L0 = −1
2
AmAm =⇒ L(m) = −1

2
AmAm − 1

4
m2fmnfmn,

(1.18)

Am =
1
2
εmnpq∂nfpq.

The equation of motion (1.12) is modiˇed as

�fmn − ∂m∂pf
pn + ∂n∂pf

pm + m2fmn = 0. (1.19)

Now the notoph gauge invariance is broken. Instead, Eq. (1.19) implies the
transversality condition ∂mfmn = 0. It is easy to see that this equation actually
amounts to three independent conditions (because ∂m∂nfmn = 0 is satisˇed
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identically), thus demonstrating that the massive fmn indeed propagates three
independent degrees of freedom on shell. We can dualize (1.18) as

L(m) = −1
2
AmAm − 1

4
m2fmnfmn =⇒ Ldual

(m) =
1
2
AmAm+

+
1
2
Amεmnpq∂

nfpq − 1
4
m2fmnfmn, (1.20)

where now Am is treated as an independent auxiliary ˇeld. Varying with respect
to Am, we come back to the theory (1.18). On the other hand, varying with
respect to fmn, we obtain

fmn = − 1
m2

εmnpq∂
pAq. (1.21)

Substituting it into (1.20), we obtain, up to a rescaling

Ldual
(m) = −1

4
FmnFmn +

1
2
m2AmAm, Fmn = ∂mAn − ∂nAm. (1.22)

Thus, both the theory of gauge Abelian vector ˇeld describing on shell two
degrees of freedom (helicities ±1) and the gauge theory of notoph describing on
shell one degree of freedom (zero helicity) after the minimal mass deformation
yield the same theory of massive spin 1 which propagates three degrees of freedom
on shell. So these two gauge theories are complementary to each other in the
sense that the full set of helicities of the relevant particles equals to the set of
the projections of the massive spin 1. So they can be treated as two different
massless limits of the Abelian massive spin 1 theory∗.

Though notoph is a necessary mathematical ingredient of supergravities and
string theory, it is still an open question whether it could manifest itself in a more
phenomenological context as an elementary particle, like the standard vector
gauge ˇelds (photon, intermediate vector bosons, etc.). The authors of [16]
indicated a few possible processes where the notoph could be produced, but no
sign of it was detected so far. Despite the fact that the Standard Model and
its currently discussed generalizations have seemingly no direct need in such an
entity, nevertheless, to our knowledge, no no-go theorem against such a possibility
was adduced.

1.3. Spinors in the Gravitation Theory. One more important and far-
reaching result of the OgievetskyÄPolubarinov collaboration concerned the de-
scription of spinors in general relativity. They showed [18] that there is no direct
necessity to introduce the orthogonal repere (vierbein) in order to construct the

∗This complementarity does not generalize to the non-Abelian case, at least in a direct way.
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invariant coupling of Dirac ˇelds to the gravitons; this can be done in a minimal
way by ascribing, to spinorial ˇelds, the nonlinear in graviton transformation
law under the space-time diffeomorphism group, without introducing any extra
entities. Actually, [18] anticipated the nonlinear realizations method which was
discovered and applied for description of spontaneously broken symmetries in
the low-energy strong interactions (©chiral dynamicsª) by Schwinger, Weinberg,
Volkov, and others in a few years. Also, it was the ˇrst step towards interpreting
gravity as a theory of two spontaneously broken space-time symmetries, the afˇne
and conformal ones, by Borisov and Ogievetsky [19].

1.4. Nonlinear Realizations and Chiral Dynamics. V. I. Ogievetsky, together
with his PhD student Boris Zupnik (1945Ä2015), took an active participation in
developing and applying the above-mentioned nonlinear realization and effective
Lagrangian methods of describing various low-energy systems. In particular,
they proposed a new general method of constructing nonlinear realizations of the
groups U(N) [20], before the appearance of the seminal papers on the general
theory of nonlinear realizations [2, 3]. Also, a new effective Lagrangian was
proposed to describe the (π, ρ, A1) system, with the maximally smooth momentum
behavior of the corresponding amplitudes [21]. This model found a few interesting
and unexpected applications, in particular, it was used to calculate contributions
of the so-called exchange currents in some nuclear reactions [22].

1.5. Einstein Gravity from Nonlinear Realizations. As a natural continuation
of this research activity, Ogievetsky soon got interested in applying the nonlinear
realizations method, developed in [2] basically for internal symmetries, to the
space-time symmetry groups including the Poincar�e group as a subgroup [3, 4].
Studying the structure of the diffeomorphism group in R4 , he discovered that this
inˇnite-dimensional group can be nicely represented as a closure of its two ˇnite-
dimensional subgroups, afˇne and conformal ones, intersecting over the common
Weyl subgroup (the semidirect product of the Poincar�e group and dilatations) [23].
This remarkable observation is now known as the Ogievetsky theorem. It has
many applications, in particular, in supergravity and M -theory (see, e.g., [24] and
references therein).

To explain the meaning of this theorem, let us write the special conformal
transformation in the Minkowski space,

δβxm = βmx2 − 2(β · x)xm, (1.23)

where βm is the transformation parameter of the mass dimension, and the general
linear gl(4, R) transformation

δλxm = −Λm
nxn, (1.24)

where the constant dimensionless parameters Λm
n form a real 4×4 matrix compris-

ing 16 independent parameters. The transformations (1.24) involve 6-parameter
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transformations with the antisymmetric matrix Λ[mn], which form the Lorentz
subalgebra so(1, 3) in gl(4, R), and the 10-parameter transformations with the
symmetric matrix Λ(mn), which belong to the symmetric coset of the group
GL(4, R) over the Lorentz group SO(1, 3). One can also add the translations
of xm, which complete gl(4, R), to the afˇne algebra A(4). The translations,
together with the Lorentz transformations and dilatations, also extend (1.23) to
the 4-dimensional conformal algebra so(4, 2).

Let us now deˇne the generators corresponding to (1.23) and symmetric part
of (1.24),

Kn := −i
(
x2δm

n − 2xmxn

)
∂m, Rst := −i(xs∂t + xt∂s), (1.25)

and compute their commutator, [Kn, Rst]. In this commutator, besides the gen-
erator Kn, we ˇnd new generators of the second order in xm:

∼ ηnsxt(xp∂p), ∼ xsxt∂n. (1.26)

Commuting these new generators with Kn, Rst and themselves, we encounter
new generators of the third order in xm, etc. V. I. Ogievetsky has proved that
this process does not terminate at any ˇnite step and produces the whole set of
generators

Ln1n2n3n4
m = (x0)n1(x1)n2(x2)n3(x3)n4∂m, (1.27)

constituting the inˇnite-dimensional diffeomorphism group∗ Diff R4

δxm = fm(x) =
∑

n1,n2,n3,n4

c{n1n2n3n4}m(x0)n1(x1)n2(x2)n3(x3)n4 . (1.28)

Here n1, . . . , n4 are arbitrary non-negative integers, ni � 0, and c{n1n2n3n4}m

are constant parameters.
Based on this theorem, Ogievetsky with his PhD student Alexander Borisov

constructed the sigma-model-type theory invariant under the simultaneous nonlin-
ear realizations of the afˇne and conformal groups and showed that this theory is
nothing else as the Einstein gravitation theory [19]. Let us recall the basic details
of their construction.

The starting point is two algebras, afˇne and conformal, involving, respec-
tively, the generators (Pm, Lmn, Rmn) and (Pm, Kn, Lmn, D) with the following

∗To be more exact, the connected subgroup of Diff R4 consisting of all transformations ex-
pandable in the Taylor series around the origin xm = 0.
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commutation relations∗:

[Lmn, Lpq] = i
(
ηnpLmq − ηmpLnq − (p ↔ q)

)
,

[Lmn, Rpq] = i
(
ηnpRmq − ηmpRnq + (p ↔ q)

)
,

(1.29)
[Rmn, Rpq] = i

(
ηmpLnq + ηnpLmq + (p ↔ q)

)
,

[Lmn, Pq] = i
(
ηnqPm − ηmqPn

)
,

[Rmn, Pq] = i
(
ηnqPm + ηmqPn

)
,

[Pm, Pn] = [Km, Kn] = 0, [D, Pm] = iPm, [D, Km] = −iKm,
(1.30)

[Lmn, Kq] = i
(
ηnqKm − ηmqKn

)
, [Pm, Kn] = 2i

(
ηmnD + Lmn

)
.

These two algebras intersect over the Weyl algebra (Ps, Lmn, D = (1/2)Rm
m).

As the next step, the authors of [19] constructed a nonlinear realization of
the afˇne group A(4) in the coset space over the Lorentz subgroup,

A(4)
SO(1, 3)

∼ {Pm, Lmn, Rmn}
{Lmn}

, (1.31)

with the following parameterization of the coset element:

G(x, hmn) = eixmPm exp
(

i

2
hmn(x)Rmn

)
, (1.32)

where hmn(x) is the symmetric tensor Goldstone ˇeld. Under the left multipli-
cations by the element g of A(4), the coset representative is transformed as

G′(x′, h′) = eixm′Pm exp
(

i

2
hmn′(x′)Rmn

)
=

= g G(x, h) exp
(
− i

2
umn(x, h, g)Lmn

)
, (1.33)

where umn(x, h, g) is the induced Lorentz group parameter. In particular, left
multiplications by exp

(
(i/2)λ[mn]Lmn

)
and exp

(
(i/2)λ(mn)Rmn

)
yield for xm

the transformations (1.24), with Λmn = λ[mn] + λ(mn). According to the general
prescriptions of nonlinear realizations, one can now construct the left-covariant
Cartan one-forms

G−1dG = iωm
(P )Pm +

i

2
ωmn

(R)Rmn +
i

2
ωmn

(L)Lmn. (1.34)

∗We use slightly different conventions as compared to [19]. They are the same as in [13].
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The form ωm
(P ) is calculated to be

ωm
(P ) = em

p dxp,

em
p =

(
exp

(
i

2
hstR̂st

))m

p

= (eh)m
p = δm

p + hm
p +

1
2
hn

phm
n + . . . , (1.35)

(R̂st)m
p = −i(ηspδ

m
t + ηtpδ

m
s ).

The external product of four forms ωm
(P ) deˇnes the invariant R4 volume element,

Vol R4 = det em
p d4x = ehm

m d4x, the form ωmn
(R) deˇnes the covariant derivative

of the tensor Goldstone ˇeld hmn, ωmn
(R) = ωs

(P )∇sh
mn, and the inhomogeneously

transforming form ωmn
(L) Å the covariant differential and the covariant derivative

of the ©matterª ˇeld ΨA transforming by some irreducible representation of the
Lorentz group with the matrix generators (Smn)A

B:

DΨA = dΨA +
i

2
ωmn

(L)(Smn)A
BΨB := ωs

(P )DsΨA, (1.36)

DsΨA = (e−1)p
s∂pΨA +

i

2
Vmn

s (Smn)A
BΨB, ωmn

(L) := ωs
(P )Vmn

s . (1.37)

All these objects were explicitly computed in [19]. An important observation
was that the Lorentz connection in (1.37) can be generalized, without affecting
its transformation properties, by adding three independent combinations of the
covariant derivatives ∇ph

mn

Vmn,s ⇒ Vgen
mn,s = Vmn,s + α1 ∇[mhn]s + α2 ηs[m∇n]h

p
p+

+ α3 ηs[m∇ph
p
n]. (1.38)

The next step was the analogous construction of nonlinear realizations of the
conformal group in the coset with the same stability subgroup

SO(2, 4)
SO(1, 3)

∼ {Pm, Lmn, Kn, D}
{Lmn}

,

(1.39)
G̃(x, σ, ϕ) = eixmPm eiϕm(x)Km eiσ(x)D.

The conformal group is realized by left shifts on the coset element G̃(x, σ, A).
In particular, the left multiplication by eiβmKm generates for xm just the trans-
formation (1.23). The left-covariant Cartan forms are deˇned by

G̃−1dG̃ = iω̃m
(P )Pm + iω(D)D + iωm

(K)Km +
i

2
ω̃mn

(L)Ln. (1.40)

They can be easily computed. In particular,

ω̃m
(P ) = eσdxm, ω(D) = dσ−2ϕmdxm, ω̃mn

(L) = 2(ϕmdxn−ϕndxm). (1.41)
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Taking into account that σ = (1/4)hm
m (because of the identiˇcation D =

(1/2)Rm
m), we observe that the invariant volume Vol R4 is the same in both

nonlinear realizations

Vol R4 = e4σd4x = ehm
md4x.

The vector Goldstone ˇeld ϕm(x) is unessential, as it can be covariantly elimi-
nated by equating to zero the Cartan form ω(D):

ω(D) = 0 ⇒ ϕm =
1
2
∂mσ (1.42)

(this is a particular case of the ©inverse Higgs phenomenonª, see the next subsec-
tion). The covariant derivative of the ©matterª ˇelds is given by the expression

D̃mΨA = e−σ
(
∂mΨA − i∂nσ(Sn

m)A
BΨB

)
. (1.43)

As the last step in deriving the Einstein gravity, the authors of [19] an-
alyzed the issue of simultaneous covariance under both nonlinear realizations
constructed. As a consequence of the Ogievetsky theorem, the theory exhibiting
such a covariance should be invariant under the full Diff R4 group.

The A(4) Goldstone ˇeld hmn can be divided as hmn = ĥmn+(1/4)ηmnhp
p =

ĥmn + ηmnσ, where the traceless tensor ˇeld ĥmn can be treated as a ©matterª
ˇeld with respect to the nonlinear realization of the conformal group. Then one
requires that the A(4) covariant derivative (1.37) with the generalized Lorentz
connection (1.38) involves the dilaton ˇeld σ and its derivatives only through the
conformal covariant derivative (1.43). This requirement uniquely ˇxes the coef-
ˇcients in (1.38) as α1 = −2, α2 = α3 = 0. The resulting covariant derivative
is simultaneously covariant under the nonlinear realizations of both afˇne and
conformal groups and hence under their closure Diff R4. Borisov and Ogievet-
sky also showed that no combinations of the A(4) covariant derivatives ∇sh

mn

exist, such that they are covariant under the conformal group. The latter property
corresponds to the well-known fact that in the Riemannian geometry no tensors
involving the ˇrst derivative of the metric tensor can be constructed. The ˇrst
nontrivial tensor contains two derivatives and in the formulation of [19] it is
constructed as the covariant curl of the Lorentz connection Vgen

mn,s:

(DmDn −DmDn)ΨA =
i

2
Rpq

mn(Spq)A
BΨB. (1.44)

Since Rpq
mn undergoes the induced Lorentz rotation with respect to all of its

indices, the object R := Rmn
mn is invariant under the simultaneous nonlinear

realizations of the afˇne and conformal groups and hence under the group Diff R4.
It can be represented as the standard Riemann scalar curvature with the metric

gmn = ep
menp = (eihsqR̂sq) p

m ηnp = ηmn + 2hmn + . . . , (1.45)
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having the standard transformation properties under the coordinate transforma-
tions, δgmn = −∂mδxpgpn − ∂nδxpgmp. The minimal invariant action coincides
with the EinsteinÄHilbert action

− 1
16πG

∫
d4x

√
−g R, (1.46)

where G = (1/4π)f2 and the constant f , [f ] = 1, arises as the result of the
standard rescaling of the dimensionless Goldstone ˇeld hmn, hmn → fhmn. The
couplings to matter ˇelds are constructed using the covariant derivative (1.37) with
the connection Vgen

mn,s (with the ˇxed coefˇcients ensuring the conformal group
covariance). The connection Vgen

mn,s can be related to the Christoffel symbols. The
nonlinear transformation law for spinors deduced in [18] immediately follows
from the general transformation law of matter ˇelds in the realization (1.33), with
the induced Lorentz parameter,

δΨA =
i

2
umn(h)(Smn)A

BΨB, (1.47)

upon specializing, e.g., to the (1/2, 0) spinor representation, with (1/2)(σmn)α
β

as the spin part of the Lorentz generators. In fact, the theory obtained in [19] can
be reproduced from the Einstein theory formulated in terms of vierbeins ea

m by
gauge-ˇxing the local Lorentz rotations in the tangent space in such a way that
the antisymmetric part of ea

m vanishes.
The work [19] turned out very important in the conceptual sense, because

it exposed, for the ˇrst time, the double nature of the spin 2 graviton ˇeld. On
the one hand, it is a gauge ˇeld for the diffeomorphism group (modulo some
subtle issues, see Subsec. 1.8) and, on the other hand, as follows from [19],
it is the tensorial Goldstone ˇeld accompanying the spontaneous breakdown of
the ˇnite-dimensional afˇne and conformal groups. Later on, it was shown
that any gauge ˇeld can be interpreted as a Goldstone ˇeld associated with
some inˇnite-dimensional global symmetry [25] (see Subsec. 1.7). The space-
time diffeomorphisms are distinguished in that they can be represented as a
closure of two ˇnite-dimensional groups, while there is no analogous theorem
for the YangÄMills type gauge groups. As was shown in [26, 27], the super
YangÄMills and supergravity theories (at least, the simple N = 1, 4D ones)
can also be reproduced from the nonlinear realizations of some supergroups.
The interpretation of the YangÄMills and graviton ˇelds, as well as their super
YangÄMills and supergravity counterparts, as the Goldstone (super)ˇelds, and the
associate (super)gauge and (super)gravity theories as nonlinear realizations, posed
a natural question as to what could be linear realizations of these groups and which
generalizations of linear sigma models of the underlying spontaneously broken
symmetries could correspond to such realizations. Until now, there is no answer
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to this question. Since in such hypothetical theories the YangÄMills and/or gravity
ˇelds should appear inside some linear multiplets, while the symmetry generators
carry the Lorentz indices, these multiplets should be inˇnite-dimensional and
include ˇelds with higher spins. So these hypothetical theories should be a sort
of higher-spin or string-like theories (M-theory?). Note that in the nonlinear
realization formulation the space-time coordinate xm itself appears as a coset
parameter. In the conjectured linear multiplets it should be present on equal
footing with those components which are going to become Goldstone ˇelds after
spontaneous breaking.

1.6. Inverse Higgs Phenomenon. The classical NambuÄGoldstone theorem
claims that, to any generator of spontaneously broken symmetry in the quan-
tum ˇeld theory, there should correspond a massless Goldstone ˇeld with the
inhomogeneous transformation law under this generator, such that it starts with
the relevant transformation parameter. The basic result of [28] was the obser-
vation that in nonlinear realizations of space-time symmetries certain Goldstone
ˇelds can be covariantly traded for space-time derivatives of some minimal set
of such ˇelds, and there were established the general criteria under which this
becomes possible. The condition under which the given Goldstone ˇeld admits
an elimination is that the commutator of the space-time translation generator with
the corresponding spontaneously broken generator again yields a spontaneously
broken generator. This phenomenon was called ©inverse Higgs phenomenonª or
©inverse Higgs effectª. It proved to work with an equal efˇciency in the super-
ˇeld theories as well. Now it is of indispensable use in theories with nonlinear
realizations of space-time (super)symmetries.

As an example of inverse Higgs effect, let us reproduce the massive particle
(0-brane) in the 
at 2D space-time by the nonlinear realization method applied to
the 2D Poincar�e group P(2) [29]. The latter involves two translation generators
P0, P1 and the SO(1, 1) Lorentz generator L, with the only two nonvanishing
commutators

[L, P0] = iP1, [L, P1] = iP0. (1.48)

Then we construct a nonlinear realization of P(2), with the one-dimensional
©Poincar�eª generator P0 as the only one to which a coordinate (time) is associated
as the coset parameter. Two other generators pick up as the relevant parameters
the ©Goldstoneª ˇelds X(t) and Λ(t), giving rise to the following coset element:

G = eitP0 eiX(t)P1 eiΛ(t)L. (1.49)

The group P(2) acts as left shifts of G, G → G′ = eiaP0 eia1P1 eiσLG. The
Cartan forms

G−1 dG = iω0P0 + iω1P1 + iωLL, (1.50)
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ω0 =
√

1 + Σ2 dt + Σ dX, ω1 =
√

1 + Σ2 dX + Σ dt,
(1.51)

ωL =
1√

1 + Σ2
dΣ, Σ ≡ sh Λ

by construction are invariant under this left action. We observe that the Lorentz
Goldstone ˇeld Σ(t) can be traded for Ẋ(t) by the inverse Higgs constraint

ω1 = 0 ⇒ Σ = − Ẋ√
1 − Ẋ2

. (1.52)

This constraint is covariant, since ω1 is the group invariant (in the generic case,
the coset Cartan forms undergo homogeneous rotation in their stability subgroup
indices). Thus, the obtained expression for Σ possesses correct transformation
properties∗. Substituting it into the remaining Cartan forms, we ˇnd

ω0 =
√

1 − Ẋ2 dt, ωL =
√

1 − Ẋ2
d

dt

(
Ẋ√

1 − Ẋ2

)
dt. (1.53)

The simplest invariant action, the covariant length

S =
∫

ω0 =
∫

dt
√

1 − Ẋ2, (1.54)

is recognized, up to a renormalization factor of the dimension of mass, as the
action of 2D massive particle in the static gauge X0(t) = t.

Another text-book example of how the inverse Higgs phenomenon works is
the derivation of the AlfaroÄFubiniÄFurlan conformal mechanics from the non-
linear realization of the d = 1 conformal group SO(2, 1) ∼ SU(1, 1) [30]. Its
important application in constructing nonlinear realizations of 4D conformal group
was already discussed in the previous subsection. Its use is crucial for deducing
the superˇeld actions of branes in the approach based on the concept of partial
spontaneous breaking of global supersymmetry (PBGS) (see, e.g., [31] and refer-
ences therein). In the PBGS models, this effect has also dynamical manifestations,
giving rise, in some cases, to the equations of motion as the result of equating to
zero some appropriate Cartan forms (see, e.g., [32]). Such an extended inverse
Higgs effect was also applied for deducing some two-dimensional integrable sys-
tems from nonlinear realizations of (super)groups (see, e.g., [33,34]) and deriving
new kinds of superconformal mechanics in the superˇeld approach [35]. Recently,
it was applied for construction of the Galilean conformal mechanics in [36].

∗The possibility to eliminate the ˇeld Σ (or Λ) follows from the criterion of the elimination
mentioned earlier. Indeed, the commutator of the time-translation operator P0 with the broken
generator L yields the broken generator P1 (see (1.48)).
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The inverse Higgs phenomenon plays the key role in proving that any gauge
theory, like the gravitation theory, admits an alternative interpretation as a theory
of spontaneous breakdown, with the gauge ˇelds as the corresponding unremov-
able Goldstone ˇelds [25].

1.7. YangÄMills Theory as a Nonlinear Realization. The basic idea of [25]
was to represent the YangÄMills gauge group∗ as a group with constant parameters
and an inˇnite number of tensorial generators.

One starts with some internal symmetry group with the generators T i,

[T i, T k] = iciklT l, (1.55)

and decomposes λi(x)T i as

λi(x)T i = λiT i +
∑
n�1

1
n!

λi
m1···mn

xm1 · · ·xmnT i. (1.56)

Denoting T (m1···mn)i := xm1 · · ·xmnT i, we indeed can rewrite the gauge para-
meter with values in the Lie algebra (1.55) as

λi(x)T i = λiT i +
∑
n�1

1
n!

λi
m1···mn

T (m1···mn)i, (1.57)

i.e., as a particular representation of the inˇnite-dimensional algebra generated
by T (m1···mn)i. Viewed as the abstract algebra, this set of generators, together
with the 4-translation generator Pm = (1/i)∂m, is closed under the commutation
relations

[T (m1···mn)i, T (p1···ps)k] = iciklT (m1···mnp1···ps)l, n � 1, s � 1,

[T i, T (m1···mn)k] = iciklT (m1···mn)l, (1.58)

[Pn, T m i] = −iδm
n T i,

[Pn, T (m1···mk)i] = −i
(
δm1
n T (m2···mk)i + . . . + δmk

n T (m1···mk−1)i
)
, k � 2,

(1.59)
to which one should add (1.55). With respect to the Lorentz group, the generators
T (m1···mn)i, n �, form symmetric tensors of the rank n. In fact, the Lorentz group
can be considered as external automorphisms of the algebra of the remaining
generators and so it decouples.

The full inˇnite-dimensional group involving the abstract generators(
Ps, T

i, T (m1···mn)k
)

can be called K. By analogy with the interpretation of

∗To be more exact, the connected component of the full gauge group, spanned by the gauge
functions admitting a decomposition into the Taylor series in a vicinity of xm = 0.
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the Einstein gravity as a nonlinear realization of the group Diff R4, it was sug-
gested in [25] that the YangÄMills theory can be interpreted as the appropriate
nonlinear realization of K. An essential difference from the case of gravity is that
K cannot be obtained as a closure of any two ˇnite-dimensional subgroups. Ac-
tually, the only closed nontrivial subgroup of K is the original internal symmetry
group G0 generated by T i subjected to (1.55). So the appearance of an inˇnite
number of Goldstone ˇelds in any nonlinear realization of K seems inevitable.
Fortunately, most of such ˇelds are eliminated by the inverse Higgs effect.

Thus, let us consider the realization of K by the left shifts on the coset
manifold K/G0. The coset element can be written as

G(x, b) = eixmPm exp

⎛
⎝i
∑
n�1

1
n!

bi
m1···mn

(x)T (m1···mn)i

⎞
⎠ (1.60)

and under the left K multiplications is transformed as

G(x, b′) = gG(x, b) e−iui(x,b,g)T i

,
(1.61)

g = eiakT k

exp

⎛
⎝i
∑
n�1

1
n!

ak
m1···mn

T (m1···mn)k

⎞
⎠ .

The ©matterª ˇelds Ψα, in accord with the general rules of nonlinear realiza-
tions [2], are transformed as

Ψα′ = (eiui(x,b,g)T̂ i

)α
βΨβ, (1.62)

where T̂ i is the matrix realization of the generators T i in the representation of
G0 by which Ψα is transformed.

The ˇrst factor in g (1.61) just homogeneously rotates all ˇelds with re-
spect to the adjoint representation index i, so ui(x, b, g) = ai in this case
and (1.62) yields global G0 transformation of Ψα. The parameters of the
second factor generate some nonlinear inhomogeneous transformations of the
coset ˇelds like δbi

m1···mn
(x) = ai

m1···mn
+ O(b). Using the commutation

relations (1.58) and (1.59), it is rather direct to establish that uk(x, b, g) =∑
n�1

1
n!

ak
m1···mn

xm1 · · ·xmn := λk(x) in this case. In other words, the induced

G0 transformation is just the standard G0 gauge transformation. Where is then
the gauge ˇeld? To answer this question, we need to construct the corresponding
Cartan forms and the covariant derivative of Ψα

G−1dG = idxmPm+iVk
mdxmT k+i

∑
n�1

1
n!

∇sb
k
(m1···mn)dxsT (m1···mn)k, (1.63)
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DmΨα = ∂mΨα + iVk
m(T̂ k)α

βΨβ. (1.64)

It is easy to compute

Vk
m = bk

m, ∇mbi
n = ∂mbi

n + bi
(mn) −

1
2
ciklbk

mbl
n, (1.65)

∇sb
i
(m1···mn) = ∂sb

i
(m1···mn) + . . . , (1.66)

δbi
m = −∂mλi + ciklbk

mλl, δ∇mbi
n = cikl(∇mbk

n)λl, etc. (1.67)

From (1.64), (1.65), and (1.67) we observe that bi
m possesses the standard trans-

formation properties of the YangÄMills ˇeld and enters the covariant derivative of
Ψα in the right way. Further, we observe that the skew-symmetric and symmetric
parts of the covariant derivative ∇mbi

n,

2∇[mbi
n] = ∂mbi

n − ∂nbi
m − ciklbk

mbl
n,

(1.68)
2∇(mbi

n) = ∂mbi
n + ∂nbi

m + 2bi
(mn),

are covariant separately. The skew-symmetric part is just the covariant ˇeld
strength of bi

m, while the symmetric part can be put equal to zero, yielding the
inverse Higgs expression for bi

mn

∇(mbi
n) = 0 ⇒ bi

(mn) = −∂(mbi
n). (1.69)

As follows from (1.58) and (1.59), the commutators of Pm with all spontaneously
broken generators T (m1···mn)i, besides T m i, contain the generators of the same
(spontaneously broken) type, so all the related Goldstone ˇelds can be eliminated
by the inverse Higgs effect. This can be accomplished, like in (1.69), by equating
to zero the totally symmetric parts of the appropriate covariant derivatives

∇(sb
i
m1···mn) = 0. (1.70)

The commutator (1.58) yields the generator of the stability subgroup, so the Gold-
stone (gauge) ˇeld bi

m cannot be eliminated, and it is the only ©trueª Goldstone
ˇeld in the considered case.

In [37], a general solution of (1.70) was found. The abstract algebra K was
realized as∗

Pm =
1
i

∂

∂ym
, T (m1···mn)i = ym1 · · · ymnT i, (1.71)

∗Our conventions here are slightly different from those in [37].
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where ym is some new 4-vector coordinate. Then the coset element (1.60) can
be rewritten in the concise form as

G(x, y) = eixmPm eibk(x,y)T k

,
(1.72)

bk(x, y) =
∑
n�1

1
n!

bk
(m1···mn)(x) ym1 · · · ymn , bk(x, 0) = 0,

while the covariant derivatives of the Goldstone ˇelds corresponding to the Cartan
forms, (1.64) as

e−ibk(x,y)T k

(∂x
m + ∂y

m) e−ibk(x,y)T k

= iωk
m(x, y)T k,

(1.73)

ωk
m(x, y) = bk

m(x) +
∑
n�1

1
n!
∇mbk

(m1···mn)(x) ym1 · · · ymn .

The inverse Higgs constraints (1.70) in this formalism are rewritten as

ym(∂x
m + ∂y

m) e−ibk(x,y)T k

= −iymbk
m(x)T k e−ibk(x,y)T k

(1.74)

and are solved by

e−ibk(x,y)T k

= P exp

⎧⎨
⎩i

x∫
x−y

bk
m(ξ)T k dξm

⎫⎬
⎭ , (1.75)

where P denotes ordering in the matrices T i along the straight line connecting
the points (x − y)m and xm. This representation could be suggestive for identi-
fying the hypothetical linear sigma model for gauge ˇelds corresponding to the
nonlinear realization constructed above.

To summarize, all gauge theories including gravity and YangÄMills theory,
correspond to the spontaneous breaking of some underlying symmetry, ˇnite- or
inˇnite-dimensional, and can be consistently derived by applying the general non-
linear realizations machinery to these symmetries. The inverse Higgs phenomenon
plays a crucial role in this derivation.

1.8. Gravitation Theories as Gauge Theories. Finally, it is worth mentioning
here the papers [38,39] closely related to the circle of problems discussed in this
section.

Actually, for a long time there were certain difˇculties with the treatment of
gravitation theories as gauge theories. The most direct analogy with the YangÄ
Mills theories is achieved, when treating gravity as a gauge theory associated
with local symmetries in the tangent space, rather than with Diff R4 obtained by
gauging rigid space-time symmetries, like xm-translations and Lorentz rotations.
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The basic objects in such formulations are the direct and inverse vierbeins ea
m

and ema treated as gauge ˇelds for some translation-like generators in the tan-
gent space. The basic problem with such formulations was how to covariantly
eliminate other gauge ˇelds associated with these tangent-space groups, which
include some other generators in parallel with the translation-like ones. In our
papers [38, 39] with Jiri Niederle (1939Ä2010), the correct way of deriving var-
ious versions of gravitation theories by gauging the groups in the tangent space
was formulated. It was shown there how to construct the correct formulations
which make manifest the deep analogies of the gravitation theories with the stan-
dard YangÄMills theories and ensure the covariance of the conditions eliminating
the redundant gauge ˇelds (actually, these constraints are quite similar to the
inverse Higgs conditions). One should treat the tangent space gauge groups as
spontaneously broken ones, with some additional Goldstone ˇelds associated to
the translation-like generators∗. Then the vierbeins are to be identiˇed with the
covariant derivatives of such ˇelds, rather than directly with the gauge ˇelds
(e.g., in the Einstein gravity, ea

m = ∂mφa + . . ., where φa(x) is the Goldstone
ˇeld parameterizing the spontaneously broken tangent space 4-translations). The
standard gravity theories naturally come out after choosing the ©solderingª gauge,
in which these extra Goldstone ˇelds are identiˇed with the space-time coordi-
nates. It was also explicitly shown that the diverse gravity theories which differ
in the maximally symmetric classical backgrounds (e.g., Weyl, Poincar�e, de Sitter
and anti-de Sitter gravities, etc.) correspond to gauging different tangent space
groups having as the common important feature the presence of some sponta-
neously broken translation-like generators (in general, corresponding to curved
©translationsª).

2. SUPERSYMMETRY: EARLY YEARS

The invention of supersymmetry in the early 1970s [5Ä7] sharply in
u-
enced the further fate of the mainstream research activity in the Markov Group.
V. I. Ogievetsky rapidly realized the potential importance of this new concept
for the particle and mathematical theoretical physics. One of the discoverers of
supersymmetry was Dmitry Vasil'evich Volkov (1925Ä1996) from the Kharkov
Institute of Physics and Technology. For a long time he and his group had close
scientiˇc and human contacts with Ogievetsky and his collaborators. So it is not
surprising that the study of supersymmetric theories became the basic research di-
rection in the group of young researchers formed and headed by Ogievetsky. The
active members of this team were Luca Mezincescu from Bucharest and Emery
Sokatchev from Soˇa. Boris Zupnik, who defended his PhD by that time and re-

∗A similar proposal was made in [40].
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ceived a position at the Institute of Nuclear Physics in Ulugbek near Tashkent, has
penetrated deeply into this new area despite a few thousand kilometers separating
Dubna and Ulugbek (Boris succeeded to come back to Dubna and join our group
only in 1994). The author, after defending his PhD in 1976 under supervision
of V. I. Ogievetsky, has also focused on this line of investigations. Later on, this
research team constituted the main staff of the Sector ©Supersymmetryª at BLTP
headed by V. I. Ogievetsky. In the early 1980s it was enriched by the talented
and enthusiastic PhD student Sasha Galperin from Tashkent. Also, I would like
to mention Stilian Kalitzin from Soˇa. Like A.Galperin, he was a representative
of the second generation of the supersymmetry adepts. To the same category I
would attribute Alexander Sorin, my ˇrst PhD student. The permanent contacts
with the Volkov group, as well as with the Fradkin group from Lebedev Institute,
were certainly very helpful and conducive for the successful development of in-
vestigations on supersymmetry in Dubna. In particular, an essential contribution
to this development was brought by Volkov's scholar Anatoly Pashnev (1948Ä
2004) who was employed on the contract at BLTP from Kharkov in 1991 and
worked in Dubna until his untimely and tragic death. Frequent visits to Dubna by
Sasha Kapustnikov (1945Ä2003) from Dniepropetrovsk, my friend and co-author
for many years, have also played an invaluable role. More recently, in the 1990s,
there were established fruitful and ˇrm contacts with the research groups of the
theorists from Tomsk, Joseph Buchbinder and Anton Galajinsky.

Since the start of the supersymmetry epoch, the basic interests of Ogievetsky
and his surrounding were concentrated on the superspace approach to supersym-
metric theories.

2.1. Invariant Actions in Superspace. The natural arena for supersymmetry
is superspace, an extension of some bosonic space by anticommuting fermionic
(Grassmann) coordinates. For the N = 1 Poincar�e supersymmetry, it was in-
troduced in [6] as a coset of the N = 1 Poincar�e supergroup over its bosonic
Lorentz subgroup. However, the fermionic coset parameters were treated in [6] as
NambuÄGoldstone ˇelds ©livingª on Minkowski space and supporting a nonlinear
realization of N = 1 Poincar�e supersymmetry. It was suggested by Salam and
Strathdee [41] to treat the fermionic coordinates θα, θ̄α̇, (α, α̇ = 1, 2), on equal
footing with xm as independent coordinates. The ˇelds on such an extended
space (superspace) were christened superˇelds. They naturally encompass the ir-
reducible N = 1 supermultiplets, the ˇelds of which appear as coefˇcients in the
expansions of superˇelds over Grassmann coordinates. The remarkable property
of superˇelds is that these expansions terminate at a ˇnite step due to the nilpo-
tency of the Grassmann coordinates [41,42]. Another advantage of superˇelds is
the simple rule of constructing component actions invariant under supersymmetry.
In any products of superˇelds and their ordinary and/or covariant spinor deriva-
tives the highest components in the expansions of these products over Grassmann
coordinates (the so-called D component, if the product is a general superˇeld,
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and the F component, if the product is a chiral superˇeld) is transformed to
a total x-derivative and so is a candidate for the supersymmetric action in the
Minkowski space-time.

In [43], Ogievetsky and Mezincescu proposed an elegant way of writing
down the invariant superˇeld actions directly in superspace. As just mentioned,
the invariant actions can be constructed as the x-integrals of the coefˇcients
of the highest-degree θ monomials in the appropriate products of the involved
superˇelds. The question was how to extract these components in a manifestly
supersymmetric way. Ogievetsky and Mezincescu proposed to use the important
notion of Berezin integral [44] for this purpose. In fact, Berezin integration is
equivalent to the Grassmann differentiation and, in the case of N = 1 superspace,
is deˇned by the rules∫

dθα θβ = δβ
α,

∫
dθα 1 = 0, {dθα, dθβ} = {θα, dθβ} = 0, (2.1)

and analogous ones for the conjugated coordinates θ̄α̇. It is easy to see that, up
to the appropriate normalization,∫

d2θ (θ)2 = 1,

∫
d2θ̄ (θ̄)2 = 1,

∫
d2θd2θ̄ (θ)4 = 1, (2.2)

and hence Berezin integration provides the manifestly supersymmetric way of
extracting the coefˇcients of the highest-order θ monomials. For example, the
simplest invariant action of chiral superˇelds can be written as

S ∼
∫

d4xd4θ ϕ(xL, θ)ϕ̄(xR, θ̄), xm
L = xm + iθσmθ̄, xm

R = (xm
L ), (2.3)

where the superˇelds satisfy the chirality and antichirality conditions

D̄α̇ϕ(xL, θ) = 0, Dαϕ̄(xR, θ̄) = 0, (2.4)

with

Dα =
∂

∂θα
+ i(σmθ̄)α∂m, D̄α̇ = − ∂

∂θ̄α̇
− i(θσm)α̇∂m,

(2.5)
{Dα, D̄α̇} = −2i(σm)αα̇∂m.

Using the θ expansion of the chiral superˇeld ϕ(xL, θ),

ϕ(xL, θ) = ϕ(xL) + θαψα(xL) + (θ)2F (xL), (2.6)

and its conjugate ϕ̄(xR, θ̄), it is easy to integrate over θ, θ̄ in (2.3) and, discarding
total x-derivatives, to obtain the component form of the action

S ∼
∫

d4x

(
∂mϕ̄∂mϕ − i

2
ψσm∂mψ̄ + FF̄

)
. (2.7)
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It is just the free action of the massless scalar N = 1 multiplet. It can be
generalized to the case with interaction, choosing the Lagrangian as an arbitrary
function K(ϕ̄, ϕ) and adding independent potential terms

∼
∫

d4xL d2θ P (ϕ) + c. c. (2.8)

The sum of (2.3) and the superpotential term (2.8) with P (ϕ) ∼ gϕ3 + mϕ2

yields the WessÄZumino model [45], which was the ˇrst example of nontrivial
N = 1 supersymmetric model and the only renormalizable model of scalar N =
1 multiplet. Ogievetsky and Mezincescu argued that the representation of the
action of the WessÄZumino model in terms of Berezin integral is very useful and
suggestive while developing the superˇeld perturbation theory for it. All quantum
corrections have the form of the integral over the whole N = 1 superspace, so
the superpotential term (and hence the parameters g and m) is not renormalized.
This was the ˇrst example of the nonrenormalization theorems, which nowadays
are the powerful ingredients of the quantum superˇeld approach.

In 1975, Ogievetsky and Mezincescu wrote a comprehensive review on the
basics of supersymmetry and superspace techniques [46]. Until now it is still one
of the best introductory reviews in this area.

2.2. Superˇelds with Deˇnite Superspins and Supercurrents. The dream
of Ogievetsky was to generalize the spin principle formulated by him and Polu-
barinov to the superˇeld approach. Indeed, the notion of the Poincar�e spin of
ˇelds naturally extends to the case of supersymmetry as the notion of superspin,
the eigenvalue of one of the Casimir operators of the Poincar�e supersymmetry
algebra. The irreducible N = 1 supermultiplets are characterized by deˇnite
superspins, and the latter can be well deˇned for the interacting superˇelds, like
spin in the Poincar�e invariant theories. The means to ensure the deˇnite spin
of superˇelds are either the appropriate irreducibility constraints (in the massive
case) or the appropriate gauge invariance (in the massless case). The concept of
conserved current also admits ©supersymmetrizationª, and the appropriate super-
currents were already known for a number of simple models. The requirement
of preserving deˇnite superspins by interacting superˇelds was expected to fully
determine the structure of the corresponding actions, as well as the gauge group
intended to make harmless extra superspins carried by the given off-shell su-
perˇeld. However, because of the existence of new differential operators in the
superˇeld case, the covariant spinor derivatives (2.5), along with the standard
x-derivative, yet deˇning the irreducibility conditions for the most cases of in-
terest was a very difˇcult technical problem. In the pioneering paper [41], the
decomposition into the superspin-irreducible parts was discussed only for a scalar
N = 1 superˇeld.

The general classiˇcation of N = 1 superˇelds by superspin was given by
Sokatchev in [47], where the corresponding irreducibility superˇeld constraints,
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together with the relevant projection operators on deˇnite superspins, were found.
In fulˇlling the program of generalizing the spin principle to supersymmetry, the
formalism of the projection operators of [47] proved to be of key signiˇcance.

The main efforts of Ogievetsky and Sokatchev were soon concentrated on
seeking a self-consistent theory of massless axial-vector superˇeld (carrying su-
perspins 3/2 and 1/2). This superˇeld Hn(x, θ, θ̄) was of special interest because
its component ˇeld expansion involved the massless tensor ˇeld en

a and the spin-
vector ˇeld ψn

α ,

Hn = θσaθ̄en
a + (θ̄)2θαψn

α + (θ)2θ̄α̇ψ̄α̇n + . . .

These ˇelds could naturally be identiˇed with those of graviton and gravitino
of N = 1 supergravity (SG) known to that time in the component form [48].
In [49], Ogievetsky and Sokatchev have put forward the hypothesis that the
correct ©minimalª N = 1 superˇeld SG should be a theory of gauge axial-vector
superˇeld Hm(x, θ, θ̄) generated by the conserved supercurrent. The latter uniˇes
into an irreducible N = 1 supermultiplet the energyÄmomentum tensor and spin-
vector current associated with the supertranslations [50] (see also [51, 52] and
references therein). Ogievetsky and Sokatchev relied upon the clear analogy with
the Einstein gravity which can be viewed as a theory of massless tensor ˇeld
generated by the conserved energyÄmomentum tensor. As was already mentioned
in Sec. 1, the whole Einstein action and its non-Abelian 4D diffeomorphism
gauge symmetry can be uniquely restored step-by-step, starting with a free action
of symmetric tensor ˇeld and requiring its source (constructed from this ˇeld and
its derivatives, as well as from matter ˇelds) to be conserved [12]. In [49], this
Noether procedure was applied to the free action of Hm(x, θ, θ̄). The ˇrst-order
coupling of Hm to the conserved supercurrent of the matter chiral superˇeld was
restored, and the superˇeld gauge symmetry generalizing bosonic diffeomorphism
symmetry was identiˇed at the linearized level. The geometric meaning of this
supergauge symmetry and its full non-Abelian form were revealed by Ogievetsky
and Sokatchev later, in the remarkable papers [53,54].

2.3. Complex Superˇeld Geometry of N = 1 Supergravity. After the
discovery of the component N = 1 supergravity in [48]∗, it was an urgent
problem to ˇnd its complete off-shell formulation, i.e., to extend the set of
physical ˇelds of graviton and gravitino to an off-shell multiplet by adding the
appropriate auxiliary ˇelds and/or to formulate N = 1 supergravity in superspace,
making all its symmetries manifest.

One of the approaches to the superspace formulations of N = 1 supergrav-
ity was to start from the most general differential geometry in N = 1 super-

∗A version of supergravity with the spontaneously broken supersymmetry (based on the Higgs
effect for the Goldstone ˇelds with the spin 1/2) was worked out in [55] (see also recent paper [56].
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space. One deˇnes supervielbeins, supercurvatures, and supertorsions, which are
covariant under arbitrary N = 1 superdiffeomorphisms, and then imposes the
appropriate covariant constraints, so as to single out the minimal set of off-shell
N = 1 superˇelds carrying the irreducible ˇeld content of supergravity [57]. An
alternative approach would consist of revealing the fundamental minimal gauge
group of supergravity and deˇning the basic unconstrained prepotential, an analog
of N = 1 super YangÄMills (SYM) prepotential [58]. This was just the strategy
which Ogievetsky and Sokatchev follow in [53] to construct a beautiful geometric
formulation of the conformal and ©minimalª Einstein N = 1 SG∗.

It is based on a generalization of the notion of N = 1 chirality to the curved
case. The 
at chiral N = 1 superspace (xm

L , θμ
L) possesses the complex dimension

(4|2) and contains the N = 1 superspace (xm, θμ, θ̄μ̇) as a real (4|4) dimensional
hypersurface deˇned by the following embedding conditions:

(a) xm
L + xm

R = 2xm, (b) xm
L − xm

R = 2iθσmθ̄, θμ
L = θμ, θ̄μ̇

R = θ̄μ̇, (2.9)

and xm
R = (xm

L ), θ̄μ̇
R = (θμ

L). The underlying gauge group of conformal N = 1
SG proved to be the group of general diffeomorphisms of the chiral superspace:

δxm
L = λm(xL, θL), δθμ

L = λμ(xL, θL), (2.10)

where λm, λμ are arbitrary complex functions of their arguments. The fermionic
part of the embedding conditions (2.9) does not change, while the bosonic part is
generalized as

(a) xm
L + xm

R = 2xm, (b) xm
L − xm

R = 2iHm(x, θ, θ̄). (2.11)

The basic gauge prepotential of conformal N = 1 SG is just the axial-vector
superˇeld Hm(x, θ, θ̄) in (2.11). It speciˇes the superembedding of real N = 1
superspace as a hypersurface into the complex chiral N = 1 superspace (xm

L , θμ
L).

Through relations (2.11), the transformations (2.10) generate ˇeld-dependent non-
linear transformations of the N = 1 superspace coordinates (xm, θμ, θ̄μ̇) and of
the superˇeld Hm(x, θ, θ̄). The irreducible ˇeld content of Hm is revealed in the
WZ gauge which requires knowing only the linearized form of the transforma-
tions:

δlinH
m =

1
2i

[
λm(x + iθσθ̄, θ) − λ̄m(x − iθσθ̄, θ̄)

]
−

− λ(x + iθσθ̄, θ)σmθ̄ − θσmλ̄(x − iθσθ̄, θ̄). (2.12)

∗A closely similar formulation was worked out in the parallel investigations by Siegel and
Gates [59].
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Here we assumed the presence of the ©
atª part θσmθ̄ in Hm = θσaθ̄(δm
a +

κhm
a ) + . . . The WZ gauge form of Hm is then as follows:

Hm
WZ = θσaθ̄ em

a + (θ̄)2θμψm
μ + (θ)2θ̄μ̇ψ̄mμ̇ + (θ)2(θ̄)2Am. (2.13)

Here, one ˇnds the inverse vierbein em
a presenting the conformal graviton (gauge-

independent spin 2 off-shell), the gravitino ψm
μ (spin (3/2)2), and the gauge ˇeld

Am (spin 1) of the local γ5 R-symmetry. They constitute just (8 + 8) off-shell
degrees of freedom of the superspin 3/2 N = 1 Weyl multiplet.

The Einstein N = 1 SG can now be deduced in the two basically equivalent
ways. The ˇrst one was used in the original paper [53], and it consists in
restricting the group (2.10) by the constraint

∂mλm − ∂μλμ = 0, (2.14)

which is the inˇnitesimal form of the requirement that the integration measure of
chiral superspace (xL, θμ) is invariant. One can show that, with this constraint,
the WZ form of Hm collects two extra scalar auxiliary ˇelds, while Am ceases to
be gauge and also becomes an auxiliary ˇeld. On top of this, there disappears one
fermionic gauge invariance (corresponding to conformal supersymmetry) and, as
a result, spin-vector ˇeld starts to comprise 12 independent components. So, one
ends up with the (12 +12) off-shell multiplet of the so-called ©minimalª Einstein
SG [60].

Another, more suggestive way to come to the same off-shell content is to
use the compensator techniques which can be traced back to the interpretation of
Einstein gravity as conformal gravity with the compensating (Goldstone) scalar
ˇeld [61]. Since the group (2.10) preserves the chiral superspace, in the local
case one can still deˇne a chiral superˇeld Φ(xL, θ) as an unconstrained function
on this superspace and ascribe to it the following transformation law:

δΦ = −1
3

(∂mλm − ∂μλμ)Φ, (2.15)

where the speciˇc choice (−1/3) of the conformal weight of Φ is needed for
constructing the invariant SG action. One can show that such a compensating
chiral superˇeld together with the prepotential Hm yield, in the appropriate WZ
gauges, just the required off-shell (12 + 12) representation.

The basic advantage of the compensating method is the possibility to eas-
ily write the action of the minimal Einstein SG as an invariant action of the
compensator Φ in the background of the Weyl multiplet carried by Hm:

SSG = − 1
κ2

∫
d4xd2θ d2θ̄ EΦ(xL, θ) Φ̄(xR, θ̄)+

+ ξ

(∫
d4xL d2θ Φ3(xL, θ) + c. c.

)
. (2.16)
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Here E is a density constructed from Hm and its derivatives [54], such that its
transformation cancels the total weight transformation of the integration measure
d4xd2θ d2θ̄ and the product of chiral compensators. In components, the ˇrst term
in (2.16) yields the minimal Einstein N = 1 SG action without cosmological
term, while the second term in (2.16) is the superˇeld form of the cosmological
term ∼ ξ.

Later on, many other off-shell component and superˇeld versions of N = 1
SG were constructed. They mainly differ in the choice of the compensating
supermultiplet. The uncertainty in choosing compensating superˇelds is related
to the fact that the same on-shell scalar N = 1 multiplet admits variant off-shell
representations.

The OgievetskyÄSokatchev formulation of N = 1 SG was one of the main
indications that the notion of chiral superˇelds and chiral superspace play the
pivotal role in N = 1 supersymmetry. Later it was found that the superˇeld
constraints of N = 1 SG have the nice geometric meaning: they guarantee the
existence of chiral N = 1 superˇelds in the curved case, once again pointing out
the fundamental role of chirality in N = 1 theories. The constraints deˇning the
N = 1 SYM theory can also be derived from requiring chiral representations to
exist in the full interaction case. The parameters of the N = 1 gauge group are
chiral superˇelds, so this group manifestly preserves the chirality. The geometric
meaning of N = 1 SYM prepotential V (x, θ, θ̄) was discovered in [26]. By
analogy with Hn(x, θ, θ̄), the superˇeld V speciˇes a real (4|4) dimensional
hypersurface, this time in the product of N = 1 chiral superspace and the internal
coset space Gc/G, where Gc is the complexiˇcation of the gauge group G. At
last, chiral superˇelds provide the most general description of N = 1 matter,
since any variant off-shell representation of N = 1 scalar multiplet is related to
chiral multiplet via duality transformation.

In parallel with these investigations, in the second half of 1970s Ä the be-
ginning of 1980s two other important themes related to supersymmetry were
worked out in Sector 3, which exerted a sound in
uence on further developments
in this area.

2.4. Relation between Linear and Nonlinear Realizations of Supersym-
metry. One of the ˇrst known realizations of N = 1 supersymmetry was its
nonlinear (VolkovÄAkulov) realization [6]

ym ′ = ym + i[λ(y)σm ε̄ − εσmλ̄(y)],
(2.17)

λα ′(y ′) = λα(y) + εα, λ̄α̇ ′(y ′) = λ̄α̇(y) + ε̄α̇,

where the corresponding Minkowski space coordinate is denoted by ym to distin-
guish it from xm corresponding to the superspace realization

θα′ = θα + εα, θ̄α̇′ = θ̄α̇ + ε̄α̇, xm′ = xm + i(θσm ε̄ − εσmθ̄). (2.18)
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In (2.17), (2.18), εα and ε̄α̇ are the mutually conjugated Grassmann transformation
parameters associated with the N = 1 supertranslation generators Qα and Q̄α̇.

The main difference between (2.17) and (2.18) is that (2.17) involves the
VolkovÄAkulov N = 1 Goldstone fermion (goldstino) λ(y) , the characteristic
feature of which is the inhomogeneous transformation law under supertranslations
corresponding to the spontaneously broken supersymmetry. It is a ˇeld given on
Minkowski space, while θα in (2.18) is an independent Grassmann coordinate, and
N = 1 superˇelds support a linear realization of supersymmetry. The invariant
action of λ, λ̄ is [6]

S(λ) =
1
f2

∫
d4y detEa

m, Ea
m = δa

m + i
(
λσa∂mλ̄ − ∂mλσaλ̄

)
, (2.19)

where f is a coupling constant ([f ] = −2).
The natural question was as to what is the precise relation between the

nonlinear and superˇeld (linear) realizations of the same N = 1 Poinacar�e su-
persymmetry. The explicit answer was for the ˇrst time presented in [62Ä64].
There we showed that, given the Goldstone fermion λ(y) with the transformation
properties (2.17), the relation between two types of the supersymmetry realiza-
tions, (2.18) and (2.17), is accomplished through the following invertible change
of the superspace coordinates:

xm = ym + i
[
θσmλ̄(y) − λ(y)σmθ̄

]
, θα = θ̃α + λα(y), θ̄α̇ = ˜̄θα̇ + λ̄α̇(y),

(2.20)
where

θ̃α ′ = θ̃α. (2.21)

Then the transformations (2.17) imply for (xm, θα, θ̄α̇) just the transforma-
tions (2.18), and vice versa (2.18) imply (2.17). Using (2.20), any linearly
transforming superˇeld can be put in the new ©splittingª basis

Φ(x, θ, θ̄) = Φ̃(y, θ̃, ˜̄θ). (2.22)

Since the new spinor coordinate θ̃α is ©inertª under N = 1 supersymmetry,
Eq. (2.21), the components of Φ̃ transform as ©sigma-ˇeldsª∗,

δ�φ(y) = −i[λ(y)σmε̄ − εσmλ̄(y)]∂mφ(y), etc., (2.23)

independently of each other, that explains the adjective ©splittingª for the basis

(ym, θ̃α, ˜̄θα̇).

∗Below, δ� stands for the ©activeª variation, as distinct from other group variations in this
section which are ©passiveª.
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As demonstrated in [64], irrespective of the precise mechanism of generating
goldstino in a theory with the linear realization of spontaneously broken N =
1 supersymmetry, the corresponding superˇeld action can be rewritten in the
splitting basis (after performing integration over the inert Grassmann variables) as

Slin ∼
∫

d4y detEa
m [1 + L(σ,∇aσ, . . .)] . (2.24)

Here L is a function of the ©sigmaª ˇelds and their covariant derivatives ∇a =
Em

a ∂m only, while λα(y) is related to the goldstino of the linear realization
through a ˇeld redeˇnition. Thus, the Goldstone fermion is always described
by the universal action (2.19), independently of details of the given dynamical
theory with the spontaneous breaking of N = 1 supersymmetry, in the spirit of
the general theory of nonlinear realizations.

The transformations (2.20) and (2.22) can be easily generalized to chiral
superˇelds and to higher N . It proved very useful for exhibiting the low-energy
structure of theories with spontaneously broken supersymmetry [65], as well as
in some other problems (see, e.g., [66] and references therein). It was generalized
to the case of local N = 1 supersymmetry in [67,68]. At present, in connection
with some cosmological problems, great attention is paid to models in which
N = 1 supergravity interacts with the matter superˇelds constructed solely from
the Goldstone fermions [69]∗. The approach based on (2.20) and (2.22) (and
their generalizations to local supersymmetry) is very appropriate for constructing
such multiplets. Indeed, as follows from the transformation law (2.21), the

quantities θ̃α(x, θ, θ̄), ¯̃
θα̇(x, θ, θ̄) are N = 1 superˇelds properly constrained

because their dependence on the superspace coordinates basically appear through
the dependence on ym. Using the deˇnitions in (2.20), it is easy to deduce the
corresponding superspace constraints [63]:

Dβ θ̃α = δα
β + i(σm)ββ̇

¯̃
θβ̇∂mθ̃α, D̄β̇ θ̃α = −i(σm)γβ̇ θ̃γ∂mθ̃α, (2.25)

where Dα, D̄α̇ are deˇned in (2.5), and the analogous ones for ¯̃
θβ̇ . Thus, θ̃α and

¯̃
θβ̇ can be considered as bricks from which more complicated N = 1 superˇelds
as functions of the goldstino ˇeld (and its x-derivative) can be assembled.

The constraints (2.25) look similar to those derived by Samuel and Wess
in [67]. The latter are in fact equivalent to (2.25) and can be readily derived
using a modiˇcation of the variable change (2.20). They follow by starting from
the realization of N = 1 supersymmetry in the right-handed chiral superspace

δxm
R = −2iεσmθ̄, δθα = εα, δθ̄α̇ = ε̄α̇, (2.26)

∗See also recent [56].
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and deˇning the new complex coordinate

zm
+ = xm

R + 2iχ(z+)σmθ̄, χα(z+) = λα(z̃+),
(2.27)

zm
+ = z̃m

+ + iλ(z̃+)σmλ̄(z̃+),

δzm
+ = 2iχ(z+)σm ε̄,

δz̃m
+ = i[λ(z̃+)σm ε̄ − εσmλ̄(z̃+)], (2.28)

δχα(z+) = εα, δχ̄α̇(z+) = ε̄α̇.

Next, we deˇne
θ̃α
+(x, θ, θ̄) = θα − χα(z+) (2.29)

and ˇnd the following constraints for this complex spinor N = 1 superˇeld:

Dβ θ̃α
+ = δα

β , D̄β̇ θ̃α
+ = −2i(σm)γβ̇ θ̃γ

+∂mθ̃α
+. (2.30)

These constraints are just those given in [67] (with θ̃α
+ denoted there as Λα ). One

can establish the explicit equivalency relation between θ̃α and θ̃α
+ .

Another possibility, which is also related to the original transformations
through an equivalency change of the goldstino ˇeld, is to start from the left-chiral
realization

δxm
L = 2iθσmε̄, δθα = εα, δθ̄α̇ = ε̄α̇ (2.31)

and deˇne

z− = xm
L − 2iθσmω̄(z−), ωα(z−) = λα(z̃−),

(2.32)
zm
− = z̃m

− − iλ(z̃−)σmλ̄(z̃−),

δzm
− = −2iεσmω̄(z−),

δz̃m
− = i[λ(z̃−)σm ε̄ − εσmλ̄(z̃−)], (2.33)

δωα(z−) = εα, δω̄α̇(z−) = ε̄α̇.

The corresponding composite N = 1 superˇeld,

θ̃α
−(x, θ, θ̄) = θα − ωα(z−), (2.34)

satisˇes the constraints

Dβ θ̃α = δα
β + 2i(σm)ββ̇

¯̃
θβ̇
−∂mθ̃α

−, D̄β̇ θ̃α
− = 0. (2.35)
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So the superˇeld θ̃α
−(x, θ, θ̄) is chiral, and one can construct the nilpotent chiral

scalar superˇeld as the bilinear of these ©bricksª

ϕ = θ̃α
−θ̃−α, D̄β̇ϕ = 0, ϕ2 = 0. (2.36)

It is worth pointing out that all components of such a nilpotent superˇeld
are model-independent functions of the goldstino ˇeld λα(x), λ̄α̇(x) and its
x-derivatives only. In the standard description of N = 1 goldstino through
the nilpotent scalar chiral superˇeld [66,70], the latter still includes a scalar aux-
iliary ˇeld as the independent one. It is eliminated either through its equations of
motion or by imposing additional differential constraints.

2.5. Anti-de Sitter Supersymmetry. Soon after the discovery of the N = 1
Poincar�e supersymmetry as a symmetry of theories in the 
at Minkowski space
treated as a coset of the Poincar�e group P4 over its Lorentz subgroup, i.e.,
P4/SO(1, 3), there arose an interest in analogous supersymmetries preserving
non
at background solutions of the Einstein equations. The renowned manifolds
of this kind are de Sitter and anti-de Sitter spaces dS4 ∼ SO(1, 4)/SO(1, 3)
and AdS4 ∼ SO(2, 3)/SO(1, 3). These are solutions of the Einstein equations
with a nonzero cosmological constant, positive and negative, respectively, so
the study of the relevant supersymmetries was expected to give some hints why
this constant is so small (if nonzero). One more source of interest in these
©curvedª supersymmetries was related to the important role of the superconformal
group SU(2, 2|4) involving such supersymmetries as subgroups, along with the

at N = 1 Poincar�e supersymmetry. As was already mentioned, various 4D
supergravities follow from the conformal supergravity through the compensator
mechanism.

The anti-de Sitter supersymmetry is the easiest one to analyze because it
is very similar to N = 1 Poincar�e supersymmetry and goes over to it in the
limit of inˇnite anti-de Sitter radius. While the dS4 spinor comprises eight in-
dependent components, no such doubling as compared to the Minkowski space
occurs for AdS4: the AdS4 spinor is the Weyl one with two complex compo-
nents, i.e., the number of supercharges in the AdS supersymmetry is the same
as in the N = 1 Poincar�e one. A self-consistent superˇeld formalism for AdS4

supersymmetry was constructed in [71,72].
N = 1 AdS4 superalgebra is osp(1|4) ⊂ su(2, 2|1), and it is deˇned by the

following (anti)commutation relations:

{Qα, Q̄α̇} = 2(σm)αα̇Pm, {Qα, Qβ} = μ(σmn)αβLmn,
(2.37)

[Qα, Pm] =
μ

2
(σm)αα̇Q̄α̇, [Pm, Pn] = −iμ2Lmn.

Here μ ∼ r−1 is the inverse radius of AdS4 and Lmn are generators of the
Lorentz SO(1, 3) subgroup of SO(2, 3) ∝ (Pm, Lmn). To Eqs. (2.37) one should
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add complex-conjugate relations and evident commutators with Lmn. In the limit
μ → 0 (r → ∞), Eqs. (2.37) go over into the algebra of N = 1 Poincar�e
supersymmetry.

In [71, 72], we deˇned the true AdS4 analogs of the general and chiral
N = 1 superˇelds, as well as the vector and spinor covariant derivatives, invariant
superspace integration measures, etc. Having developed the AdS4 superˇeld
techniques, we constructed the OSp(1|4) invariant actions generalizing the actions
of the WessÄZumino model and N = 1 super YangÄMills theory. For instance,
an analog of the free massless action (2.7) of N = 1 scalar multiplet, with the
auxiliary ˇelds eliminated by their equations of motion, reads

S ∼
∫

d4xa4(x)
(
∇mϕ̄∇mϕ − i

4
ψσm∇mψ̄ +

i

4
∇mψσmψ̄ + 2μ2 ϕϕ̄

)
.

(2.38)

Here, a(x) =
2

1 + μ2x2
is a scalar factor specifying the AdS4 metric in a con-

formally 
at parameterization, ds2 = a2(x)ηmn dxm dxn, and ∇m = a−1∂m
∗.

Taking into account that μ2 = (−1/12)R, where R is the scalar curvature of
AdS4, this action matches the standard form of the massless scalar ˇeld action in
a curved background.

In [72], the vacuum structure of the general massive AdS4 WessÄZumino
model was studied. This structure proved to be much richer as compared to
the standard ©
atª WessÄZumino model due to the presence of the intrinsic mass
parameter μ. It was also shown that both the AdS4 massless WessÄZumino model
and super YangÄMills theory can be reduced to their 
at N = 1 super Minkowski
analogs via some superˇeld transformation generalizing the Weyl transformation

ϕ(x) = a−1(x) ϕ̃(x), ψα(x) = a−3/2(x) ψ̃α(x), (2.39)

which reduces (2.38) to (2.7). The existence of the superˇeld Weyl transformation
was an indication of the superconformal 
atness of the AdS4 superspace (although
this property has been proven much later, in [73]).

The simplest supermultiplets of OSp(1|4) derived for the ˇrst time in [71]
in the superˇeld approach and the corresponding projection operators were used
in [74] to give a nice algebraic interpretation of the superˇeld constraints of N = 1
supergravity. The interest in OSp(1|4) supersymmetry has especially grown up
in recent years in connection with the famous AdS/CFT correspondence. For
instance, the theories invariant under rigid supersymmetries in various curved
manifolds are now under intensive study (see, e.g., [75, 76]), and they are just
generalizations of the AdS supersymmetric models the analysis of which was
initiated in [71,72].

∗In general, ∇m contains a spin connection, but it drops out from (2.38).
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3. HARMONIC SUPERSPACE AND ALL THAT

After creating the minimal geometric formulation of N = 1 SG described in
Sec. 2, there was posed a natural question as to how it can be generalized to the
most interesting case of extended supergravities and, as a ˇrst step, to N = 2
supergravity. To answer this question, it proved necessary to realize what the
correct generalization of N = 1 chirality to N � 2 supersymmetry is and to
invent a new type of superspaces, the harmonic ones.

It was even unclear how to deˇne, in the suggestive geometric way, the
appropriate N = 2 analog of the N = 1 SYM prepotential V (x, θ, θ̄), δV =
(i/2)(Λ(xL, θ) − Λ̄(xR, θ̄)) + O(V ). While the N = 1 SYM constraints are just
the integrability conditions for preserving covariant chirality,

{Dα,Dβ} = 0, {D̄α̇, D̄β̇} = 0, (3.1)

their N = 2 counterparts read [79]

{D(i
α ,Dk)

β } = {D̄(k
α̇ , D̄i)

β̇
} = {D(i

α , D̄k)

β̇
} = 0. (3.2)

Here, Di
α = Di

α + iAi
α(x, θi, θ̄k) and i, k = 1, 2 are the doublet indices of the

automorphism group SU(2)A of N = 2 Poincar�e superalgebra. Obviously, these
constraints cannot be interpreted as the conditions for preserving N = 2 chirality.
Luca Mezincescu solved these constraints in the Abelian case through an uncon-
strained prepotential [77]. However, the latter has a nonstandard dimension Ä2,
and the corresponding gauge freedom does not admit a geometric interpretation
(equally as a reasonable generalization to the non-Abelian case).

There also existed difˇculties with an off-shell description of N = 2 hyper-
multiplet, the direct analog of N = 1 chiral multiplet. The natural irreducibility
constraints on the relevant superˇeld qi(x, θk, θ̄k),

D(i
α qk) = D̄

(i
α̇ qk) = 0, (3.3)

are solved by qi = f i + θiαψα + θ̄i
α̇χ̄α̇ + . . . , but simultaneously put the involved

ˇelds on their free mass shell. This is a re
ection of the ©no-goª theorem [78]
which states that no off-shell representation for hypermultiplet in its ©complex
formª (i.e., with bosonic ˇelds arranged into SU(2) doublet) can be achieved
with any ˇnite number of auxiliary ˇelds. No reasonable way to relax (3.3)
was known.

3.1. Way Out: Grassmann Harmonic Analyticity. In [80], it was observed
that extended supersymmetries, besides the standard chiral superspaces general-
izing the N = 1 one, also admit some other types of the invariant subspaces
which were called ©Grassmann-analyticª. Like chiral superspaces, these analytic
subspaces are revealed by passing to some new basis in the original general
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superspace, such that spinor covariant derivatives with respect to some subset
of Grassmann variables become ©shortª in this basis. Then one can impose
Grassmann CauchyÄRiemann conditions with respect to these variables. They
preserve the full original supersymmetry, but force the relevant analytic super-
ˇelds to depend on a smaller number of Grassmann coordinates (in a deep analogy
with the chirality conditions (2.4)). As a nontrivial example of such Grassmann
analyticity in extended supersymmetries, in [80] the existence of a complex ©O(2)
analytic subspaceª in N = 2, 4D superspace was found. Unfortunately, it can
be deˇned only provided that the full automorphism SU(2) symmetry is broken
down to O(2). Despite this, it was natural to assume that the Grassmann analytic-
ity of the similar type could play the fundamental role in extended supersymmetry
and provide the correct generalization of N = 1 chirality. In [81], the hyper-
multiplet constraints (3.3) were shown to imply that different components of the
N = 2 superˇeld qi ©liveª on different O(2)-analytic subspaces. Since (3.3) is
SU(2) covariant, it remained to ©SU(2)- covariantizeª the O(2) analyticity.

All these problems were solved in the framework of the harmonic super-
space [13,82,83].

N = 2 harmonic superspace (HSS) is deˇned as the product

(xm, θα i, θ̄
k
β̇
) ⊗ S2. (3.4)

Here, the internal two-sphere S2 ∼ SU(2)A/U(1) is represented, in a parameteri-
zation-independent way, by the lowest (isospinor) SU(2)A harmonics

S2 ∈ (u+
i , u−

k ), u+iu−
i = 1, u±

i → e±iλ u±
i . (3.5)

It is required that nothing depends on the U(1) phase eiλ, so one effectively deals
with the 2-sphere S2 ∼ SU(2)A/U(1). The superˇelds given on (3.4) (harmonic
N = 2 superˇelds) are assumed to admit the harmonic expansions on S2, with
the set of all symmetrized products of u+

i , u−
i as the basis. Such an expansion is

fully speciˇed by the harmonic U(1) charge of the given superˇeld∗.
The main advantage of HSS is that it contains an invariant subspace, the

N = 2 analytic HSS, involving only half of the original Grassmann coordinates(
xm

A , θ+
α , θ̄+

α̇ , u±
i

)
≡
(
ζM , u±

i

)
,

(3.6)
xm

A = xm − 2iθ(iσmθ̄k)u+
i u−

k , θ+
α = θi

αu+
i , θ̄+

α̇ = θ̄i
α̇u+

i .

It is just SU(2) covariantization of the O(2) analytic superspace of [80]. It is
closed under N = 2 supersymmetry transformations and is real with respect to

∗Another off-shell approach to N = 2 supersymmetric theories is based on the concept
of projective superspace [84], an extension of the ordinary N = 2 superspace by a complex
CP

1 coordinate.
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the special involution deˇned as the product of the ordinary complex conjugation
and the antipodal map (Weyl re
ection) of S2.

All N = 2 supersymmetric theories have off-shell formulations in terms
of unconstrained superˇelds deˇned on (3.6), the Grassmann analytic N = 2
superˇelds. An analytic superˇeld ϕ+n

an with the harmonic U(1) charge +n
satisˇes the Grassmann harmonic analyticity constraints

D+
α ϕ+n

an = D̄+
α̇ ϕ+n

an = 0 ⇒ ϕ+n
an = ϕ+n

an (ζ, u), (3.7)

D±
α = Di

αu±
i , D̄±

α̇ = D̄i
α̇u±

i . (3.8)

These constraints are self-consistent just due to the conditions

{D+
α , D+

β } = {D̄+
α̇ , D+

β̇
} = {D+

α , D̄+

β̇
} = 0, (3.9)

which are equivalent to the ©
atª version of (3.2) (these are their projections on
u+

i ). The solution (3.7) is obtained in the analytic basis, where D+
α and D̄+

α̇ are
reduced to the partial derivatives with respect to θ−α and θ̄−α̇ . The opportunity
to choose such a basis is just ensured by the integrability conditions (3.9).

3.2. N = 2 Matter. In general case, the N = 2 matter is described by

2n hypermultiplet analytic superˇelds q+
a (ζ, u) ((q+

a ) = Ωabq+
b , Ωab = −Ωba;

a, b = 1, . . . , 2n) with the following off-shell action [85]:

Sq =
∫

du dζ(−4)
{
q+
a D++q+a + L+4(q+, u+, u−)

}
. (3.10)

Here, du dζ(−4) is the charged measure of integration over the analytic super-

space (3.6), D++ = u+ i ∂

∂u−i
− 2iθ+σmθ̄+ ∂

∂xm
is the analytic basis form of

one of three harmonic derivatives one can deˇne on S2 (it preserves the harmonic
Grassmann analyticity), and the indices are raised and lowered by the Sp(n) to-
tally skew-symmetric tensors Ωab, Ωab, ΩabΩbc = δa

c . The crucial feature of the
general q+ action (3.10) is an inˇnite number of auxiliary ˇelds coming from
the harmonic expansion on S2. Just this fundamental property made it possible
to evade the no-go theorem about the nonexistence of off-shell formulations of
the N = 2 hypermultiplet in the complex form. The on-shell constraints (3.3)
(and their nonlinear generalizations) amount to both the harmonic analyticity of
q+a (which is a kinematic property like N = 1 chirality) and the dynamical
equations of motion following from the action (3.10). After eliminating inˇnite
sets of auxiliary ˇelds by their algebraic equations, one ends up with the most
general self-interaction of n hypermultiplets. In the bosonic sector it yields the
generic sigma model with 4n-dimensional hyper-Kéahler (HK) target manifold, in
accord with the theorem of AlvarezÄGaum�e and Freedman about the one-to-one
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correspondence between N = 2 supersymmetric sigma models and HK mani-
folds [86]. In general, the action (3.10) and the corresponding HK sigma model
possess no isometries. The object L+4 is the HK potential [87], an analog of
the Kéahler potential of N = 1 supersymmetric sigma models [88]. Choosing one
or another speciˇc L+4, one gets the explicit form of the relevant HK metric
by eliminating the auxiliary ˇelds from (3.10). So the general hypermultiplet
action (3.10) provides an efˇcient universal tool of the explicit construction of
the HK metrics [85,89].

The appearance of the HK geometry prepotential as the most general hyper-
multiplet interaction superˇeld Lagrangian is quite similar to the way how the
Kéahler geometry potential appears as the most general sigma-model super La-
grangian for N = 1 chiral superˇelds [88]. In many other cases, the superˇeld
Lagrangians describing the sigma-model type interactions of the matter multi-
plets of diverse supersymmetries prove also to coincide with the fundamental
objects (prepotentials) of the relevant target complex geometries (see, e.g., [90]
and references therein).

3.3. N = 2 Super YangÄMills Theory. The HSS approach makes manifest
that the N = 2 SYM constraints (3.2) are the integrability conditions for the
existence of the harmonic analytic superˇelds in such an interacting theory, like
in the 
at case∗. They are solved in terms of the fundamental geometric object
of N = 2 SYM theory, the analytic harmonic connection V ++(ζ, u), which
covariantizes the analyticity-preserving harmonic derivative

D++ → D++ = D++ + iV ++, (V ++)′ =
1
i

eiω (D++ + iV ++) e−iω, (3.11)

where ω(ζ, u) is an arbitrary analytic gauge parameter containing inˇnitely many
component gauge parameters in its combined θ, u-expansion. The harmonic con-
nection V ++ contains inˇnitely many component ˇelds, however almost all of
them can be gauged away by ω(ζ, u). The rest of the (8 + 8) components is just
the off-shell N = 2 vector multiplet. More precisely, in the WZ gauge V ++ has
the following form:

V ++
WZ = (θ+)2w(xA) + (θ̄+)2w̄(xA) + iθ+σmθ̄+Vm(xA)+

+ (θ̄+)2θ+αψi
α(xA)u−

i + (θ+)2θ̄+
α̇ ψ̄α̇i(xA)u−

i +

+ (θ+)2(θ̄+)2D(ij)(xA)u−
i u−

j . (3.12)

∗An interpretation of the constraints of N = 2, 3, 4 SYM theories as the integrability con-
ditions along some directions in the (complexiˇed) automorphism group manifolds was given by
A.Rosly [91].
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Here, Vm, w, w̄, ψα
i , ψ̄α̇i, D(ij) are the vector gauge ˇeld, complex physical

scalar ˇeld, doublet of gaugini, and the triplet of auxiliary ˇelds, respectively.
All the geometric quantities of N = 2 SYM theory (spinor and vector connec-
tions, covariant superˇeld strengths, etc.), as well as the invariant action, can be
expressed in terms of V ++(ζ, u). The closed V ++ form of the N = 2 SYM
action was found by Boris Zupnik [92]:

S
(N=2)
SYM =

1
2g2

∞∑
n=2

(−i)n

n
Tr
∫

d4xd8θ du1 · · · dun ×

× V ++(x, θ, u1) · · ·V ++(x, θ, un)
(u+

1 u+
2 ) · · · (u+

n u+
1 )

, (3.13)

where (u+
1 u+

2 ), . . . , (u+
n u+

1 ) are the harmonic distributions deˇned in [83]. An
important role is played by the second, nonanalytic gauge connection V −− , which
covariantizes the second harmonic derivative D−− on the harmonic sphere S2

and is related to V ++ by the harmonic 
atness condition

D++V −− − D−−V ++ + i[V ++, V −−] = 0. (3.14)

Most of the objects of the N = 2 SYM differential geometry have a concise
representation just in terms of V −−.

3.4. N = 2 Conformal Supergravity. The N = 2 Weyl multiplet is repre-
sented in HSS by the analytic vielbeins covariantizing D++ with respect to the
analyticity-preserving diffeomorphisms of the superspace

(
ζM , u±i

)
[93,94]:

D++ → D++ = u+ i ∂

∂u−i
+ H++ M (ζ, u)

∂

∂ζM
+ H++++(ζ, u)u−i ∂

∂u+i
,

δζM = λM (ζ, u), δu+
i = λ++(ζ, u)u−

i ,
(3.15)

δH++ M = D++λM − δM
μ+θμ+λ++, δH++++ = D++λ++, μ ≡ (α, α̇),

δD++ = −λ++D0, D0 ≡ u+i ∂

∂u+i
− u−i ∂

∂u−i
+ θμ+ ∂

∂θμ+
.

The vielbein coefˇcients H++M , H++++ are unconstrained analytic superˇelds
involving an inˇnite number of the component ˇelds which come from the har-
monic expansions. Most of these ˇelds, like in V ++, can be gauged away by
the analytic parameters λM , λ++, leaving in the WZ gauge just the (24 + 24)
component ˇelds of N = 2 Weyl multiplet. The invariant actions of various
versions of N = 2 Einstein SG are given by a sum of the action of N = 2 vector
compensating superˇeld H++5(ζ, u), δH++5 = D++λ5(ζ, u), and that of matter
compensator superˇelds, both in the background of N = 2 conformal SG. The
superˇeld H++5(ζ, u) and extra gauge parameter λ5(ζ, u) have, respectively, the
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geometric meaning of the vielbein coefˇcient associated with an extra coordinate
x5 (central charge coordinate) and the shift along this coordinate [95]. It is as-
sumed that nothing depends on x5. The most general off-shell version of N = 2
Einstein SG is obtained by choosing the superˇeld q+a(ζ, u) as the conformal
compensator. It involves an inˇnite number of auxiliary ˇelds and yields all the
previously known off-shell versions with ˇnite sets of auxiliary ˇelds via the
appropriate superˇeld duality transformations. Only this version allows for the
most general SG-matter coupling. The latter gives rise to a generic quaternion-
Kéahler (QK) sigma model in the bosonic sector, in accordance with the theorem
of Bagger and Witten [96]. The general superˇeld Lagrangian of hypermultiplets
in the background of N = 2 Weyl multiplet is a generalization of (3.10) to the SG
case [94], and it is the fundamental prepotential of the quaternion-Kéahler target
geometry [97]. It can be used for the explicit computation of the QK metrics,
e.g., through the appropriate quotient construction in HSS [98,99].

More references related to the basics of HSS can be found in the mono-
graph [13].

3.5. N = 3 Harmonic Superspace. The HSS method can be generalized
to N > 2. It was used to construct, for the ˇrst time, an unconstrained off-
shell formulation of N = 3 SYM theory (that is equivalent to N = 4 SYM
on shell) in the harmonic N = 3 superspace with the purely harmonic part
SU(3)/[U(1) × U(1)], SU(3) being the automorphism group of N = 3, 4D
supersymmetry [100]. The corresponding action is written in the analytic N = 3
superspace and has a nice form of the superˇeld ChernÄSimons term. This
peculiarity supports the general statement that the structure and geometry of one
or another gauge theory in superspace are radically different from those in the
ordinary space-time.

Let us dwell on this formulation in some details. The N = 3 SYM constraints
in the standard N = 3, 4D superspace read{

Di
α,Dj

β

}
= εαβW̄ ij ,

{
D̄α̇i, D̄β̇j

}
= εα̇β̇W̄ij ,

(3.16){
Di

α̇, D̄β̇j

}
= −2iδi

j Dαβ̇ ,

where i, j = 1, 2, 3 are indices of the fundamental representations of SU(3) and
W̄ ij = −W̄ ji (together with its conjugate) is the only independent covariant
superˇeld strength of the theory. Unlike the N = 2 SYM constraints, Eqs. (3.16)
put the theory on shell.

The basic steps in [100] were the deˇnition of the N = 3 harmonic superspace
with the harmonic part SU(3)/[U(1) × U(1)] parameterized by the mutually
conjugated sets of harmonic variables possessing two independent harmonic U(1)
charges,(
u

(1,0)
i , u

(0,−1)
i , u

(−1,1)
i

)
,
(
ui(−1,0), ui(0,1), ui(1,−1)

)
, ui(a,b)u

(c,d)
i = δacδbd,

(3.17)
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and then the interpretation of the constraints (3.16) as the integrability conditions
for the existence of an analytic subspace in such HSS:{

D(1,0)
α ,D(1,0)

β

}
=
{
D(1,0)

α , D̄(0,1)

β̇

}
=
{
D̄(0,1)

α̇ , D̄(0,1)

β̇

}
= 0, (3.18)

where D(1,0)
α = u

(1,0)
i Di

α, D̄(0,1)

β̇
= ui(0,1)D̄α̇i . The conditions (3.18) amount to

the existence of a subclass of general N = 3 harmonic superˇelds, the analytic
superˇelds Φ(q1,q2)(ζ, u) living on the invariant analytic subspace with eight
independent Grassmann coordinates (as compared with 12 such coordinates in the
general N = 3 superspace),

{ζ, u} =
{
xαα̇

an , θ(1,−1)
α , θ(0,1)

α , θ̄
(1,0)
α̇ , θ̄

(−1,1)
α̇ , u

}
. (3.19)

The corresponding N = 3 Grassmann analyticity conditions are

D(1,0)
α Φ(q1,q2) = D̄(0,1)

β̇
Φ(q1,q2) = 0, (3.20)

and they are solved as Φ(q1,q2) = Φ(q1,q2)(ζ, u) in the basis and frame in which the

covariant spinor derivatives D(1,0)
α and D̄(0,1)

β̇
simultaneously become ©shortª. On

the other hand, the triple of the harmonic derivatives (D(2,−1), D(−1,2), D(1,1)),
which commute with D(1,0)

α , D̄(0,1)

β̇
and so preserve the N = 3 analyticity, acquire

the analytic harmonic connections which are analogs of the N = 2 analytic gauge
connection V ++:

(D(2,−1), D(−1,2), D(1,1)) ⇒ (D(2,−1),D(−1,2),D(1,1)),
(3.21)

D(a,b) = D(a,b) + iV (ab)(ζ, u).

These harmonic derivatives satisfy, in both the original and the analytic bases,
the commutation relations

[D(2,−1),D(−1,2)] = D(1,1), [D(1,1),D(2,−1)] = [D(1,1),D(−1,2)] = 0. (3.22)

As was already mentioned, the constraints (3.16) amount to the N = 3 SYM
equations of motion and the same is true for the equivalent form (3.18) of the
same constraints. In the original basis the harmonic derivatives are short and their

commutation relations with D(1,0)
α and D̄(0,1)

β̇
,

[D(2,−1),D(1,0)
α ] = [D(−1,2),D(1,0)

α ] = [D(1,1),D(1,0)
α ] = 0,

(3.23)
[D(2,−1), D̄(0,1)

α̇ ] = [D(−1,2), D̄(0,1)
α̇ ] = [D(1,1), D̄(0,1)

α̇ ] = 0,

are satisˇed for D(1,0)
α and D̄(0,1)

β̇
linearly depending on SU(3) harmonics.

Moreover, it can be shown that (3.23) are also the necessary conditions for
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D(1,0)
α and D̄(0,1)

β̇
to be linear in SU(3) harmonics. Thus, the constraints (3.16)

are actually equivalent to the set of conditions (3.18), (3.23), and (3.22) (with
D(a,b) = D(a,b)).

On the other hand, after solving (3.18) by passing to the short D(1,0)
α , D̄(0,1)

β̇
,

and making the appropriate similarity transformation of the remaining constraints,
the relations (3.23) become the analyticity conditions for the three harmonic
gauge connections V (2,−1), V (−1,2), V (1,1) appearing in the transformed harmonic
derivatives. The whole dynamics proves to be concentrated in the purely harmonic
constraints (3.22) which are just the equations of motion of the N = 3 SYM
theory in the analytic basis and frame. The ˇnal (and crucial) observation of [100]
was that these equations can be reproduced by varying the following ChernÄ
Simons-type off-shell analytic superˇeld action:

S
(N=3)
SYM =

∫
du dζ(−2,−2) Tr

{
V (2,−1)(D(−1,2)V (1,1) − D(1,1)V (−1,2))−

− V (−1,2)(D(2,−1)V (1,1) − D(1,1)V (2,−1))+

+ V (1,1)(D(2,−1)V (−1,2) − D(−1,2)V (2,−1))−

− (V (1,1))2 + 2iV (1,1)[V (2,−1), V (−1,2)]
}

, (3.24)

where du dζ(−2,−2) is the appropriate integration measure over the analytic N = 3
superspace. Like in the ordinary 3D non-Abelian ChernÄSimons action, vary-
ing (3.24) with respect to the unconstrained analytic gauge potentials yields the
vanishing of three harmonic curvatures, which is equivalent to the relations (3.22).
The off-shell invariance of the action (3.24) under the N = 3 superconformal
group SU(2, 2|3) has been shown in [101].

The presence of just three harmonic gauge connections with three equations
for them is only one reason for the existence of an off-shell action for N = 3
SYM theory. Two other reasons are the zero dimension of the integration measure
of the N = 3 analytic superspace and the charge assignment (−2,−2) of this
measure, which precisely matches the zero dimension and the charge assignment
(2, 2) of the analytic Lagrangian. This threefold coincidence looks as a kind
of ©miracleª. Unfortunately, it fails to hold in the maximally extended N = 4
SYM theory. Though various harmonic superspace reformulations of this theory
were proposed (see, e.g., [102], where the N = 4 HSS with the harmonic part
SU(4)/[U(1)×SU(2)×SU(2)] was considered), no reasonable off-shell actions
were constructed in their framework so far. They merely serve to provide some
new geometric interpretations of the on-shell constraints of this theory.

Soon after its invention, the harmonic superspace approach was worldwide
recognized as an adequate framework for exploring theories with extended super-
symmetry in diverse dimensions. Some of its further developments and uses are
brie
y outlined below.
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3.6. Quantum Harmonic Superspace. The quantization of N = 2 theories
in the harmonic formalism was fulˇlled in [83]. The actual applications of
these quantum techniques started with [103] (see also the review [104]) where
there was computed, for the ˇrst time, the quantum one-loop effective action
of the Coulomb phase of N = 2 SYM theory interacting with the massless
and massive matter hypermultiplets. The complete agreement with the SeibergÄ
Witten duality hypothesis [105] was found. The preservation of the manifest
off-shell N = 2 supersymmetry at all stages of computation was conˇrmed to
be the basic advantage of the harmonic superspace quantum formalism. While
in [103] the effective action was constructed in the sector of gauge ˇelds, in [106]
the analogous HSS-based one-loop computation was made in the hypermultiplet
sector. It was shown there that some nontrivial induced hyper-Kéahler metrics
(e.g., the Taub-NUT one) surprisingly come out as a quantum effect.

In [107, 108], we studied the issue of ˇnding the leading term of the low-
energy quantum effective action of N = 4 SYM theory in the Coulomb phase
in the N = 2 HSS formulation. In this formulation, the N = 4 SYM action
is represented as a sum of the N = 2 SYM action and the action of the hyper-
multiplet in the adjoint representation minimally coupled to the N = 2 gauge
potential V ++:

S
(N=4)
SYM = S

(N=2)
SYM − 1

2
Tr

∫
du dζ(−4) q+a(D++ + iV ++)q+

a . (3.25)

Here S
(N=2)
SYM was deˇned in (3.13), and a = 1, 2 is an index of the so-called

PauliÄGéursey group SU(2)PG which commutes with N = 2 supersymmetry.
This combined action is invariant under the extra hidden N = 2 supersymmetry

δV ++ = (εαaθ+
a + ε̄a

α̇θ̄+α̇)q+
a ,

(3.26)

δq+
a = −1

2
(D+)4

[
(εα

aθ−α + ε̄α̇aθ̄−α̇)V −−]
(with (D+)4 = (1/16)D+αD+

α D̄+
α̇ D̄+α̇), which builds up the manifest N = 2

supersymmetry to N = 4∗. The nonanalytic gauge potential V −− is related to
V ++ by the harmonic 
atness condition (3.14). In [107], based purely on the
transformations (3.26), we computed the leading term in the one-loop N = 4
SYM effective action in the Coulomb phase (with the SU(2) gauge group broken
to U(1)) as

Γ(V, q) =
1

(4π)2

∫
d12z

{
ln

W
Λ

ln
W̄
Λ̄

+ Li2(X)+ ln (1−X)− 1
X

ln (1−X)

}
,

(3.27)

∗Though (3.26) is the symmetry of the off-shell action (3.25), its correct closure with itself and
with the manifest N = 2 supersymmetry is achieved only on shell.
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where Λ is an arbitrary scale, X =
−2qaiqai

WW̄ , and Li2(X) is the Euler diloga-

rithm. In this formula, W is the chiral U(1) superˇeld strength and qia is related
to the on-shell U(1) component of q+a as q+a = qiau+

i . Before [107], only the
W part of (3.27) was exactly known. The result (3.27) was reproduced from the
quantum N = 2 supergraph techniques in [108].

The quantum calculations in N = 4 SYM theory with making use of the
harmonic N = 2 quantum supergraph techniques are widely performed by other
groups, in particular, for checking the AdS/CFT correspondence (see, e.g., [109]
and references therein).

3.7. Harmonic Approach to the Target Geometries. The fact that the gen-
eral harmonic analytic Lagrangians of the hypermultiplets in the rigid and local
N = 2 supersymmetries can be identiˇed with the prepotentials of the target
space hyper-Kéahler (HK) and quaternion-Kéahler (QK) geometries was proved
in [87,97]. The general HK and QK constraints can be solved quite analogously
to those of N = 2 SYM or conformal SG theories, by passing to SU(2) har-
monic extensions of the HK and QK manifolds and revealing there the appropriate
analytic subspaces the dimension of which is twice as less compared to that of
the manifold one started with. The HK and QK constraints prove to admit a
general solution in terms of unconstrained prepotentials deˇned on these analytic
subspaces, and they are just the hypermultiplet Lagrangians mentioned above.
The hypermultiplets q+n are none other than the coordinates of these analytic
subspaces. This deep afˇnity between the target and Grassmann harmonic ana-
lyticities in the N = 2, 4D (or N = 4, 2D) sigma models in the HSS approach
looks very suggestive and surely deserves further study and understanding. The
examples of such an interplay between the two types of the analyticity were also
found for more complicated target geometries. For instance, in recent paper [90]
the so-called HKT (©hyper-Kéahler with torsionª) geometries (both ©weakª and
©strongª HKT) [110] were shown to select, as their natural prepotentials, the
objects appearing in the description of the most general 1D multiplets (4,4,0)
by the N = 4, 1D analytic harmonic superˇelds [111] constrained by the further
harmonic conditions. One of the prepotentials arises as the superˇeld Lagrangian
of the (4,4,0) analytic superˇelds, while the other one, as a function deˇning
the most general harmonic constraint for these superˇelds.

3.8. Harmonic Superspaces in Diverse Dimensions. In [112, 113], the bi-
harmonic superspace with two independent sets of SU(2) harmonics was intro-
duced and shown to provide an adequate off-shell description of N = (4, 4), 2D
sigma models with torsion. The analogous biharmonic N = 4, 1D super-
space [114] secures the natural uniform description of the models of N = 4
supersymmetric mechanics with the simultaneous presence of the ©mutually mir-
rorª worldline N = 4 multiplets. The harmonic superspace approach to ex-
tended supersymmetries in three dimensions was the subject of the important
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papers [115Ä117]. As a recent contribution in this direction, the N = 3, 3D
harmonic superspace formulation of the conformally invariant ABJM (AharonyÄ
BergmanÄJafferisÄMaldacena) theories was given in [118, 119]. The harmonic
superspace description of N = (1, 0), 6D gauge theories and hypermultiplets
was worked out in [120, 122, 123] (see also [121]) and recently has received a
further prospective development in [124]. Various applications of the harmonic
superspace method in one-dimensional mechanics models and integrable systems
are presented in [111] and [125Ä130], as well as in [131, 132]. In particular,
N = 4, 1D HSS was used in [125] to construct N = 4 super KdV hierarchy.
It was argued in [129] that the N = 4, 1D harmonic superspace provides a
uniˇed description of all known off-shell multiplets of N = 4 supersymmetric
mechanics. The corresponding N = 4, 1D superˇelds are related to each other
via gauging the appropriate isometries of the superˇeld actions by nonpropagating
©topologicalª N = 4 gauge multiplets.

Some other important applications of the HSS approach involve classifying
©shortª and ©longª representations of various superconformal groups in diverse
dimensions in the context of the AdS/CFT correspondence [133], study of the
domain-wall solutions in the hypermultiplet models [134], description of self-
dual supergravities [135], construction of N = 3 supersymmetric BornÄInfeld
theory [136], etc. The Euclidean version of N = 2 HSS was used in [137Ä139]
to construct string theory-motivated nonanticommutative (nilpotent) deformations
of N = (1, 1) hypermultiplet and gauge theories.

By now, the HSS method has proved its power as the adequate approach to
off-shell theories with extended supersymmetries. Without doubt, in the future it
will remain the efˇcient and useful tool of dealing with such theories.

4. OTHER RELATED DOMAINS

Here we brie
y outline some other results obtained in Sector 3 after the
invention of supersymmetry.

4.1. 2D Integrable Systems with Extended Supersymmetry. In [33], there
was constructed, for the ˇrst time, N = 2 supersymmetric extension of the
renowned 2D Liouville equation and the superˇeld Lax pair for it was found,
as well as the general solution in a superˇeld form. There was established,
independently of [140], the existence of the twisted chiral representation of N =
2, 2D supersymmetry besides the standard chiral one. The method used in this
construction was based on a nonlinear realization of inˇnite-dimensional N = 2
superconformal group in two dimensions, augmented with the inverse Higgs
effect. Later on, the N = 2 Liouville equation appeared in many contexts,
including the N = 2, 2D quantum supergravity closely related to string theory.
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This research activity was continued in [34], where the same nonlinear real-
ization methods were applied to the ©smallª N = 4, 2D superconformal group to
construct the new integrable superˇeld system, N = 4 supersymmetric Liouville
equation. Both the Lax representation and general N = 4 superˇeld solution of
this system were found. The N = 4 super Liouville equation is written as an
equation for the superˇeld describing the N = 4, 2D ©twisted chiralª multiplet
and encompasses in its bosonic sector, along with the Liouville equation, also
the equations of WessÄZuminoÄNovikovÄWitten (WZNW) sigma model for the
group SU(2). So the system constructed simultaneously yielded the ˇrst example
of N = 4 supersymmetric extension of the WZNW sigma models playing the
fundamental role in string theory and 2D conformal ˇeld theory∗.

As a next development in the same direction, in [141] new N = 4 super-
extensions of WZNW sigma models were found, in particular those exhibiting
invariance under the ©largeª N = 4, 2D superconformal groups. The relevant
superˇeld and component actions were presented and it was shown that these
systems admit deformations which preserve the original N = 4 superconformal
symmetry and generate Liouville potential terms in the actions. In this way,
new simultaneous superextensions of the Liouville equation and WZNW sigma
models come out. The N = 4, 2D WZNW sigma models at the quantum level
were studied in [142].

A different sort of N = 4 supersymmetric integrable system was discovered
in [125]. It is an N = 4 superextension of the KdV hierarchy. Before this paper,
only N = 1 and N = 2 supersymmetric KdV systems were known. The second
Hamiltonian structure of the new system was shown to be the small N = 4
superconformal algebra with a central charge. The basic object is the doubly
charged harmonic analytic superˇeld subjected to a simple harmonic constraint.
Later on, there appeared a lot of papers devoted to further integrable extensions of
this system and their applications in many mathematical and physical problems.

4.2. Supersymmetric and Superconformal Mechanics. The supersymmet-
ric quantum mechanics [143] is the simplest (1D) supersymmetric theory. The
ˇrst work on the extended superconformal mechanics in the nonlinear realization
superˇeld approach was [35]. There, the N = 4 superconformal mechanics as-
sociated with the multiplet (2,4,2)∗∗ was reproduced and the new model with
the multiplet (1,4,3) was found. Also, a new kind of the on-shell N extended
superconformal mechanics with the internal symmetry group U(N ) and N fermi-
onic ˇelds in the fundamental representation of this group was constructed. The
methods used in [35] are based on the inverse Higgs phenomenon which in this

∗It was also the historically ˇrst example of system with the target ©strongª HKT geometry [110].
∗∗Such a notation for the off-shell multiplets of 1D supersymmetry was suggested by A. Pashnev

and F. Toppan in [144]. For the N = 4, 1D case (n, 4,4 − n) denotes a multiplet with 4 fermions,
n physical bosons, and (4 − n) auxiliary ˇelds.
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case has not only kinematic consequences, giving rise to the elimination of certain
Goldstone superˇelds in terms of few basic ones, but also yields the dynamics,
implying the equations of motion for the basic superˇelds. Results and methods
developed in this pioneer paper are actively applied and developed in the studies
related to the superconformal quantum mechanics, including the corresponding
version of the AdS/CFT correspondence. The closely related paper is [145],
where the phenomenon of partial breaking of N = 4, 1D supersymmetry was
studied for the ˇrst time, on the example of the multiplet (1,4,3).

As other benchmarks on the way of developing this line of research it is
worth distinguishing [111] and [131].

In [111], the harmonic superspace method was adapted to 1D supersymmetric
models, i.e., the models of supersymmetric quantum mechanics, and then applied
for constructing the superˇeld actions of diverse N = 4, 1D multiplets, including
the sigma-model type actions, superpotentials and the superˇeld WessÄZumino
(or ChernÄSimons) terms. The realization of the most general N = 4, 1D
superconformal group D(2, 1; α) in the 1D harmonic superspace was found and
a wide class of new models of supersymmetric (and superconformal) N = 4
mechanics was constructed. This paper triggered many subsequent papers of
different authors on the related subjects.

In [131], new superconformal extensions of integrable 1D Calogero-type
models were constructed by gauging the U(n) isometries of matrix superˇeld
models (with the use of methods of [129]). The cases of N = 1, 2, and N = 4
superconformal systems were considered. The N = 4 extension of the so-called
©U(2) spinª Calogero system was deduced. The paper [131] was ˇrst to introduce
the spin (or ©isospinª) superˇeld variables, with the WZ type action of the ˇrst
order in the time derivative for their bosonic physical components. In subsequent
studies, these variables proved to be a useful tool of constructing various new
models of N = 4 and N = 8 supersymmetric mechanics, including the models
in which the N = 4, 1D multiplets couple to the external non-Abelian gauge
ˇelds [132].

The further developments along these lines with the participation of the
Dubna group, together with the relevant references, can be retrieved from the
reviews [146,147]. As a recent new direction of research, it is worth mentioning
the deformed N = 4 mechanics associated with the supergroup SU(2|1) [148].
The relevant models involve the intrinsic mass parameter and go over to the
standard N = 4 mechanics models, when this parameter goes to zero.

A different approach was represented by the papers [149Ä151] and [152,153],
in which the target-space supersymmetrization of the quantum-mechanical Landau
problem on a plane and two-sphere was treated, as well as the closely related issue
of ©fuzzyª supermanifolds. In some cases, the worldline supersymmetry arises
as a hidden symmetry of such models. These studies look rather interesting and
perspective, since, e.g., they are expected to give rise to a deeper understanding of
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quantum Hall effect and its possible superextensions. The relationships of these
models to superparticles and superbranes are also worthy to learn in more depth.

4.3. Superparticles, Branes, BornÄInfeld, ChernÄSimons, and Higher
Spins. In the late nineties, there was growth of interest in the superˇeld de-
scription of superbranes as systems realizing the concept of Partial Breaking
of Global Supersymmetry (PBGS) pioneered by Bagger and Wess [154] and
Hughes and Polchinsky [155]. In this approach, the physical worldvolume su-
perbrane degrees of freedom are represented by Goldstone superˇelds, on which
the worldvolume supersymmetry acts by linear transformations. The rest of the
full target supersymmetry is spontaneously broken and is realized nonlinearly.
In components, the transverse coordinates of the superbrane (if they exist) are
described by a gauge-ˇxed NambuÄGoto action. In the cases when the Goldstone
supermultiplets are vector ones, the Goldstone superˇeld actions simultaneously
provide supersymmetrization of the appropriate BornÄInfeld-type actions. The
relevant references can be found, e.g., in [156,157].

Among the most important results obtained in this domain with the decisive
participation of the Dubna group, it is worth mentioning the perturbative-theory
construction of the N = 2 superˇeld BornÄInfeld action with the spontaneously
broken N = 4 supersymmetry [32,158], as well as the interpretation of a hyper-
multiplet as a Goldstone multiplet supporting a partial breaking of N = 1, 10D
supersymmetry [159]. The peculiarities of the partial breaking N = 2 → N = 1
in 4D within the N = 2 superˇeld formalism (including the interplay between the
electric and magnetic FayetÄIlopoulos terms) were discussed in [160]. The N = 3
supersymmetric extension of the BornÄInfeld theory was constructed in [136].

In [161], the so-called ©AdS/CFT equivalence transformationª was proposed.
It relates the standard realization of the spontaneously broken 4D conformal
group SO(2, 4) on the dilatonic ˇeld (©conformal basisª) with its realization as
the isometry group of the gauge-ˇxed AdS5 brane (©AdS basisª). The 1D version
of this transformation allowed us to show [162] that the standard one-dimensional
conformal mechanics is in fact equivalent to the so-called ©relativistic conformal
mechanicsª of [163] (alias AdS2 particle). This correspondence can be extended
to superconformal mechanics models in the Hamiltonian formalism [164] and is
now widely applied in many domains (see, e.g., [165]).

Supersymmetric extensions of the ChernÄSimons terms in three dimensions
(as well as of their generalization, the so-called BF Lagrangians) were constructed
and studied in [115Ä119] and [166Ä168]. In particular, in [166,167] the manifestly
supersymmetric superˇeld form of the N = 2 ChernÄSimons action was given
for the ˇrst time.

In [169], it was shown that the AdS3×S3 and AdS5×S5 superstring theories
in the Pohlmeyer-reduced form [170] reveal hidden N = (4, 4) and N = (8, 8)
worldsheet supersymmetries. The explicit form of the supersymmetry transfor-
mations was found for both the off-shell action and the superstring equations.



990 IVANOV E.A.

A new superˇeld approach to the higher-spin multiplets based on nonlinear
realizations of the generalized 4D superconformal group OSp(1|8) has been de-
veloped in [171]. It was argued that the higher-spin generalization of N = 1
supergravity should be based, a la Ogievetsky and Sokatchev, on the preservation
of the OSp(1|8) analog of chirality. There were also given a few proposals of
how to reproduce the higher-spin equations by quantizing various kinds of super-
particles [172Ä174]. In particular, it was shown in [174] that a new kind of such
equations can be obtained by quantizing a particle in the tensorial space associated
with the so-called Maxwell extension of the Poincar�e group. The BRST approach
to Lagrangian formulation of higher-spin ˇelds was successfully elaborated by
A. Pashnev with co-authors (see [175] and references therein).

4.4. Last but not Least: Auxiliary Tensor Fields for Duality Invariant
Theories. Nowadays, the duality invariant systems attract a lot of attention (see,
e.g., [176] and references therein). The simplest example of duality in 4D is the
covariance of the free Maxwell equation and Bianchi identity,

∂mFmn = 0, ∂mF̃mn = 0, F̃mn :=
1
2
εmnpqF

pq, (4.1)

under the O(2) duality rotation

δFmn = ωF̃mn, δF̃mn = −ωFmn, (4.2)

where ω is a real transformation parameter. Another example of the duality-
invariant system is supplied by the renowned nonlinear BornÄInfeld theory. The
duality invariant systems involving, besides gauge ˇelds, also the coset scalar
ˇelds described by nonlinear sigma models naturally appear in various extended
supergravities and are important ingredients of string/brane theory.

Even in the simplest O(2) duality case it was not so easy to single out the
most general set of duality-invariant nonlinear generalizations of the Maxwell
theory. There were developed a few approaches based on solving some nonlinear
equations. In [177, 178], a new purely algebraic approach to this problem was
proposed. Namely, it was shown that the most general duality-invariant nonlinear
extension of Maxwell theory is described by the Lagrangian

L(V, F ) = L2(V, F ) + E(ν, ν̄),
(4.3)

L2(V, F ) =
1
2
(ϕ + ϕ̄) + ν + ν̄ − 2 (V · F + V̄ · F̄ ), (4.4)

where the auxiliary unconstrained ˇelds Vαβ and V̄α̇β̇ were introduced, with

ν = V 2, ν̄ = V̄ 2, ϕ = FαβFαβ , ϕ̄ = F̄ α̇β̇F̄α̇β̇ and Fαβ, F̄ α̇β̇ representing the
Maxwell ˇeld strength in the spinorial notation. In (4.3), L2(V, F ) is the bilinear
part only through which the Maxwell ˇeld strength enters the action, and E(ν, ν̄)
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is the nonlinear interaction involving only auxiliary ˇelds. The duality group acts
on Vαβ as

δVαβ = −iωVαβ, δν = −2iων,

and it was proved that the requirement of duality invariance of the full set of
equations of motion following from (4.3) amounts to O(2) invariance of the
function E(ν, ν̄),

E(ν, ν̄) = E(a), a = νν̄. (4.5)

Eliminating the auxiliary ˇelds from (4.3) with such E(ν, ν̄) by their algebraic
equations of motion, we obtain a nonlinear version of Maxwell action, such that
the relevant equations of motion necessarily respect duality invariance. Thus,
the variety of all possible duality invariant extensions of the Maxwell theory is
parameterized by the single function E(a) which can be chosen at will.

Later on, this formalism was generalized to the cases of U(N) duality [179]
and Sp(2, R) duality [180]. The N = 1, 2 superˇeld extensions were built
in [181Ä183].

Note that the tensorial auxiliary ˇeld representation was guessed from the
construction of N = 3 superˇeld BornÄInfeld theory in [136]. These auxiliary
ˇelds naturally appear as the necessary components of the off-shell N = 3 SYM
multiplet in the HSS approach. Keeping this in mind, it seems probable that the
tensor auxiliary ˇelds formulation of the duality invariant systems could also enter
as an element into the hypothetical harmonic superˇeld formulations of various
extended supergravities.

Finally, it is worth mentioning that, besides the topics listed above, in the
Sector ©Supersymmetryª for the last decade the investigations on a few different
important subjects were also accomplished. These include the twistor approach
to strings and particles (see, e.g., [184, 185]), the studies related to the AGT
(AldayÄGaiottoÄTachikawa) conjecture (see, e.g., [186]) and, more recently, the
explicit construction of instantons and monopoles (see, e.g., [187]). In view of
lacking of space, I will not dwell on these issues.

CONCLUSIONS

In this paper, the author reviewed the mainstream scientiˇc activity of the
Sector of MarkovÄOgievetskyÄIvanovÄ. . . for more than ˇfty years. In retro-
spect, the most in
uential pioneering results and methods which have successfully
passed the examination by time are, in my opinion, the following: I. Notoph;
II. ©Ogievetsky Theoremª and the view of the gravitation theory as a theory of
spontaneous breaking, with the graviton as a Goldstone ˇeld; III. The inverse
Higgs phenomenon; IV. The complex superˇeld geometry of N = 1 super-
gravity; V. The general relationship between linear and nonlinear realizations of
supersymmetry; VI. Grassmann analyticity and harmonic superspace.
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As for the future directions of research, I think that in the nearest years they
will be mainly concerned with exploring the geometry and quantum structure
of supersymmetric gauge theories and supergravity in diverse dimensions in the
superˇeld approach, as well as studying various aspects of supersymmetric and
superconformal mechanics models in their intertwining relationships with the
higher-dimensional ˇeld theories and string theory.
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