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The self-consistent model of classical field interactions formulated as the counterpart
of the quantum electroweak model leads to homogeneous boson ground state solutions in
presence of nonzero extended fermionic charge density fluctuations. Two different types
of electroweak configurations of fields are analyzed. The first one has nonzero electric and
weak charge fluctuations. The second one is electrically uncharged but weakly charged.
Both types of configurations have two physically interesting solutions which possess masses
equal to 126.67 GeV at the value of the scalar fluctuation potential parameter A equal to
~ 0.0652. The spin zero electrically uncharged droplet, formed as a result of the decay
of the charged one, is interpreted as the ~ 126.5 GeV state found in the Large Hadron
Collider (LHC) experiment. The other two configurations correspond to solutions with
masses equal to 123.7 GeV and A equal to ~ 0.0498, and thus the algebraic mean of the
masses of two central solutions, i.e., 126.67 and 123.7 GeV, is equal to 125.185 GeV.
The problem of a mass of this kind of droplets will be considered on the basis of the
phenomenon of the screening of the fluctuation of charges. Their masses are found in the
thin wall approximation.

B k yecTBe H JIOT KB HTOBOIi aekTpocs 6ol Mogenn chOpMyIHpoOB H C MOCOILI -
COB HH $l MOJIETIb B3 MMOJEHUCTBHI KJI CCHYECKUX TOJIel, KOTOP 4 MPHUBOAUT K OJHOPOIHBIM
petieHusiM 11 6030HOB B OCHOBHOM COCTOSIHHM B TIPUCYTCTBUH HEHY/EBBIX (PIyKTy LiHid
MPOTSKEHHOH (hepMUOHHON 3 PSKEHHOI INIOTHOCTH. P cCMOTpEeHHI aABe p 3HBIE IEKTpPO-
ci Gble KoHGuUryp 1mu nonei. IIeps g conep:KuT HeHyseBble QUIYKTY LU 31eKTPHYECKOTO
u ¢ 6oro 3 psigoB. BTop st sBisieTcs: 2MeKTPUYecKd HEHTp JIbHOMU, HO MPU DTOM ee CT Oblii
3 psag He p BeH Hymo. O6e KOoH(UIyp LM MMEIOT AB (PU3MYECKH MHTEPECHBIX pellle-
HUd ¢ M cco 126,67 I'»B npu 3H 4eHHH 1 p METp CK JISIPHOTO MOTEHIHM J1  (PIIyKTy LU
A ~ 0,0652. DrexTpuyecKu HEHTp JIbH 9 K IUI C HYyJIEBBIM CIMHOM, 0Op 3yl f4cs B
Pe3yJbT Te P CII A 3 PSKEHHOHM K IUIM, MHTEPIpPETUPYeTcs K K COCTOSHHE C DHepruei
~ 126,5 I'sB, 06H pyxenHoe B akcrnepumente H LHC. JIse npyrue KoHpuryp uum co-
OTBETCTBYIOT PELIEHHSIM C M CC MM, p BHbIMU miepB 1 — 123,7 I'eB ¢ A ~ 0,0498 u
BTOp 1 — JIre6p MYECKOMY CPEeIHEeMY M CC ABYX OCHOBHBIX pelleHHMi, uMeHHOo: 126,67
u 123,7 I'sB, 1.e. 125,185 I'3B. IIpoGiem M cc K menb T KOTO TUII P CCM TPUB €Tcd H

*E-mail: jacek.syska@us.edu.pl



WEAK BOUND STATE WITH THE NONZERO CHARGE DENSITY 1547

OCHOBE SIBJICHUS 9Kp HUPOB HUS (PIYKTY LHiA 3 psa . X M CChI BBIYMCIISIOTCS B IPUOIH-
KEHHH TOHKOU CTEHBI.

PACS: 21.60.Jz; 12.90.+b; 11.15.Kc

INTRODUCTION

In [1], the nonlinear self-consistent model of classical field interactions in the
“classical counterpart of the electroweak Glashow—Salam—Weinberg” (CGSW)
model was proposed. Homogeneous boson ground state solutions in this model
in the presence of nonzero extended fermionic charge density fluctuations were
reviewed and fully reinterpreted in order to make the theory with nonzero charge
densities [2] coherent, as, unfortunately, the language in [2] uses both quantum
field theory (QFT) concepts and the classical charge distributions. The model
concerns the bound states of the matter of these fluctuations inside one droplet
of fields. Because of the Pauli exclusion principle, only one or (for the sake of
opposite projections [3—6] of the spin) two fermionic fluctuations in one droplet
can occupy their lowest energy state. Unless other quantum numbers are assigned
to these fluctuations, the consecutive fermionic fluctuations can eventually occupy
their higher energy states. Concerning the phenomenon of the screening of the
fluctuation of charges inside one droplet, we face the problem of the mass of this
kind of droplet. The phenomenon of the gamma transparency of the electrically
uncharged configuration of fields in the droplets in the reference to gamma bursts
was previously pointed out in [7]. Below, the Schrodinger—Barut background of
the model is given.

The analyzed CGSW model is not a modification of the quantum GSW
model [8]. For instance, the configurations of fields are not the structures of
QFT; most particularly, the ground state is not the QFT vacuum state. Hence,
the argument against “a nonzero vacuum expectation value” is not relevant here,
since in the body of the self-consistent field theory a structure like this does
not exist at all. Unlike QFT, the self-consistent field theory (SCFT) deals with
continuous charge densities and continuous charge density fluctuations as the
basic concept [1,9].

In order to present the idea of the ground field in a broader context, let
us draw our attention to the Lagrangian density £ of electromagnetism, which
serves as an example for introducing the ground field notion in terms of the
self-consistent theory only

_ 1
L= V(i = m)¥ + J* Ay, — 2 Fy F,

where J# = —eW~" U is the electron current density fluctuation and A, is the
total electromagnetic field four-potential A, = AZ + AZ, where the superscript e
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stands for the external field and s stands for the self-field adjusted by the radiative
reaction to suit the electron current and its fluctuations (see [10-15]). Then, in
the minimum of the corresponding total Hamiltonian, the solution of the equation
of motion for Aj, is called the electromagnetic ground field.

In this paper, the term boson ground field is used for the solution of equa-
tions of motion for a boson field in the ground state of the whole system of
fields (fermion fluctuations, gauge bosons, scalar fluctuation) that are under con-
sideration. This boson field is a self-field (or can be treated as one) when it is
coupled to a source — “basic” field. In general, the term “basic” field means
a wave function that is proper for a fermion (fluctuation), a scalar (fluctuation)
or a dilatonic field [16,17], and, although not in this paper, a charged or heavy
boson (which in this case plays simultaneously the role of both the basic and
ground fields).

The above-mentioned concept of a wave function and the Schrédinger wave
equation is dominant in the nonrelativistic physics of atoms, molecules, and
condensed matter [18]. In the relativistic quantum theory, this notion has been
largely abandoned in favor of the second quantized perturbative Feynman graph
approach, although the Dirac wave equation is still used for the approximation of
some problems.

Barut and others extended Schrodinger’s “charge density interpretation” of
the wave function (e.g., the electron is the classical distribution of charge) to
a “fully-fledged” relativistic theory. They successfully implemented this “nat-
ural (fields theory) interpretation” of the wave function with coupled Dirac and
Maxwell equations (for characteristic boundary conditions) in many specific prob-
lems. But the “natural interpretation” of the wave function can be extended to
the Klein—Gordon equation [16, 17] coupled to the Einstein field equations, thus
being a rival for quantum gravity in its second quantization form. In the case of
the QFT models, the second quantization approach is connected with the proba-
bilistic interpretation that is inherent in the quantum theory, whereas the classical
field theories and the “natural interpretation” of the wave function together with
the self-field concept are in tune with the deterministic interpretation forming the
relativistic SCFT.

Thus, depending on the model, the role of a self-field can be played by, e.g.,
the electromagnetic field [19-25], boson W+ —W ™ and Z ground fields (as below
in this paper) [1,2], or by the gravitational field (metric tensor) g, [16,17]. The
“basic” field that is proper for a particular matter source is the dominant factor in
the existence of self-fields.

When the values of masses of fundamental fermionic, scalar, and bosonic
fields have to be taken as the external parameters of the model, then in SCFT
the basic fields are in fact interpreted as fluctuations [26-29] (of the total basic
fields), and the self-fields are coupled to the fluctuations only. The conjecture
is that if all fluctuations are identical to their total basic fields, then the solution
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is fully self-consistent and the masses of all fields should appear as a result
of the solution of the coupled partial differential equations that characterize the
system [6,30-35]. In [30-34], it was shown that the structural information
of the system [5,36,37] is, in the case of the scalar field, proportional to its
squared rest mass. The (observed) structural information principle put upon the
system means that the analyticity requirement of the log-likelihood function of
the system [5,36] is used. The coupled set of self-consistently solved partial
differential equations arises when the variational information principle, which
minimizes the total physical information of the system [30-34,36], is also put
upon the system. In the analyses, the Rao—Fisher metricity of the statistical
space [38] of the system is used [5,39].

If only some of the fluctuations are identified with their total basic fields,
then all masses of the fundamental fields remain among the parameters [39] that
(at least at some value of the energy) are to be estimated from the experiment.

In accordance with the statement above, a model of bound states of fluctua-
tions (index f) was constructed [1]. The new, electrically and/or weakly charged
physical configuration lies in the minimum of the effective potential of the scalar
field fluctuation ¢ at the value ¢y = 6, which is calculated self-consistently
from the Lagrangian of the CGSW model. In the model, the scalar field ¢ exists
inside the droplet of the configuration of fields only. It is the only one (inside
the droplet) to which its fluctuation ¢y = ¢ is possibly equivalent (“possibly”, as
this paper neither proves nor disproves it). In fact, it could be an effective one,
e.g., the superposition of other fundamental fields or their fluctuations.

Thus, from now, the symbols ¢, Ly, Ry denote the fluctuation of the scalar
field and a doublet of left-handed or a singlet of right-handed fluctuations of
fermionic fields, respectively, and not the global fields. In agreement with the
above explanations of the self-consistent approach, fields in a doublet L; = (ZJ; i)
and a singlet R; = ({;) are wave functions, where £; and v signify a leptonic
fluctuation ¢ and a fluctuation of its neutrino v, respectively. Thus, fields in
Ly and Ry are not connected with the interpretation of the corresponding full
(global) charge density distributions for particles in the doublet L and singlet R,
as it is for fields ruled by the original linear Dirac equation. Instead, they are
associated with the distributions of the charge density fluctuations of fields in the
doublet L and singlet R that are ruled by the coupled Dirac-Maxwell equations,
similar to that found in Barut’s case. Therefore, j Jﬁ‘y and j f“ Hoa=1,2,3, are
the continuous matter current electroweak density fluctuations extended in space
(and not operators of QFT with point-like charges). In order to simplify the
calculations, the mass my of any fermionic fluctuation is neglected (see Eq. (82)).

In Sec. 1, the effective potential for the “boson ground fields induced by
matter sources” configuration (hereafter, I will call it the bgfms configuration)
and the general algebraic equations that follow from the field equations of motion
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for the fields on the ground state inside the droplet are presented. They form
the screening condition of the fluctuation of charges. Such quantities as the ob-
served charge density fluctuations are also determined. In Sec.2, the numerical
results for the electrically and weakly charged bgfms (EWbgfms) configuration
are presented along with the calculations of the mass of its droplet in the thin
wall approximation. Section 3 is devoted to the analysis of the weakly charged
bgfms (Wbgfms) configuration and its stability for the sake of both the weak
charge density fluctuation and A parameter (which is the parameter of the scalar
fluctuation potential). In Sec.4, the intersections of the A\ functions of the mass
of the droplet for the electrically charged (i.e., EWbgfms) and electrically un-
charged (i.e., Wbgfms) configurations are analyzed. Two of such pairs of bgfms
configurations are found and analyzed: one with a mass equal to 123.7 GeV and
the other with 126.67 GeV. Then, the Wbgfms configuration with a mass equal to
126.67 GeV is interpreted as the state found in the LHC experiment [40,41] (the
Whbgfms configuration with a mass equal to 123.7 GeV is also considered). Also,
in Sec.4 the decay and gamma transparency of the Wbgfms configuration are
described. After the Conclusions, in Appendix 1 the Table with some quantum
numbers of fields in the SUL(2) x Uy (1) CGSW model is given. In Appendix 2,
the field equations for the gauge self-fields and the scalar field fluctuation in
CGSW model with continuous matter current density fluctuations are given. The
calculations below are in the “natural units” i = c = 1.

1. BOSON GROUND STATE SOLUTIONS

In the CGSW model the Lagrangian density for the fluctuations and self-fields
coupled to them with the hidden SU(2) x Uy (1) symmetry is as follows:

1 1
ﬁf = _ZF;LIVFQMV - ZB},LZIBMV + (qu)f)+vu@f —

2

2
“Afote, - L I a

where £ ff is the fermionic part of the fluctuation sector
.= .5 my -
L} =ily"V Ly +iRpy"V, Ry — ﬁTf(LfL@f Rf +h.c.). )

Here, v = 246.22 GeV [42] and A # 0 is the constant parameter of the scalar
fluctuation potential, whose value will be established later on. To simplify the
calculations, we neglect the mass me, of the fermionic fluctuation.

The fields inside the bgfms droplet are either the classical fluctuations of
fields or classical self-fields and in this paper they are treated as such. Because
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the formalism for the self-consistent treatment of the quantum fields operators is
not known, therefore the fields of the self-consistent approach are not the ones
of a quantum field theory origin. The same is true for the quantum fluctuation
fields operators. This concerns the scalar fluctuation doublet and all fermionic
fluctuations and bosonic self-fields inside the bgfms configuration. Moreover, both
the bosonic self-fields and the scalar and fermionic fluctuations that compose the
bgfms configuration are not directly observed. What is observed is the droplet
of the bgfms configuration. In this respect, the clarifying (only) similarity is to
think of the neutron as a kind of configuration of fields. It is hard to prove
that it consists of a proton and an electron (although see [43,44]). Similarly,
it would be risky to call the fermionic fluctuation inside the droplet, e.g., a
particular lepton fluctuation, although in the CGSW model the field fluctuations
inside the droplet are granted the SUL(2) x Uy (1) quantum numbers (see the
Table in Appendix 1). For example, the electrically charged EWbgfms state
found in Sec.4 has the SUL(2) x Uy (1) quantum numbers of the fermionic
fluctuation(s), which are the same as the numbers of the positron. Also, the
scalar fluctuation potential )\(@}r ®; —v%/2)? in the CGSW model is the one for
the classical scalar field fluctuation ®; that exists inside the bgfms configuration
only and not for the Higgs field. In conclusion, the CGSW model is one of
the fluctuations of basic (scalar or fermionic) fields and the self-fields coupled
to them. The scalar or fermionic fluctuations can be the objects different from
the ones known from, e.g., the scattering experiments, but the self-fields W+, Z,
and A, although they are also not the quantum fields in the CGSW model, are
the classical counterparts of the Standard Model (SM) bosonic fields and can be
named after them.

Finally, the question remains as to what is the host object for the droplet
of the bgfms configuration? Let us begin with the similarity of an electron in
an atom. The self-field concept, as developed by Barut and Kraus, has been
successfully used to compute nonrelativistic and relativistic Lamb shifts [19,20].
In their approach, the host object is the electron, and the tiny Lamb shift of its
wave mechanical energy state arises from the electron fluctuation coupled self-
consistently to its classical electromagnetic self-field. The self-consistent solution
for the Lamb shift is then obtained iteratively, that is why it is sometimes seen
as inferior to the perturbative quantum electrodynamics (QED). In this paper, the
situation is similar, but the energy of the host fermion (or fermions), if it was,
e.g., the electron (or electronic fluctuation), appears to be minute in comparison
to the obtained mass of the bgfms configuration.

In Eqgs. (1) and (2), the covariant differentiations V, for the scalar fluctuation
doublet @ and for a fermionic field fluctuations doublet L and singlet R are

1
Vu®r =025 +igW,0r + §’ig/YBM<I>f, 3)
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1
VL= B#Lf +igW, Ly + Qig/YB#Lf,
) C))
V.R;=0,Rs+ §ig'YB#Rf,

where
a

ag
Wi =W = 5)

is the gauge field decomposition with respect to the su(2) algebra generators.
The Uy (1) self-field tensor is defined as

BMV = BMBV - aVBp,a (6)
and the SUL(2) Yang-Mills self-field tensor as
Fi, = 0,W0 — 0,W — geanc WIWY, (7

where the symbol e, signifies the structure constants for SUp(2), which are
antisymmetric with the interchange of two neighbour indices and 123 = +1.

The fundamental constants of the model are the coupling constant for SUL(2),
which is denoted by g, and the coupling constant for Uy (1), which according to
convention is denoted by ¢’/2. The weak hypercharge operator for the Uy (1)
group is called Y. The quantum numbers in the model are given in the Table
(Appendix 1).

Now, the scalar fluctuation doublet

1 /70
O, = —
=7a) ®

contains the scalar field fluctuation ¢y. We have adopted the notations

Lf = (ZfL> and Rf = (ffR), (9)
fL

where for the sake of transparency only one leptonic fluctuation ¢ inside the bgfms
and its neutrino fluctuation are specified. The contribution from other existing
fermionic fluctuations can be treated in the similar way.

Now, for our charged (electroweak or weak) physical configuration at ¢ = 9,
we decompose the fotal self-fields Wﬁ, B,, and the scalar field fluctuation ¢y,
which stay on the LHS of Eq. (10) as follows:

We = wi + Wg,
B, =b, + B,, (10)
pr=0+¢s.
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Here, each of the total fields on the RHS is decomposed into the self-consistently
treated parts w¢,, b,, and ¢ and the wavy (non-self-consistent) parts VT/;}, Bu of
the self-fields and ¢ of the scalar field fluctuation, respectively. The wavy terms
are not treated self-consistently. In this paper, the thin wall approximation is
used in which wy, b, and ¢ are constant. These homogeneous components of
the self-fields are the main quantities which we are interested in, and they are
searched for self-consistently on the ground state denoted as ( ),. The other,
wavy parts of the self-fields, do not enter into the self-consistent calculation in
the presented model. Nevertheless, the wavy parts are important in determining
the modified mixing angle © (see Eq.(39)) and in estimating the range of the
validity of the thin wall approximation.

1.1. The Screening Condition of the Fluctuation of Charges. Now, the

effective potential on the ground state is given by
Uit = = (Ly)y (1)

where L is the Lagrangian density (see Eq. (1)) of the CGSW model. Let J}LY
and J}“‘ be the continuous matter current density fluctuations extended in space
(see Egs. (80) and (81)) equal on the ground state to

Jfy = (LY L+ Rpy"YRy), and Jf““:<ffv“%Lf) (12
0

respectively.
We now assume that on the ground state, for the system in the local rest
coordinate system we have

Iy =orv, Jiy =0, J=pf, and JH =0, (13)

where gfy and of are the matter charge density fluctuations related to Uy (1)
and SUL(2), respectively. Equation (13) determines the ground state which is
not relativistically covariant, hence locally, inside the discussed droplets of the
fluctuations, the Lorentz invariance might not be its fundamental property (the
symmetry of the Lagrangian density (2) still remaining). Yet, we will see that their
diameter in the analyzed cases is only of the order of 0.001 fm (see Subsecs. 2.2
and 3.1).

Remark. This means that although some characteristics of these objects may
be detectable, the effects of the violations of the Lorentz invariance might remain
undetectable or marginally detectable in the present experiments. Similar to the
case of partons, which although small are observed, not all of their characteristics
are detectable. The literature on the possibility of the violation of the Lorentz
invariance is notable [45-47].
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As all of the analyses in this paper that pertain to the ground fields are
performed on the ground state, therefore, if it is not necessary, the denotation ( )o
will be omitted.

Thus, what will finally be found is really the ground state of a system,
which follows from the fact that the analyzed droplets of the fields of the excited
configurations that lie near the physically interesting solutions have real non-
negative squared masses of all their constituent fields. The stability of solutions
for the particular configurations of fields is one of the basic problems analyzed
in this paper. The particular ground state configurations can decay via radiation
or the decay of the constituent fields only. There were attempts to approach to
such phenomena on the basis of the self-energy rather than on the basis of the
quantized radiation field [48].

The self-fields which are calculated from (11) are the ground state fields and
only these self-fields are treated fully self-consistently in this model. The boson
fields, VV;}, B,,, and ¢ (see Eq.(10)), which in the ground state of the whole
configuration of fields are naturally called the ground fields, are denoted as wy;,
b, and ¢, respectively,

W;} = wz,
self-consistent (parts of) self-fields B, =by, (14)
pr=29

They are searched for self-consistently.

Next, we assume that also in the decomposition (10) in the excited states
of the system, the self-consistent parts wy,, b, of the self-fields and ¢ are found
from the self-consistent analysis of potential Z/{J‘EH given by Eq.(11) and that in
the excited states matter current density fluctuations are the same as .J/y- and J
given by Eqs. (12) and (13).

The self-consistent parts (both on the ground state and on the excited ones)
can be parameterized in the following way [2]:

a __ wg = G"?’la7
= {Wf =Veapn®, and non® =1, (15)
_ Jbo=25,
b = {bi =0. (16)

In Eq.(15), the (n®) = const plays the role of a unit vector in the adjoint
representation of the Lie algebra su(2). It determines the direction of the ground
fields (or more generally of the self-consistent part of the self-fields). It can be
seen that (no summation over index “a”)

a, ap 2

wyw =0 nn® — 92 peanntn®  and b bt = G2 17
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Now, further calculations are performed in the thin wall approximation in which
wfz, b, and ¢ are the homogeneous fields.

Using Eqgs. (14)—(16) in Egs.(11) and (1), we obtain the effective potential

Ut (9,0,8,6) = —g*0*0> + %g%ﬂ - %9252(02 -20%) + igg’(s%an?’—

/
— ég’262ﬂ2 +gofnio + %nyﬂ + iA(éQ —v%)?2 (18)
for the self-consistent parts of the self-fields. For the self-fields on the ground
state, the potential L{;H(ﬂ, o, 3,9) forms the complete effective potential.

When the self-consistent parts of fields are homogeneous in time and space,
then 9, o, (3, and § are constant, and from 0,9 = 9,0 = 0,8 = 0,6 = 0,
v = 0,1,2,3, it follows that V29 = V2?0 = V23 = V2§ = 0. This means
that (in the thin wall approximation) the self-consistent part of the self-fields
and the scalar field fluctuation form an incompressible matter. Then, the field
equations Eqgs. (77)—(79) and Eq.(82) (see Appendix 2) that resulted from the
CGSW Lagrangian (1) give the following four algebraic equations for the self-
consistent parts 1, o, § of the self-fields and ¢ of the scalar field fluctuation:

1
[552 Co0? 4 2192} 9 =0, (19)
1 1
—g (2192 + 152> o+ Zg/(Szﬁn?’ +o0fn" =0, (20)
1
5(gon® = g'B)8” + opy =0, (21)

{—392(02 —29%) + %gg/aﬁn?’ — ig@ﬁ? + A2 —vH)|6=0. (22)

In the self-consistent homogeneous case, Eqgs. (77)—(79) and Eq.(82) are equiv-
alent to
OgUs" = O,UST = DU = AU = 0, (23)

and thus Egs. (19)-(22) can be easily checked. They form the self-consistent part
of the screening condition of the fluctuation of charges, which is the analog of
the screening current condition in electromagnetism [49]. They are used in the
calculations of the value of change of the observed electric and weak density
fluctuations of charges (see Egs. (29)—(31) below) and the effective masses of the
fields (see Eqgs.(33)-(36) below). The self-fields obtained self-consistently, i.e.,
according to Eqgs. (19)—(22), will be called the self-consistent fields. The config-
uration of the self-consistent fields on the ground state is called (in agreement
with Introduction) the (boson) ground fields induced by matter sources (bgfms)
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configuration [2]. They can be equivalently obtained self-consistently from the
effective potential given by Egs. (18) and (23).

When we define the “electroweak magnetic field” as Bf = 1/2¢;;,F} and
the “electroweak electric field” as &' = F, then their self-consistent parts
(0 = const, 9 = const, § = const, (n*) = const) for ¥ # 0 are equal to
(Bf)o and (£f)o, respectively, [2]

(Bi)o = —g¥?n'n® and (EHo = go¥(04i — n“ni). (24)

Now, let us choose
(n) = (0,0,1). (25)

In this case, the self-consistent parts of the electroweak magnetic field (B3)y =
—g¥? along the x3 spatial direction and of the electroweak electric field (€1)¢ =
(€3)9 = god pointing in the z' and z? spatial directions, respectively, are
different from zero.

Let us perform (for 6 # 0) a “rotation” of Wg’ and B, self-fields to the
physical self-fields Z,, and A,

Zy\ _ cos © —sin O\ (W} . 26)
A, sin ©® cos ©/\ B,
Then, consequently a rotation of ¢ and 3 self-consistent fields to their counterparts

¢ and « (and similarly for Zu and Au)’ as well as a rotation of the charge density
fluctuations g;’ and oy to their corresponding physical quantities pyz and oyq,

are as follows: c o 6
cos —sin o
(a) a (sin © cos @) (ﬁ)’ @7

((g/ cos @)sz) B (cos © —sin @) ( (9)ofn® ) 28)
(gsin ©)osg /)  \sin©® cos ©) \(¢'/2)0sv)

It is worthwhile to write the relations between weak isotopic charge density fluctu-
ation Q:} (see Egs. (13) and (25)), weak hypercharge density fluctuation oy, stan-
dard relation (SR) unscreened electric charge density fluctuation orqsr (Eq.(31)
below), standard (SR) unscreened weak charge density fluctuation ¢z sr (Eq. (31)
below) and their generalizations in our model, i.e., the observed electric charge
density fluctuation psg and the observed weak charge density fluctuation gy z:

1 /
_ 3 .9
0fz = 0 — 0f@sin” O, (30)
3 1 3 .2
0fQSrR = 0F + 507y, and 0fzsr = 0F — 0QsrSin” Ow. (3D

2
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Here, O is the modified mixing angle (given below), whereas the Standard Model
(SM) relations between the Weinberg angle Oy, g, and ¢’ are given by cos Oy =
g g
The numerical calculations are performed with the Fermi coupling con-
stant equal to Gr =~ 1.16638 - 107° GeV—2, the SM value for the boson
W= mass, my sy ~ 80.385 GeV, and sin? Ow =~ 0.23116 [42]. From these

values, g = 1/8mZ, g\ Gr/V2 ~ 0.65295, ¢ = gtan©Oy ~ 0.35803, and
v = 2mwsm/g ~ 246.22 GeV are calculated. The accuracy of the results is

restricted by the accuracy of the measurement of the boson W+ mass (80.385 +
0.015) GeV [42], i.e., to the fourth significant digits.

1.2. The Masses of the Self-Fields and Scalar Field Fluctuation. The mas-
sive Lagrangian density for the boson self-fields and the scalar field fluctuation,
which follows from the kinematical part of the Lagrangian (1), is equal to

and sin O =

1 - 1 gy
Loinass = —5g2sabcsadew2wd“WlfWe” + §9252W5W““—

1 ypmnn, 1 opms = 1 N
- 199/52W;§B} + §9/2523u3l + 592‘*’3”&} P -

- igg'wzb“cﬁ? + %g'Qb#b“cﬁ? - %)\(352 - U2)g5fc. (32)
This changes the effective potential (11) for the excited states by Z:{feff = —Liass-

Using Egs. (14)—(17) and Eq.(25) in the massive Lagrangian density (32),
we obtain the following squared masses [2] for (the wavy parts of) the boson
self-fields and the scalar field fluctuation (10) inside a droplet of the bgfms
configuration:

1
mi,, =g (Z(SQ —ot+ 192) , (33)
1
mZ ., = g <152 + 2192> , (34)
m% = 1 1252 (35)
B 49 )

1 1 1
2 _ 2 2 2/ 2 2 / 3 12 2
mg, = A(30 —v)—Zg(a —219)+§ggaﬁn—zgﬂ. (36)
Let us note that the masses in Egs. (33)—-(36) are modified (near the ground state of
the droplet) according to the self-consistent part of the screening current condition
given by Egs. (19)-(22).
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After using Eq.(26), we pass from the fields B and W3 to their physical
linear combinations A and Z, and from (32) we obtain their squared masses

3
N

{mQZSR +2¢%9% + \/ (m% gp + 29202)% — 2(gg/519)2} , (37)

3

S
N = N =

[m%SR +20%0° — /(3 g5 +20202)2 2(99/619)2} , (38

where from the orthogonality property of the mass matrix of the fields Aand Z
the modified mixing angle © is obtained:

tan© =

—(1 +8(9/6)%)9” +¢” \/((1 +8(0/9)%)g* — 9"

2
299 299 ) +1. (39

In Egs. (37)—(38), mQZ g looks similar to the standard relation (SR) for the boson
Z# squared mass

(9% + %) 6% (40)

N

m2z SR
Defining the complex self-fields Wi = (W} ¥ iW2)/v2 from Eq.(32), the
squared masses also follow (compare with Eq. (33)):

m%,, = g? E(SQ — (€ cos © + a sin ©) + 192} . (41)

Finally, the squared mass of the scalar field fluctuation is equal to

m?af = \(30% —v?) — (%2(m2~(2 —m2a?) +

1 1
+ 2¢? (5—2@ cos © + a sin ©)% + Z) 2. (42)

From Egs. (19)-(22) and (27), we notice that with the simultaneous change
of the signs of Q;’ and osy, the signs of 3,0, a, and ¢ also change but such
physical characteristics as the modified mixing angle © given by Eq.(39) and
the above masses of the fields inside the bgfms configuration and the mass of
the droplet of the bgfms configuration, calculated (further on) using the potential
Eq. (18), remain invariant.

The calculations below are carried out in the stationary points given by
Eq.(23) of the effective potential U‘;ﬂ of the self-consistent fields. It is not
difficult to see that the solutions of Egs. (19)—(22) for the ground fields in these
points of the effective potential LIJ‘%H split into the two cases discussed below, one
for the EWbgfms configuration and the other for the Wbgfms one.
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It is evident from Eq.(39) that the transition from the zero charge density
fluctuations to g?f’ # 0, osy # 0 is associated with the nonlinear response of
the system. It can also be noticed that electroweak SM assumptions, which
concern the relations between charges, are formally recovered for ¥ = 0. Some
quantum numbers of the CGSW SUL(2) x Uy (1) model are given in the Table
in Appendix 1.

2. THE EWbgfms FIELDS CONFIGURATIONS WITH g;qosr # 0

Now, Eqgs. (19)—(22) can be rewritten as follows:

1
o= WQfQSRy (43)
1 0
i= (gan3+2%), (44)
96 4 Lozgr _ L2 =0 (45)
1 4g2QfQSR— )
85+ fﬂQ— 2Nl g (46)
o Y Nory =

Note. From Eq. (45), we see that the self-consistent field ¢ is nonzero only
if orgsr # 0. We also see that according to Eq.(46) (compare with Eq. (21)),
the nonzero value of sy implies the nonzero self-consistent field § # O of the
scalar fluctuation ;.

Now Egs. (14)—(16) with (27) read

Wiy =0, Wi =+i0/vV2, W5 =49/V2,

Z; =0, Zy=¢(, where ((=o cos© —[sin©),
A; =0, Ag=«a, where (a=o0sin© + [ cos 0),
Qf = 0.

(47)

Let us note that the relation between the weak hypercharge quantum number Y
and the electric charge quantum number () can be written in the form Q = pY/2
(for matter fields), where the corresponding values of p (p # 0) are given in the
Table in Appendix 1. Then the relation between the weak hypercharge density
fluctuation gy and the standard electric charge density fluctuation orgsr can
also be written in the form

0
OfQSR = p%, (48)

where different values of p (see the Table) represent different matter fields which
can be the sources of charge density fluctuations.
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The above-mentioned screening charge phenomenon now quantified
by Egs. (43)-(46) is of crucial importance for the characteristics of the bgfms
configurations analyzed below. When the scalar fluctuation field ¢ together with
Wliz, Zo, Ap-gauge self-fields with the nonzero self-consistent parts given by
Eq. (47) are present, then the electroweak magnetic and electric ground fields (24)
penetrate inside the whole spatially extended fermionic fluctuation. In their pres-
ence, the electroweak force generates an “electroweak screening fluctuation of
charges” in accord with Eqs. (43)—(46) and Egs.(29)—(31). This is connected
with the fact that the basic fermionic field fluctuation carries a nonzero charge.

2.1. Characteristics of the EWbgfms Configuration. The solutions of
Eqgs. (43)-(46) with the condition (48) were previously discussed in [2]. The
numerical results of this analysis for the self-consistent parts of fields, the scalar
fluctuation § and self-fields 3, o, ¥, and for the physical self-fields « and ¢ (see
Eq.(27)) as functions of the electric charge density fluctuation prg for p = 2
are presented in Fig. 1,a. One particular value of A ~ 0.0652 has been chosen,
the choice of which will be argued later on. The plots for different values of A
and p can be found in [1]. Here, we notice only that the physical charge density
fluctuation gfq (see Eq.(29)) for the EWbgfms configuration for different values
of p (see the Table) converge for relatively small values of o¢q, i.e., for values
of the charge density fluctuation o¢q in the range of up to values approximately
103 times bigger than those that correspond to the matter densities in the nucleon.
Also, the ratio grg/0rgsr — 1 for psosr — 0 (see Fig.2,a). As a result,
all of the physical characteristics of the bgfms configurations for different values
of p (see the Table) converge with oyg — 0 [1]. This can be noticed, e.g.,

> 600]A=00652,p=2 « & 20fa=102 18|
g al 3 A =0.0652
o B W, 161,09 b
< 400 =2 ]
;J: | 5 5 8 1.2—_ &A
. 3T 084 7
S 2004 5 > V& <038 ] ; &
= /ﬁ e 044/
S| Q 1 l
T T - T T T -:ﬂ T T T T T T
0 2 8 4 6 0o Los5 10 15
S gy 10°GeV? S 07 107 GV

Fig. 1. a) The self-consistent parts o, 3, o, 19, ¢ of the self-fields Ao, Bo, W2,
WES-W252, and Zo, respectively, as functions of the electric charge density fluctuation
0rQ(¥ # 0, § # 0), Eq.(29). The self-consistent field ¢ of the self-field ¢ as the function
of pso(¥ # 0, § # 0). b) The self-consistent parts (£24)¢ = g sin © a9, (£4), of the
“electromagnetic electric ground fields” and (£ %)o = g cos © ¢, (£%), a = 1,2, of the
“weak electric ground fields” (see Egs. (24), (25) and (27)) and |(B3)o| = | — 99|, (|B)),
of the absolute value of “electroweak magnetic ground field” as functions of gfq
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Fig. 2. a) The ratio of the observed electric charge density fluctuation psq (see Eq.(44))
to the standard electric charge density fluctuation prgsr (9 # 0, 6 # 0) as the function
of prosr(¥ # 0, § # 0). b) The ratio sin ©/sin Ow (see Eq.(39)) as the function of
0rQ(¥ # 0, 6 # 0)

from the behavior of the ratio sin ©/sin Oy (Fig.2,b) as a function of g¢¢,
where © is the modified mixing angle given by Eq.(39). On the other hand,
0ro/0rosr — C = const > 1 for prgsr — oo, where the value of C' depends
both on p and A (see Fig.2,a). It can be noticed that the dependence of C' on the
parameter A of the scalar fluctuation potential is stronger than on p. In principle,
for bigger values of prgsr the information on the true value of A should be
extracted from the slope C' of the asymptote to the plot of gyg as the function
of O0fQSR-

From Egs. (19) and (33) (for ¥ # 0), it can be noticed that fields W+ and W~
(see Eq. (47)), taken together as a pair of massive fields, become inside the EW-
bgfms configuration the massless self-fields that are coupled to the charge density
fluctuations oo # 0 (0rQsr # 0 and gfy # 0). The results for the dependence
of the masses of A, Z, and ¢y fields (see Egs.(38), (37), and (42)) inside the
EWbgfms configuration on the electric charge density fluctuation pro(d # 0,
0 # 0) are presented in Fig. 3, a.

Let us notice that the expressions (37) for m22 and (38) for mii have a root.
For a particular value of p < 1.388 ~ 24/sin Oy and below some value of
A = Az (which depends on p), the expression (m% gy + 2¢929%)% — 2(gg'69)?
under this root gets above some value of pro the negative sign, so that the
EWbgfms configuration becomes unstable in the Z and A field sectors. Thus,
for p < 1.388 and a particular value A < Az, there is a value of gyg for which
mi=mg.

For example, for p = 1/2 the limiting value Az ~ 0.2148. Thus, e.g., for
A = 0.14 < Az this expression becomes negative above pfg ~ 1.767 - 108 GeV3
(for which Es(0fg) ~ 8.313-10'° GeV*). For p = 1/2 and A = 0.0652 < Az,
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Fig. 3. a) The masses m 5, mz, and mg, of the gauge boson fields A" and Z* and
of the scalar field fluctuation @y, respectively, as functions of the electric charge density
fluctuation pfq (¥ # 0, 6 # 0). b) The energy density Est(ofq), (49), of the EWbgfms
configuration for boson ground fields calculated self-consistently according to Egs. (43)—
(46) (for all values of p # 0 from the Table) as the function of g

this expression becomes negative above prg ~ 1.531 - 107 GeV? (for which
Est(0rq) =~ 3.456 - 107 GeV?). Next, e.g., for p = 1 the limiting value Az ~
0.0297. It will be shown in Sec. 4 that the value of gyg for a physically interesting
EWbgfms configuration (e.g., the state s2 in Sec.4) (for which this instability
might potentially appear) is smaller than the mentioned limiting value of o;q.
Moreover, above p = 1.388 and thus also from p = 3/2 upwards, the discussed
configurations do not possess this instability in the Z and A field sectors for all
values of A and o¢¢.

2.2. The Mass of the EWbgfms Configuration. The energy density given
by Eq.(18) for stationary (st) solutions of the EWbgfms configuration for bo-
son ground fields, calculated self-consistently according to Egs. (43)—(46) as the
function of pyq, is equal to

Es(050Q) = Z/{;H(ﬂ #0,0 #0) (with fields treated self-consistently).  (49)

The energy density £ (of¢g) increases both with o¢g and pfgsr. The plots of
the dependence of & (0fq) for boson ground fields given by Egs. (43)-(46) on
the electric charge density fluctuation o are presented in Fig. 3, b (for values of
p # 0 from the Table). We notice that from the point of view of & (0s¢g). the
EWbgfms configurations fall into classes of p that differ weakly with A inside a
particular class (which is shown in Fig. 3,5 for p = 2 only).

The matter electric charge fluctuation of an electrically charged EWbgfms
configuration is equal to

4
q = gwg{f 01Q, (50)
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where 7, is the “radius of the charge density fluctuation” in the thin wall ap-
proximation. The radius r, is the function of gyq. The mass of the electrically
charged EWbgfms configuration is equal to

Mgy, = %ﬂrg’ffst(ng) and M, = +q;My—1, (51)
where, because of the Pauli exclusion principle used for the fermionic fluctuations,
we obtain that gy = +1 or £2 only inside one droplet (except the cases that the
consecutive fermionic fluctuations occupy their higher energy states). When the
fermionic fluctuation (one or two in each bgfms configuration of fields) that plays
the role of the matter source that induces boson ground fields was taken into
account in the calculation of mass M,,, then its value would be changed by an
order of the energy of this fermionic fluctuation. In this paper, the energy of the
fermionic fluctuation is neglected.

The functional dependence of the mass M, of a droplet of the EWbgfms
configuration of fields (with charge fluctuation gy) on 7y, (0rq) is presented in
Fig.4,a. It exhibits a minimum in 7,, (and also in gyq) for some values of p.
For instance (see [1]), for p = 2 and with A\ ~ 0.0652, it has the minimal value
M, = +q;-63.335 GeV at oy = 2.965-10° GeV? (07qgsr = 1.788-10° GeV?)

> >0 "a —p=12azo0es2| w0 N
& 1 ——p=1, A200652] & 1" b
L 400 %, O\ e p=2, A=00652| _ - 4/ - e
=1 S ——p=2 A=o014 | B LUl
1 % —-p=4, 1200652 5120+ -
E qf::l:Z
1, —p=12
90; B
| _!' —w-p=4
100 - 60

T LA I L L L LR B
0.0020 0 5 0.1 02 03 04 05 0.6 A
Ty fm p
Fig. 4. a) The mass Mg;—+2 of the EWbgfms configuration as a function of the radius
rq; (for p # 0 from the Table and exemplary A’s). The curves with p > 1 exhibit
local minima. For example, the minimal M, =2 for p = 2 and A = 0.0652 is equal to
Mgi21o = 126.67 GeV for rq, ~ 0.00107 fm. The figures are plotted up to the values
of 74, smaller than 1/m (see Fig.3,a). For p = 1/2 values of gf¢q are no bigger than
3.297-107 GeV? (for which rq;=2 ~ 0.000481 fm), as above it the configuration becomes
unstable (mZZ (37) and m% (38) become imaginary). For p = 1/2 and for A > 0.0119,
there are no EWbgfms configurations with local minimum of Mg, (rq,). b) The minimal
mass M;;i“ of the EWbgfms configuration as a function of A. In the case of p = 1/2, the
thin wall approximation is not fulfilled and there are also no EWbgfms configurations with

local minimum of Mg, (rq,) for A > 0.0119; hence, we see the cut in the curve above
this value (compare with the text under Fig.4, a)
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and Es(0rg) = 1.878 - 10% GeV* with the radius of the corresponding charge
density fluctuation 7y, = qjl/ %.0.000852 fm. In comparison, for a proton with a
global electric charge @) = 1, its electric charge radius rg ~ 0.805 fm.

Finally, let us suppose that in the process a droplet of the EWbgfms config-
uration with a particular p > 1 appears. This self-consistent charged EWbgfms
configuration lies in the minimum of the function of mass My,—2 vs. grq (or
rq;) (see Fig.4,a). Its self-consistent (homogeneous) self-fields are the solution
of the equations of motion (77)—(79) and (82). If necessary, we will mark this
minimal mass by Mq“flin. This stationary state is the resonance via the weak in-
teractions only and can disintegrate through simultaneous decay or radiation of
its constituent fields. The most interesting fact is that the closest configuration
of fields is an electrically neutral Wbgfms configuration with the same mass.
Because their masses are equal, hence their Breit—Weisskopf—Wigner probability
density has a dispersion of the same order.

Note. From Fig.3,b we see that £, — 0 as orgsr — 0 (0@ — 0) for all
of the values of A > 0 and p # 0 considered (see the Table). For grg — 0 and
for all of the considered values of A > 0 and p # 0 (see the Table) from Eq. (18)
and Egs. (43)-(46), we also obtain

My, — +q7gv/2 = +q; - 80.385 GeV, (52)

[T

where the sign “+” is for gy > 0 and sign is for gy < 0. Yet, as in
this limit the EWbgfms configuration inside a droplet does not reproduce the
uncharged SM configuration (for which org = 0), thus even for gy = £1 this
bgfms configuration cannot be interpreted as the observed, well-known W+ boson
particle.

Indeed, even if the charge density fluctuation tends in the limit to zero
0fg — 0 and thus we obtain ¥ — 0 and ( — 0 for the ground fields of the
W+ —W ~ pair and Z, respectively, yet, the result is that the self-consistent ground
field a of Ay is still nonzero in this limit (see Eq. (47) and Fig. 1,a) [1]. Therefore,
the transition from the configuration of fields with o;g # 0 (0ygsr # 0 and
ory # 0) to the configuration with gorg = 0 (then with gorsr = 0, oyy = 0,
a =0, =0, and ¥ = 0) inside the droplet of the EWbgfms configuration is not
a continuous one. Let us notice that in the double limit poyg — 0 and ¢ — 0,
we obtain My, = 0.

3. Whgfms CONFIGURATIONS WITH o sg # 0

From Eq. (39), it can be noticed that for ¥} = 0 the standard relation tan © =
tan Oy = ¢'/g is held; hence, from Egs. (29)—(31) it follows that o¢z = 0z sr
and 05Q = 0fgsr- The other possibility tan © = —g/¢g’ = —cotan Oy obtained
in this case from Eq. (39) is not a physical solution.
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Using Egs. (27)—-(28), we can rewrite the effective potential Ll]‘iff given by
Eq. (18) for the ground fields in the following form:

/

U (¢, 0,8) =/ g>+ g2 05zsr ¢+ \/% 0fQSR O—
g g

_ 1(92 +g/2)52<2+i)\(52 _,02)2. (53)

8
For ¥ = 0, we can rewrite Egs. (20)—(22) as follows:
0fQsr = 0, (54)

1
ng2+g/2 §*¢=o0szsr (55)

and

A(E* —v%) = 3(92 +9%) =0 (56)

The relations (54)—(56) form the self-consistent part of the screening condition of
the fluctuation of charges.

Note. Thus, according to Eq.(55), the nonzero weak charge density fluctu-
ation gyzgr inevitably leads to the nonzero self-consistent field ¢ of Z,,. The
nonzero ¢z sr also implies the nonzero self-consistent field o # 0 of the scalar
fluctuation ¢ (compare with the Note below Eq. (46)).

Using Eq. (53) and equations (compare with Eq. (23))

At =0, (57)

and
U™ = dsusT =0, (58)

the relations (54)—(56) can be easily checked.
Two nontrivial relations given by Eqgs. (55)-(56) lead to the solution

4orzsr

5*(05zsR) = ——e, (59)
! Vg2 +9%¢
and
( )= 2
Clorzsr) = 372 (g7 4 g7 X
A—1/3(33/2 o7 5 00) % _ 2
y (332 05z 8R + /27 0§z 3R? + A00) v 60)

/3
A2/3(3%/2 05 zsR + /2705 25R2 + A00) /
where self-consistent fields ¢ and ¢ are the functions of oy sr only (see Fig. 5, a).
Using Eqgs. (15)—(16) and (26)—(27), we can rewrite Eq. (14) for the self-consistent

field o of A, in the form
A, =(,0,0,0). (61)
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Fig. 5. a) The self-consistent fields ( of Zy and J of ¢ as the function of the (standard)
weak charge density fluctuation pszsg (9 = 0, 6 # 0, grosr = 0). In the limit
orzsr — 0, the self-consistent ground fields tend to the uncharged values ( = O and
0 = v. b) The masses m;,+ (Eq.(67)), m; (Eq.(65)) of the wavy part of ch and Z,,
respectively, and the mass mg, (Eq.(68)) of the wavy part of ¢y inside the droplet of
the Wbgfms configuration as the function of gszsr (¥ =0, § # 0, orosr = 0). In
the limit pyzsr — 0O, these masses tend to the uncharged (i.e., for pyzsr = 0) values
my= = gv/2, mz = /g% + g*v/2, and m,, = V2X v, respectively

From Egs. (54)-(56) and (60)—(69) below, it follows that « is not a dynamical
variable. It corresponds to a nonphysical degree of freedom and can be removed
by the gauge transformation v — 0. Thus, Ug(1) remains the valid symmetry
group giving (see Eq. (27))

a =0 sin Oy + [ cos Oy = 0. (62)
Now, the self-consistent fields (14) can be rewritten as follows:

W2 =0, W=0,
Wg = —Bcotan Oy,

By =3, (63)
B; =0,
wf =9,

or in terms of physical fields

+ _ _
WE=0, Z =0,

1
Zy=¢(, where (= Ee— @Wﬂ, (64)
A, =0,
wf =4.

The appearance of the nonzero weak charge density fluctuation oyzsr and the
self-consistent field ¢ of the self-field Z,, induced by it (see Eq.(60)) influences
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the masses of the wavy parts of the boson self-fields and of the scalar field
fluctuation. Their squares inside a droplet of the Wbgfms configuration are,
according to Egs. (37)-(38), (41)—(42) (for 9 = 0), equal to (see Fig.5, b)

m? = 3(92 +9%)8%, (65)

m% =0, (66)

m%ﬁ/i = 392(52 —4¢? cos® Ow), (67)
ms, = A(36" —v*) - 3(92 +97) ¢ (68)

Thus, the effective mass of the wavy part of the physical self-field A, is equal
tomg = 0.

After putting the self-consistent ground fields calculated according to Egs. (55),
(56) together with Eq. (54) into Eq. (53), the energy density for the stationary so-
lution of the Wbgfms configuration, & (6, 05zsr) = szff (0, 07zsr; ¥ =0,
0rqQsr = 0) is obtained [1]

2
9%z SR
52

(with § treated self-consistently), which after using Egs. (55) and (56) could also
be rewritten as follows (see Fig. 6):

1
Est(0,07zsR) = 2 + 1 A (8% —v?)? (69)

1
Est(ofzsr) = 3V 9%+ g"?C(orz sR) %

1
X (gfm + @@2 +g’2)3/2<3(ngSR)> ., (70)

A= 0014

A~ 0.0652

e s e B e e
1.5 20 25
0f7SR> 107 GeV3

S
o
W
0.9249 |-\,

Fig. 6. The energy density of the Wbgfms configuration Ex(0fzsr) = Uﬁff @ =0,
1) # 0, O0fQSR = O) (see Eq. (70))
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where the self-consistent ground field ¢ = ((gyzsr) is the function of grzsr
(see Eq. (60)).

From Eqgs.(67) and (59), it is clear that the appearance of g;rzsr > 0
(so ¢ > 0) leads to the instability in the I/V/}L sector only if

V92 + 9% 05zsr
) > 7 ; (71)

(ofzsr

which is connected with the fact that then m%v + < 0 [1]. When the equality

Clorzsr) = Vg% + 9% 05zsr/g? is taken into account, we obtain the relation-
ship between Amax and 07z SR max, Where Apmayx is the value of A and 0z SR max
is the value of oz sr for which we have m%v + = 0. The region of stable Wbgfms
configurations with ¢ # 0 is on and below the 07z SR max(Amax) boundary curve
(see Fig.7,a).

For the weak charge density fluctuation ¢;zsr < of%ig = (¢ + 9”%)x
v3/(8g) ~ 1.585-10° GeV?, this configuration of fields is stable for an arbitrary A

limit

(see Fig.7,a). For values of oz sr bigger than 0F7 Sm> the Wbgfms configuration
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Fig. 7. a) The partition of the (A, pszsr) plane into the regions of stability and insta-
bility of the Wbgfms configurations with gszsr # 0. The region of stable Wbgfms
configurations lies on and below 97z SR max(Amax) boundary curve, where Amax is the
value of A and 07z sRr max 1S the value of gszgr for which m?fvi = 0. The limiting
values glj’é‘istR ~ 0.1585 - 107 GeV® and Ajimic ~ 0.0451 are shown. b) The upper mass
MZ“?‘“‘ (according to the stability of the Wbgfms configuration in the W= sector) with

orzsr 7# 0 as a function of A\ = Amax, Where m‘%—vi = 0 for points (Amax, M3%)
¥

which lie on the curve. The region of possible Wbgfms configurations is on and below
the Mi’g‘“‘(/\max) boundary curve. Two such curves, the first one for i} = %1 and the

max

second one for z‘} = +1/2 are plotted. For A — oo, f ~ 52.277 GeV and

i’;‘z‘ilﬂ ~ 26.138 GeV, respectively
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is unstable for a given \ above a certain value of orzgsr, which is equal to

892>\3/2 (92 +g/2)v3
[1692X — (g2 +g2)?]3/

0fZ SR max = (72)

For A < \imit = (92 + ¢%)?/(169%) =~ 0.0451, the Wbgfms configuration is
stable for all values of or7sr (see Fig.7,a).

3.1. The Mass of the Whbgfms Configuration. Let us examine the mass of
the droplet of the Wbgfms configuration induced by the nonzero weak charge
density fluctuation g7z sRr:

My = gwr%eﬁ(gﬂm) and M = ii?Mi.}zl, (73)
where £ (07 sr) is given by Eq. (70) and the sign “+” is for z?} > 0 and “-”
is for z?f’ < 0. Because of the Pauli exclusion principle used for the fermionic
fluctuations, only z:} = +1/2 or £1 (see the Table) inside one droplet are possible
(except in cases where the consecutive fermionic fluctuations occupy their higher
energy states). Here, Tis is the “radius of the weak charge density fluctuation” de-
termined by the weak isotopic charge fluctuation inside the Wbgfms configuration
in the thin wall approximation

) 4
it = gﬂ"’"?:; 0fZSR- (74)

The radius r;3 is the function of z?; The value of \z:}\ inside one droplet can

possibly be more than 1 for the composite fermion fluctuation only [50].
According to the stability of the Wbgfms configuration in respect of the

W# sector, we can also obtain the upper limit Mga" for the value of the mass

Mie} . The region of the stability of possible Wbgfms configurations lies on and
below the proper Mi‘?a"()\max) boundary curve (see Fig.7,b). Two such curves
f

are presented, one for the function M 3% | (\) and the other for M3, | /2(>\).
5= 5=
In principle, the value of A can be readout from the particular curve when the

experimental value of the mass M3 is known.

Note. It is not difficult to sée that oyzsr — 0 (which implies ¢ — 0
and § — v) entails & (0rzsr) — 0 for the energy density (70) of the limiting
Wbgfms configuration. The double limit oyzsg — 0 and z:} — 0 is the only
possibility for obtaining the weakly uncharged Wbgfms configuration. From
Fig.7,b it can be noticed that for the established value of A > Ajjniy = 0.0451
and with z?} — 0, the maximal mass Mie} of the Wbgfms configuration, which

lies on the boundary curve M%5**(Anax), also tends to zero. Thus, in this case
vr
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in the double limit pf7sr — 0 and z‘;”c — 0, the Wbgfms configuration becomes
necessarily massless for A > Ajjpis (for A < Ajimig this would be not necessarily
the case).

At the same time, from Fig.5,a,b we notice that for gorzsr — 0, the
Wbgfms configuration reproduces some characteristics of the uncharged ofzsr =
0 configuration, e.g., the masses of the (composite) boson fields and the lack of
self-consistent gauge fields. Nevertheless, even for an infinitesimally small value
of 07z sr., the value of the self-consistent field ¢ is different from zero and tends
in the limit to v. Thus, for A > Ajjni¢ (Which will be suggested later on) and
for przsr — 0, z?; — 0, the particles interacting with this massless Wbgfms
configuration can perceive the fields that are inside a Wbgfms droplet with their
SM values of couplings.

4. THE INTERSECTIONS OF EWbgfms
AND Whbgfms CONFIGURATIONS

Let us start with the electrically charged EWbgfms configuration with a
matter electric charge fluctuation equal to gy = 2 (analysis for gy = —2 would
be the same) and a minimal mass ;;22. Now, let us pose the question on the
configuration of the nearest Wbgfms droplet with przsr # O that arises after
the decay of this minimal mass EWbgfms configuration with grg # 0. The
solution with a particular value of A can be found as the point of the intersection
of the function of the minimal masses M(gﬁi“(A) of EWbgfms configurations
(presented in Fig.4,b) with the function of the maximal masses M%lax()\) of

Whbgfms configurations (presented in Fig.7,b). Six such solutions can be seen in
Fig. 8, a.

The estimates obtained for the mass of the observed neutral state in the LHC
experiment [51-53] are in case of the CMS detector equal currently to (126.2 £
0.6 (stat.) £ 0.2 (syst.)) GeV for its ZZ*) — 4¢ (¢ = e or ) decay channel [40]
and in case of the ATLAS detector equal to (126.6 +-0.3 (stat.) =0.7 (syst.)) GeV
in the v channel or (123.5 + 0.8 (stat.) + 0.3 (syst.)) GeV in the ZZ(*) — 4¢
channel [41]. Therefore, from the estimates obtained in the LHC experiment,
only two solutions for the intersection of functions M;}f‘ax()\) (one for z?f’ =+1/2

and the other for +1) with the function of the minimal masses ;;220\) for
p = 2 remain. These are the solutions s1 and s2, which are discussed below.
For the solution sl in Fig.8,a, we obtain A =~ 0.065187 ~ 0.0652 and

é’f“ﬁﬂ = Mgi"il ~ 126.67 GeV. Firstly, let us write down the characteristics

of the electrically charged EWbgfms configuration with orq # 0 (see Eq.(47)
and Fig.1,a). Thus, the electric charge density fluctuation is equal to grg =
2.965 - 10° GeV? (compare with Fig.2,a), and the energy density (Fig.3,b) is
equal to Es(0fg) ~ 1.878 - 108 GeV*. For g5 = 2 the radius of the electrically
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Fig. 8. a) The intersections of the curves of the minimal masses M;}i“()\) of the EWbgfms

configurations (presented in Fig.4,b) with the curves of the maximal masses M%f‘“(/\)

of the Wbgfms configurations (presented in Fig.7,b). b) The EWbgfms configurations

with the mass Mg,—2 as a function of the radius rq,—2 and the Wbgfms configurations

with the upper mass ;gixﬂ(rii) (according to the stability in the W¥ sector) as a
8=

function of the radius Tig—t1- The “decomposition” of the particular solution s1 found

in Fig.8,a is shown. Two points, ie., slg,— with M2y(r,) ~ 126.67 GeV on

the curve My —2(rq,) and Sli:}:il with the same mass on the curve M;gixil(ri.})

correspond to one point sl in Fig. 8, a. The right cut r;’}t:Q ~ 1/mz = 0.00196 fm on the
curve Mg =2(rq,) is connected with the thin wall approximation, whereas for the curve

i‘;‘l"il(ri?) the maximal value of Tig—t1 N 0.00105 fm follows from the fact that for
A — oo the limiting, lowest possible value of ¢z sr for these upper mass configurations
is equal to o}%4r ~ 1.585 - 10° GeV? (see Fig.7,q)

charged EWbgfms configuration is equal to r4, ~ 0.00107 fm (see Figs.4,a and
8,b). For gro = 2.965 - 105 GeV3, the mass m; ~ 124.128 GeV inside the
droplet of the EWbgfms configuration is the biggest one (see Fig. 3, a); hence, the
interaction range rf;]‘f inside the droplet is of the order rf;}t ~ 1/mj ~ 0.00159 fm,
and because the ratio Tqy /r};}t ~ 0.675 < 1, it is reasonable to use the thin wall
approximation.

The other, i.e., the electrically neutral Wbgfms configuration of the so-
lution s1 with the nonzero weak charge density fluctuation 0fzsR max ~
9.249 - 105 GeV3, has the energy density Et(0f2 SR max) ~ 1.172- 107 GeV*
(Fig.6). For z?’c = +£1 its radius is equal to Tig A 0.000583 fm (see Fig.8,b).
For this value of ¢0fz SR max, the mass m; = 165.064 GeV (see Fig.5,b) is the
biggest one (mg ;= 160.071 GeV); hence, the interaction range r%‘t inside the
droplet of the Wbgfms configuration is of the order rié;t ~ 1/mz ~ 0.0012 fm.
Thus, because the ratio Tis zl/rigt ~ 0.488 < 1, it is reasonable to use the thin
wall approximation.
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The transition from the electrically charged EWbgfms configuration (state
s14;=2) to the uncharged Wbgfms configuration (state sli.; —=1) s presented in
Fig.8,b. These two points are represented by one solution sl on the A — M
plane in Fig.8,a. We interpret the electrically uncharged Wbgfms configuration
represented by the point slie}ﬂFl as the candidate for the neutral state of the mass
~ 126.5 GeV recently observed in the LHC experiment.

Remark. In this paper, the masses of the states s1,,-12 and 512‘; (or 824,=12
and 522»?) are equal. Yet, the mass splitting between the states s1,,-12 and slie}
(or s24,=4o and 52;} ) could be of the 10 MeV order, which is in agreement
with the value of the decay width of the 126.5 GeV boson state observed in
the LHC experiment [54,55] (also Subsec.4.1). Then, examples all-b2 given
below, which have on their right-hand sides the dielectron events plus neutrinos,
are from this point of view not excluded by the present LHC experiment.

The examples of the processes connected with sl are as follows.

For s1;,=2 and sli.; —41, which are the leptonic states:
all) p+p — (slg,=42) + X +2v and then (slg,—12) — (slis}:,l) + 2+ 2e™,
al2) p+p — (slg;=42) + X +2v and then (sly,—y2) — (511‘-}:-5-1) + 20+ 2et.

For s1;,=2 and sli.} —41, which are the baryonic states:
a2) p+p — (slgy=s2) + X + (") and then (s14,—12) — (s1;3—51)+2v+2e™.

Here ¢ is the electron or muon and X signifies some jets.

For the solution s2 in Fig. 8,a, we obtain, correspondingly, A\ ~ 0.04977 ~

0.0498 and M ;f“ﬁﬂ = M;@}i"il /2 & 123.7 GeV. The characteristics of the elec-
3=

trically charged EWbgfms configuration are as follows: o7 ~ 2.615-10% GeV?3,

Exlorq) ~ 1.618 - 10® GeV*, and for gy = 2 the radius of the droplet is equal

to rg, ~ 0.00112 fm. For this value of grq the mass my; ~ 121.940 GeV

is the biggest one; hence, the interaction range rf;}t inside the droplet of the

EWbgfms configuration is of the order r};;t ~ 1/mz =~ 0.00162 fm. Because
Tq;/ rf;}t ~ 0.692 < 1, it is reasonable to use the thin wall approximation. The
characteristics of the electrically neutral Wbgfms configuration are as follows:
0f7 SR max & 5477107 GeV? with Es (072 SR max) ~ 1.355 - 100 GeV*, and
for z?; = +1/2 we obtain r & 0.000256 fm. For this value of 0f7sR max
the mass m; = 298.621 GeV is the biggest one (mg, =~ 253.036 GeV); hence,
r%‘t ~ 1/mz =~ 0.000661 fm. Because T /r;‘?"jt ~ 0.387 < 1, it is reasonable to
use the thin wall approximation. The exemplary processes for the s2 case (see
Fig.8,a) are as follows.

For s24,=2 and 521“}::!:1/2’ which are the leptonic states:
b11) p+p — (52g;=12) + X +2v and then (s24,=12) — (23——1/2) +v+2e,
bl12) p+p — (52¢;=12) + X +2v and then (s24,—12) — (522-3;:“/2) + v+ 2e™.
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For s2,,=2 and 521“}::!:1/2’ which are the baryonic states:
b2) p+p — (52q1f2+2)+X+(,’;§J_r) and then (524,—42) — (822»9;:;':1/2)4-2V+26+.

Some of the above-mentioned processes look like the lepton number violation
(i.e., al2, bl1, and b12), but if Sqs and Sis are leptonic states, they are not really
of this type.

If the LHC state can be either a baryonic or leptonic one, then the ¢y =
2 possibility is chosen only on the basis of the observed mass. Next, if the
droplets of the bgfms configurations are leptonic, then the states with |g¢| > 2
are (by the Pauli exclusion principle) possible only if the consecutive fermionic
fluctuations are in higher energy states. Nevertheless, in both cases, the baryonic
and leptonic, the particular function Mq“flin()\) for the EWbgfms configurations
with |g| > 2 intersects with the functions M%‘a"(k) of the Wbgfms configurations

for higher masses, and these solutions have not yet been observed in the LHC
experiment.

Let us consider the case when the bgfms configurations s,, and Sig are
occupied by two (electrically charged and uncharged, respectively) fermionic
fluctuations with opposite spin projections. In addition to the scalar fluctuation
@y, there are four gauge self-fields inside the configuration given by Eq.(47)
and three inside the configuration given by Eq.(64). Thus, for the particular
configuration of the ground fields given by Eq.(47), its EWbgfms s,, droplet
can have spin zero (and zero to four for its excitations). Meanwhile, for the
particular configuration of the ground fields given by Eq. (64), its Wbgfms 838
droplet can have spin zero (and zero to three for its excitations [56-59]). In-
deed, because S8 =+1 is the ground state configuration, hence the self-consistent
field Z, exists only inside its droplet (see Eq.(64)), which belongs to the spin
zero subspace of the 3-dimensional rotation group. Thus, the 88 =41 ground
configuration of fields, which consists of two opposite spin fermionic fluctua-
tions, the scalar fluctuation ¢y = 0 and spin zero Zy = ¢, has a spin equal
to zero. When boosted the Z self-field is longitudinally polarized, i.e., its spin
is equal to one with a spin projection equal to zero. Next, from the point
of view of the possible value of the spin of the Wbgfms configuration, con-
siderations similar to the ones above (for two fermionic fluctuations) lead to
the conclusion that states Si8=71/2 in bll, bl2, and b2 with quantum numbers
for fermionic fluctuation like those in the Table are excluded by the LHC ex-
periment, as they consist of one fermionic fluctuation only thus having a half
spin value.

We see that only cases all, al2, and a2 are possible, and thus the present day
experiments have selected the state slir; —=1 With mass Mirg‘iijl ~ 126.67 GeV for
=

A = 0.0652 and rejected the state 52i§:¥1/2 with mass Mgi}}l/z ~ 123.7 GeV
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for A =~ 0.0498. However, the basic fields that induce the bgfms configura-
tions of fields are (in this model) the fermionic fluctuations; hence, one could
think that the states sq,—2 and Sig—x1 are leptonic states (think of some mod-
els of a neutron in which the neutron is a composition of a baryonic proton
and a fermionic electron [43,44]). In this case, only the possibility of a lep-
tonic state sli.;:g remains, which is exemplified by processes all and al2.
Otherwise, the baryonic states exemplified by processes a2 remain with the con-
figuration sli? —=1 suggested as the solution for the state observed in the LHC
experiment.

In Fig.8,a, three pairs of neighbouring solutions can be noticed. Never-
theless, whether besides the experimentally noticeable state sli.; —41, the neigh-
bouring solution sQi?t:g /2 together with the remaining ones have been also
observed [60-63] as more shallow resonances and not as the statistical flukes in
the data only, remains an open question. The reason is that in such a case A
gains two additional indexes, i.e., A — )\p’i?, where the electric charge to hy-
percharge ratio index p, Eq.(48), numbers the EWbgfms configurations and the
weak isotopic charge z:} = F1/2, F1 numbers the Wbgfms ones.

Thus, in Fig. 8, a for each p, where p = 1,2, and 4, one pair (52‘?—;1/2) of
S;3 _
1f_¥1
the neighbouring solutions:

(0.0512,108.79) (0.0498,123.7) and (0.0484,146.33) (75)
(0.0705,114.91) )" \(0.0652,126.67) (0.0593,147.4) )’

respectively, can be noticed, where for each of the six solutions the values of A
and Mif}f‘ax [GeV] are given.

Th . . 52i3::|:1 /2 . .
e central column in Eq. (75) is <81f3 > It is easy to notice that the
i =F1

algebraic mean of the mass of two central fneighbouring solutions sli? —41 and
32;}:;1/2 is equal to 125.185 GeV. This value is consistent with the mean mass
of the configurations observed in the first run of the LHC experiment (with higher
than 50 significance of the observed excess over the expected background [64]).
Yet, it has to be also noticed that the values in the third column in Eq.(75)
lie in the vicinity of the events recorded in the CMS experiment at a mass of
approximately 145 GeV with a statistical significance of ~ 30 above background
expectations [60,62,65].

Finally, it is not difficult numerically to check that for all Wbgfms configu-
rations that lie on their boundary curve M;Eax()\max) and have a particular value
¥
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of the weak isotopic charge fluctuation z':}, the relation

43 3 ~ 153
37 6°/(3m) = |i (76)

is fulfilled (up to the fourth digit after the decimal point). The mass of the droplet
calculated with § obtained from the perfect equality in Eq.(76) with the (non-
self-consistent) use of Eq.(49) agrees with M %% up to the seventh digit after

the decimal point. Thus, the relation (76) is also fulfilled by the configuration
s, 3 =71 (and e.g., s2; 3 =71/ also). The Wbgfms configuration s1, 3 =1 is the
successor of the Engfms configuration s14,-2. In Fig.8, a, these conﬁguratlons
overlap. Both have a mass equal to 126.67 GeV, which (besides the spin zero)
has been interpreted above as the signature of the LHC state. In this way, both
the charge ¢y = 2 and z?; = +1 are discreetly chosen. Thus, it is suggested
by Eq.(76) that in the one parametric przgr # O case (see Egs. (59) and (60)),
the quantization z?f’ = =£1 is the artefact of the self-consistency conditions given
by Eqgs. (55) and (56). The analysis of condition (76) will be discussed in the
following paper.

4.1. The Decay of the 511‘; —=1 Droplet. In the full self-consistent field the-

ory, fields have the same type of couplings as their counterparts in the perturbative
quantum field theory. This is the case of, e.g., the self-consistent electrodynam-
ics and one of its outcomes is the derivation of the Lamb shift by Barut and
Kraus [19]. Although the presented CGSW model treats the self-consistent field
and the wave self-field of excited states differently, a self-field is in reality one
object (on the ground state, i.e., in the droplet of a bgfms configuration, only
self-consistent fields are present). Thus, both the self-consistent field and the
wave self-field in CGSW have the same type of couplings as their counterparts
in the GSW model.

The self-consistent electrically uncharged Wbgfms configuration sli.; —71 18

the resonance via the weak interactions only and can disintegrate through the
simultaneous decay or radiation of its constituents. In a droplet of a Wbgfms
configuration of fields induced by przsr # 0 (with grgsr = 0), the self-
consistent fields ¢ and Z (see Eq. (64)) are present in addition to the background
fermionic fluctuations. Then, only ¢ of ¢, and the time component ¢ of Z are
different from zero. Due to orgsr = 0 and my4 = 0, the electromagnetic self-
field A is totally absent even in the excitation; however, the pair WT-W ™ of
the self-fields can appear in the excitation. The self-consistent fields are the
initial ones that take part in the decay of the Wbgfms configuration. For each
initial self-consistent field the calculation of the coherent transition probability is
performed separately (i.e., for ¢y = § and Zp), and then the decay of the droplet
of the Wbgfms configurations is calculated in accordance with the following
scenario. Firstly, there appears the decay of the coupling of the self-consistent
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field ¢ of Z,, to the basic fermionic field followed by the decay of ¢ (which is
very rapid in SM). Then, (for gofzsr — 0, z?f’ — 0, and A > Ajimit) the fields
configuration of the droplet decays (see Note in Subsec.3.1). In this limit, the
particles interacting with the configuration can perceive, with the SM values of
couplings, fields that are inside the droplet. This leads to the decay of the self-
consistent field § of the scalar fluctuation ¢, with the decay rate of the same
order as predicted for the SM Higgs particle. Thus, roughly speaking, the decay
width of the Wbgfms configuration will be of the order of a few MeV. Finally,
only longer-lived particles are detected in the detector.

4.2. Transparency of the Uncharged bgfms Configuration to Electromag-
netic Radiation. In Sec. 3, it was noted that the effective mass m 4 of the elec-
tromagnetic self-field A inside the droplet of an electrically uncharged Wbgfms
configuration is equal to zero. Although the electromagnetic self-field is totally
absent in this bgfms configuration (see Sec. 3), zeroing of the effective mass and
0o = 0 are important for the photons that are external ones (see Introduction).
The reason is that the formal form of the equations of motion (77)-(79) is also
true for the external gauge fields penetrating the discussed bgfms configuration.
Thus, the Wbgfms configuration is transparent for the external electromagnetic
radiation.

Now, let us suppose that the matter is extremely dense, as could happen in
the mergers of neutron stars. Then the difference between the inward structure of
the nucleon and the inward structure of the droplet of the Wbgfms configuration
may be a supporting impulse to initiate the relativistic shock. That is, the abrupt
transition of the neutron matter during the collapse of star mergers could cause
the transition to matter of Wbgfms droplets, which are transparent to the gamma
radiation that is produced within the gamma-ray bursts (GRB) explosion. This
can lead to the appearance of an alternative source of energy that can help the
gamma-ray burst [7]. This would also be the reason for the recently observed
lack of correlations between gamma-ray bursts and the neutrino fluxes (present in
the Standard Model [66]) and directed from them [67-70].

CONCLUSIONS

The aim of this paper was to examine homogeneous self-consistent ground
state solutions in the CGSW model [1]. It is an effective one, as is the GSW
model, which is its quantum counterpart. It is assumed that if the ground state
of the configuration of the self-fields induced by extended (nonbosonic) charge
fluctuations appears [2], then this forces us to describe the physical system inside
its droplet in the manner of classical field theory.

Let us summarize the results presented in this paper. The discussed model
is homogeneous on the level of one droplet (thus, the thin wall approach is
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used). The homogeneous configurations of the gauge ground self-fields sz,
Zy, and Ap and the scalar field fluctuation ¢y in the presence of a spatially
extended homogeneous basic fermionic fluctuation(s), that carries the nonzero
charges, were examined. The ground fields penetrate the whole spatially extended
fermionic fluctuation(s) and in their presence the electroweak force generates “the
electroweak screening fluctuation of charges” according to Egs. (19)—(22).

In general, we notice two physically different configurations of the fields.
When a matter source has the charge density fluctuation prgsr # 0, then classes™
of the ground fields EWbgfms configurations (with ¢ # 0 and 0 # 0) that are
induced by this source exist (see Sec.2). The mass (51) of a droplet of this
configuration of field was determined for the value of the matter electric charge
fluctuation equal to g5 (50). The EWbgfms configurations lie on the M, (0rq)
curves (see Fig. 4, a) or equivalently on the & (0rosr) curves only (see Fig. 3, b).
For the particular value of p, the functions M, ;(0r@sr), (51), and their minima
M;f““ depend on A (see Fig.4,a).

Inside the droplet, both the appearance of the mass of the (non-self-consistently
treated) wavy self-field flu and the modification of the masses of the wavy self-
fields W; —VNV/L_, ZH, and also the scalar fluctuation field ¢ are caused due to the
existence of the self-consistent fields (see Subsec.1.1) and the screening effect
of the fluctuation of charges formulated by Eqgs.(19)-(22). Then, the obtained
masses are used in order to estimate the thin wall approximation range. A more
complete description of the EWbgfms configurations, e.g., the dependence of the
observed charge density fluctuation prg on prgsr 7 0 and the modification of
the mixing angle ©, (39), with a change of gy and the stability of the EWbgfms
configurations is given in Sec. 2.

When the weak charge density fluctuation o7z sr # 0 (and orgsr = 0), then
the electrically uncharged, weakly charged Wbgfms configurations with ¢ = 0
and & # 0, and the ground self-field Zy = ¢ # 0 can exist (see Sec.3). The
region of the stable (for the sake of the W sector) Wbgfms configurations
lies on and below the oz sr max (Amax) boundary curve (see Fig.7,a). For the
particular value of z'?}, (74), the function g;zsRr max(Amax) gives the function
M%wx()\max), which divides the plane \ x Mi? of all Wbgfms configurations into

the stability and instability regions (see Fig.7,b). A more complete description
of the Wbgfms configurations can be found in Sec. 3.

Previously, in [1] it was found that for A = 1 and p = 2 a shallow min-
imum of the mass of the EWbgfms configuration droplet equal to M;}}in ~
+qy - 66.7464 GeV appears. At that time the expectation was that the ap-

*For p # 0, where examples are given in the Table. One bgfms droplet with certain values
of quantum numbers does not convert (without decay or radiation) to another configuration of fields
with different quantum numbers.
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pearance of such bgfms configurations might be theoretically possible in the
very dense microscopic objects that are created in heavy-ion collisions [21].
In the present paper in Sec.4, the complete characteristics of two such bgfms
configurations slg,—2 and s2,,—2 were given. We only remind the reader
that for the zero spin sl,,—o state (realized for A =~ 0.0652) the mass of
the EWbgfms droplet equal to M$£2 ~ 126.67 GeV was obtained. The
physical realization of the other EWbgfms s2,,—2 state (at least as far as its
mass is taken into account) is doubtful, as the fields configuration inside the
droplet of its electrically neutral Wbgfms successor 522»? —+1/2 1s induced by
one fermionic fluctuation only thus having a half spin value, which is less
consistent with the observations reported in the LHC experiment [71-76]. As
was previously only mentioned, the algebraic mean of the mass of the cen-
tral solutions sl and s2, i.e., 126.67 and 123.7 GeV, respectively, is equal to
125.185 GeV.

Thus, the remaining zero spin EWbgfms state s1,,—2 is the configuration in
the minimum of the Mg, (rq,) curve for p = 2, ¢y = 2 and with A ~ 0.0652 (see
Fig.4,a). It lies on the M;}}QQ()\) curve at the point of its intersection with the
boundary curve Mgi"ﬂ()\ = Amax = 0.0652) (see Fig.8,a). The intersection
point is interpreted as the one that corresponds to the transition of the electrically
charged EWbgfms configuration sl,,—2 to the electrically uncharged zero spin
Whbgfms state 512‘?:;1’ which has the mass Mi‘é‘i";l ~ 126.67 GeV, as can be
seen in Fig8,b. In Sec.4, it was argued that the configuration sli.;:ﬂ corre-
sponds to the LHC ~ 126.5 GeV zero spin state. This physically interesting
solution, which is discussed in the present paper, has not been found before (see
Fig.8, a).

In this paper, it was also noted that for both the EWbgfms and Wbgfms con-
figurations the nonzero charge fluctuations (fundamentally oyy) imply a nonzero
value of the self-consistent field § # 0 of the scalar fluctuation ¢y (com-
pare Notes in Sec.2 below Eq.(46) and in Sec.3 below Eq.(56)). Thus, in
the more fundamental theory, the self-consistent field § could be a secondary
quantity. Because for both EWbgfms and Wbgfms configurations (for which
ory # 0), we find that the limit oyy — O implies § — v, thus a derivative
meaning for the parameter v of the scalar fluctuation potential may also be sug-
gested.

Finally, if Wbgfms state slir; —=1 18 interpreted as the LHC ~ 126.5 GeV
one, then this means that the value of A = A\yax ~ 0.0652, which is the constant
parameter of the CGSW model, is a little bit bigger than the limiting stability value
Nimit — 62 /(16 cos? Ow) ~ 0.0451 (see Sec.3 and Fig.7,a,b). A bgfms state
exists for A = 0.0652 only (although other specific values of A are possible in an
extension of the model, see Eq. (75)). Therefore, a Wbgfms configuration of fields
with pr7sr bigger than 07z sR max ~ 9.249 - 10% GeV? (which is the density for
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sli.; =71 State, calculated in accordance with Eq. (72)) lies above the slir; =1 State

in the instability region (see Fig.7) and is unstable in the W+ sector. Therefore,
as was suggested in [1], it radiates to the states with orzsr < 077 SR max OF
decays into stable particles, i.e., photons, leptons, hadrons, and neutrinos, as was
described in Subsec.4.1.

The nonlinear self-consistent classical field theory is inherently connected
with the existence of the self-field [10-15, 19] coupled to the basic field (fluctua-
tion). For example, in the perturbative QED the classical self-field of the electron
fluctuation is completely absent and it comes back in via a separate quantized
radiation field “photon by photon”. Meanwhile, in the self-consistent classical
field concept, the whole self-field is put in from the beginning. It is free of
the idea of the quantum field theory vacuum (state) [77] and the virtual pair
creation.

The self-field concept was previously used with great success in the Abelian
case, e.g., in order to compute nonrelativistic Lamb shifts and spontaneous emis-
sion [22,23], the Lamb shift (obtained iteratively) [20], spontaneous emission in
cavities [24], and long-range Casimir—Polder van der Waals forces [25]. These
analyses follow the work of Jaynes and Milonni [26-29] and the even earlier
paper of Callen and Welton [78] on the fluctuation dissipation theorem, which
showed that there is an intimate connection between vacuum fluctuations and
the process of radiation reaction. The existence of one implies the existence of
the other.

The linear Dirac equation alone with, e.g., the electron wave function in the
presence of the (external to it) Coulomb field leads to wave mechanical solutions
for the ground and excited states of the electron in an atom (see Introduction).
The mathematics of the nonlinear Dirac equation for the basic field fluctuation
which follows from the coupled Maxwell and linear Dirac equations for this
fluctuation and its electromagnetic self-field is quite different. In general, the
mathematics of the self-consistent field theory is interested in a proper set of
partial differential equations, which are then solved self-consistently in such a
way that all degrees of freedom are removed. What remains is one particular
state of the system.

Remark. For example, the self-consistent solution of the couple: the Dirac
equation and classical Maxwell equations, — will give a real photon, that is a
“lump of electromagnetic substance” (without Fourier decomposition [6,39], as
is suggested from recent experiments [79]) as the reflection of the coupling to
the Dirac equation. If we pull back from this particular solution forgetting about
the primary Dirac equation, then what remains are not the classical Maxwell
equations for the classical electromagnetic field but equations that act on the space
of possible photonic states. QED with the field operator and the Fock space have
to be the non-self-consistent reflection of this construction (if only the Fourier
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decomposed frequencies of the light pulse represent actual optical frequencies,
which have recently been questioned by light beam experiments [79]). Compare
the self-consistent pair of Eqgs. (55) and (56) with the non-self-consistent Eq. (76).

The merits of the thought that is behind this procedure is the self-consistency
of the solution. The further we are from this precise self-consistent solution, the
more numerous sets of differential equations remain to be solved, but the set
of equations that are already solved determine the types of the equations which
remain and the properties of the fields that are ruled by them. The self-field
is small for atomic phenomena, and therefore the description of the basic field
fluctuation via the linear Dirac equation may work approximately, which follows
from the fact that the nonlinear terms are small and can be treated as perturbations.
Nevertheless, the QED prevailed, mainly because of the success in the scattering
phenomena.

Yet, the self-field is not always small and there is another region where the
nonlinear terms dominate [14,15]. The present paper reflects such a situation,
since for the bgfms configuration of fields, the energy of the host fermionic
fluctuation is assumed to be minute in comparison to the obtained mass of the
bgfms droplet. Thus, the main theoretical subject of this paper was the self-
consistent description of the configuration of electroweakly interacting self-fields
that are induced by a charge density fluctuation(s) with the internal extended wave
structure inside one droplet. Thus, the CGSW model is the type of “a source
theory” that considers all self-fields and scalar field fluctuations as “derived” from
the source of the fluctuations of charges. The quotation marks mean that the self-
consistent fields are not absent — they are only self-consistently derived from the
basic fluctuations fields to which they are coupled via the screening condition of
the fluctuation of charges (19)—(22).

In the presented CGSW model of the bgfms configuration of fields induced
by the basic matter field fluctuation(s), the droplet is like the whole particle. This
is connected with the fact that (besides the fact that the energy of the fermionic
fluctuation is ignored) any fermionic fluctuation which “stretches” the droplet is
like a whole fermion. Thus, our droplet of the bgfms configuration is like “a
parton”. This is definitely not the most general case.

The indispensable need for the development of a more general approach
is seen from the self-consistent model of the configuration of fields induced
by the electronic charge fluctuation used in the Lamb shift explanation, where
the energy of the electronic fluctuation is ignored (not to mention the ground
and excited states of the electron, which are obtained in the anticipation by
the formalism of the wave mechanics for the total electron wave function that
is treated non-self-consistently). Therefore, let us assume that there is an ob-
ject in which the fluctuation of the fermionic charge does not exist by itself
but needs a globally extended fermionic charge of which it is the disturbance
only. With such an approach, one is obliged to define and find the mass of
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the configuration of fields induced by the globally extended charge together with
its fluctuation(s) (extended globally or locally). In doing this, one should fo-
cus on neither the wave mechanics (or quantum mechanics) nor on the self-
consistent field theory of fluctuations (or quantum field theory), but on the
theory of the complete inner structure of one particle. Otherwise, the model
gets into the composition of “a particle” from “partons”, which is a kind of
“planetarianism”, and seemingly because of this, e.g., quantum chromodynamics
(QCD) is the theory without final fundamental success [80], as was expressed
in [81]: “...all spin parts [of the nucleon] have to add to 1/2 which is in-
credible in the light of the present day experiments. This may indicate that
some underlying symmetries, unknown at present, are playing a role in form-
ing the various contributing parts such that the final sum rule gives the fermion
1/2 value”.

Both to recapitulate and go a little bit further, in order to describe the
state of one particle (or even one droplet with a fluctuation) in a fully self-
consistent way, the interaction of the self-fields with the globally extended charge
and fluctuations inside this particle (possibly ruled by equations unknown at
present) has to be considered simultaneously. Consequently, further analysis
should describe a more realistic shape of the charge density of the extended
matter source. Supposing that proper equations are known, this shape should
follow, e.g., from the coupled Klein—-Gordon—-Maxwell (Yang—Mills) or Dirac—
Maxwell (Yang-Mills) equations [82] and from Einstein’s equations (or equa-
tions of an effective gravity theory of the Logunov type [83,84]) as is required
for the self-consistent models. Thus, to make the theory of one particle fully
self-consistent, even a model of gravitation should be included [17]. Hence,
a matter particle (similar to one droplet induced by matter fluctuations) seems
to be, from the mathematical point of view, a self-consistent solution of all of
the field equations involved in the description of the constituent fields inside
this particle. Its interaction as a whole with the outer world is ruled by other
models.

The presented electroweak CGWS model, although elaborated on for configu-
rations of fields inside one particle that are induced by the basic matter fluctuations
only, is the next step towards the self-field formalism [6,30-37,39] of the clas-
sical theory of one elementary particle. This particle is a materially extended
entity with its own self-fields (e.g., electroweak, gravitational, etc.) coupled
self-consistently to the basic fields inside it.

In [17] and in the present paper, it is suggested that the realization of such
an analysis in the derivation of the characteristics of one particle is at hand.
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Appendix 1
QUANTUM NUMBERS IN THE CGSW MODEL

Some quantum numbers in the CGSW SUL(2) x Uy (1) model

Weak Weak Electric
isotopic | hypercharge charge @ p=2Q/Y
charge I® Y Q=I*+Y/2
Leptonic fluctuations
VL 172 -1 0 0
1259 -1/2 -1 -1
iR 0 -2 -1 1
{=e,u,T
Gauge self-fields
w 1 0 1
w? 0 0 0
W~ -1 0 -1
B 0 0 0
Scalar fluctuations doublet ® ¢
oF 12 | | 2
Dy -1/2 1 0 0
Some source matter fluctuation configurations
-1/2 1 0 0
-1 4 1 172
0 2 1 1
172 1 1 2
32 1 2 4
Appendix 2

THE CGSW MODEL FIELD EQUATIONS WITH CONTINUOUS
MATTER CURRENT DENSITY FLUCTUATIONS

From (1) the field equations for the Yang-Mills self-fields follow (O =

0,0"), for BH:

1 5, 1 "
~0B" +0"0,B" = 199" pW™ + 19707 B" — %J}y,

for W (a =1, 2):
— OW™ 4+ geqpc W0, WH =

1
_ g2 <Z¢?Wap, _ WBWZWWGH + Wal/Wll:Wbu> _ gj;“,

(77)

(78)
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and for W3+

1 1
= OW e WP O,W = 307G WO — J0g'03 B~
— GPWEWP W 4 P WEWE — gjlt. (79)

Here jy and j;* are the continuous matter current density fluctuations extended
in space, which are given by the equations

ify = Liy"Y Ly + Rgy"Y Ry, (80)

jf" =Liy" 5Ly, where a=1,2,3. (81)

Similarly, the fluctuation ¢ of the scalar field satisfies

1 a av 1 1% 1 1%
— Opy = (—192WDW - Zg’zBuB = 599’WS’B ) or—

my, —
— Mpr + A} + Tf(ﬁfLéfR +he). (82)

To simplify the calculations, we neglect the mass my, of the fermionic fluctua-
tion £;. It could be smaller than the mass of, e.g., electron. But if £; coincided
with the lepton ¢, e.g., electron, then it would enter with a relative strength equal
to me, /v ~2.1-107.
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