ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2017. Т. 48. ВЫП. 6. С. 797–800

РОЖДЕНИЕ $\psi(2S)$ - и $\Upsilon(3S)$ -МЕЗОНОВ В ПОДХОДЕ РЕДЖЕЗАЦИИ ПАРТОНОВ: ПОЛЯРИЗАЦИОННЫЕ НАБЛЮДАЕМЫЕ И РОЛЬ ФРАГМЕНТАЦИИ

М. А. Нефедов, В. А. Салеев*

Самарский национальный исследовательский университет им. С. П. Королева,

Самара, Россия

Рождение $\psi(2S)$ - и $\Upsilon(3S)$ -мезонов рассматривается в рамках лидирующего приближения подхода реджезации партонов и гипотезы НРКХД-факторизации. Удается достичь самосогласованного описания p_T -спектров в области малых p_T (модель слияния) и больших p_T (модель фрагментации). Предсказания для поляризационных наблюдаемых, полученные в модели слияния, согласуются с экспериментом для $\Upsilon(3S)$ и находятся в противоречии с экспериментом для $\psi(2S)$.

The hadroproduction of $\psi(2S)$ and $\Upsilon(3S)$ mesons is considered in the Leading Order of Parton Reggeization Approach and NRQCD-factorization. The consistent description of p_T -spectra at low p_T (fusion mechanism) and high p_T (fragmentation mechanism) is obtained. The predictions for polarization observables, obtained in the fusion picture, reasonably agree with experiment for $\Upsilon(3S)$ case and deviate from data for $\psi(2S)$ case. PACS: 13.85.Ni; 12.40.Nn

1. МОДЕЛЬ

Рождение тяжелых кваркониев на адронных коллайдерах представляет собой уникальный материал для изучения связи между теорией пертурбативного жесткого процесса и моделями адронизации. Гипотеза факторизации нерелятивистской КХД (НРКХД-факторизации) [1] позволяет факторизовать эффекты больших и малых расстояний и параметризовать последние в терминах нескольких непертурбативных матричных элементов (НМЭ). В реджевском пределе при высоких энергиях, когда $p_T, M_{\mathcal{H}} \ll \sqrt{S}$, реализуется новый динамический режим, при котором факторизация при высоких энергиях, или k_T -факторизация, является более адекватной для описания экспериментальных данных, чем коллинеарная партонная модель. В подходе реджезации

^{*}E-mail: saleev@samsu.ru

партонов (ПРП) [2], основанном на формализме k_T -факторизации, адронное сечение представляется в виде свертки сечения партонного подпроцесса с начальными виртуальными глюонами и неинтегрированных партонных функций распределения (нПФР) глюона в протоне. В настоящей работе используется нПФР в модели Кимбера–Мартина–Рыскина [3]. В ПРП калибровочная инвариантность коэффициентов жесткого рассеяния с виртуальными партонами в начальном состоянии гарантируется тем, что *t*-канальные партоны рассматриваются как реджезованные в соответствии с эффективной теорией реджезованных глюонов и кварков Л. Н. Липатова [4].

В рамках НРКХД-факторизации в модели слияния (МС) в лидирующем приближении (ЛП) ПРП учитываются следующие партонные подпроцессы:

$$\begin{aligned} R(q_1) + R(q_2) &\to \mathcal{H}[{}^3S_1^{(8)}, {}^1S_0^{(8)}, {}^3P_J^{(8)}], \\ R(q_1) + R(q_2) &\to \mathcal{H}[{}^3S_1^{(1)}] + g, \end{aligned}$$

где R — реджезованный глюон, а $\mathcal{H}[n]$ обозначает физическое состояние кваркония, эволюция в которое идет через промежуточное состояние пары тяжелых кварка и антикварка $n = {}^{2S+1}L_{J}^{(1,8)}$.

В области $p_T \gg M$ кроме k_T -факторизации мы используем также модель фрагментации (МФ)

$$d\sigma(pp \to \mathcal{H}(p) + X) = d\sigma(pp \to g(p/z) + x) \otimes D_{g \to \mathcal{H}[{}^{3}S_{1}^{(8)}]}(z, \mu_{F}),$$

где $D_{g \to \mathcal{H}[{}^{3}S_{1}^{(8)}]}(z, \mu_{F})$ — функция фрагментации глюона в \mathcal{H} , в ЛП на стартовом масштабе ДГЛАП-эволюции заданная следующим образом:

$$D_{g \to \mathcal{H}[{}^{3}S_{1}^{(8)}]}(z, \mu_{F0}^{2} = M^{2}) = \frac{\pi \alpha_{s}(\mu_{F0}^{2})}{6M^{3}} \left\langle \mathcal{O}^{\mathcal{H}}\left[{}^{3}S_{1}^{(8)}\right] \right\rangle \delta(1-z).$$

Здесь и далее $\langle \mathcal{O}^{\mathcal{H}}[n] \rangle$ — НМЭ соответствующего НРКХД-оператора, описывающий переход $q\bar{q}[n] \rightarrow \mathcal{H} + X$.

2. ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

Результаты фита данных CDF-2009 [5] p_T -спектров инклюзивного рождения прямых $\psi(2S)$ -мезонов с $p_T < 30$ ГэВ в $p\bar{p}$ -столкновениях ($\sqrt{S} = 1,96$ ТэВ) в рамках МС ЛП ПРП приведены в первой колонке таблицы. Во второй колонке таблицы приведены результаты совместного МФ ЛП ПРП фита данных ATLAS [6] и CMS [7] ($\sqrt{S} = 7$ ТэВ), покрывающих область $10 < p_T < 100$ ГэВ. НМЭ, полученные в результате независимых МС- и

НМЭ	МС-фит $\psi(2S)$	${f M} \Phi$ -фит $\psi(2S)$ ATLAS + CMS	МС-фит $\Upsilon(3S)$
$\langle \mathcal{O}^{\mathcal{H}} [{}^3S_1^{(1)}] angle / \Gamma$ э B^3	$0,65 \pm 0,06$ [9]	$0,\!65\pm0,\!06$	3,54 [10]
$\langle \mathcal{O}^{\mathcal{H}}[{}^{3}S_{1}^{(8)}] \rangle / \Gamma$ эВ $^{3} \cdot 10^{3}$	$1,\!84\pm0,\!23$	$2,\!57\pm0,\!09$	$0,\!25\pm0,\!01$
$M_0^{\mathcal{H}}/\Gamma$ э $\mathbf{B}^3\cdot 10^2$	$3{,}11\pm0{,}14$	$2{,}70\pm0{,}11$	$0,0\pm0,17$
χ^2 /ст. св.	0,6	1,1	7,6

НМЭ, полученные в результате фита данных по p_T -спектрам прямых $\psi(2S)$ - и $\Upsilon(3S)$ -мезонов в рамках МС и МФ ЛП ПРП. Синглетные НМЭ зафиксированы из ширины распада $\psi(2S) \rightarrow \mu^+ \mu^-$ [9] или потенциальной модели [10]

МФ-фитов, находятся в согласии друг с другом. Учет эффектов фрагментации оказывается необходимым для описания данных с $p_T > 10M$. В третьей колонке таблицы приведены результаты MC-фита данных ATLAS [8] p_T -спектров прямых $\Upsilon(3S)$ -мезонов с $p_T < 50$ ГэВ.

НМЭ, приведенные в таблице, позволяют сделать предсказания для поляризационных наблюдаемых в рождении $\psi(2S)$ - и $\Upsilon(3S)$ -состояний. Мы показали, что предсказания МС ЛП ПРП для зависимости поляризации $\Upsilon(3S)$ -состояния от p_T находятся в разумном согласии с экспериментом. В то же время для $\psi(2S)$ МС ЛП ПРП (так же как и следующее за лидирующим приближение коллинеарной партонной модели (СЛП КПМ) [14]) предсказывает поперечную поляризацию ($\lambda_{\theta} = +1$) на больших p_T , при этом эксперимент говорит, скорее, о рождении неполяризованной смеси состояний. Таким образом, проблема поляризации тяжелых кваркониев, возникшая в СЛП КПМ, воспроизводится и в ЛП ПРП. Отсутствие поляризации на больших p_T у $\psi(2S)$ и $\Upsilon(3S)$ не может быть объяснено примесью вкладов вышележащих состояний, так как массы этих состояний близки к порогу рождения пар мезонов с открытым флейвором, и потому вклад от распадов вышележащих кваркониев подавлен.

Благодарности. Работа выполнена при финансовой поддержке РФФИ, грант № 14-02-00021, и Министерства образования и науки РФ по Программе повышения конкурентоспособности Самарского университета на 2013– 2020 гг., проект 3.5093.2017/8.9. Авторы выражают благодарность профессору Б. А. Книлю, в соавторстве с которым была получена часть представленных в докладе результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Bodwin G. T., Braaten E., Lepage G. P. Rigorous QCD Analysis of Heavy Quarkonium Production and Annihilation // Phys. Rev. D. 1995. V. 51. P. 1125.
- 2. *Nefedov M. A., Saleev V. A., Shipilova A. V.* Dijet Azimuthal Decorrelations at the LHC in the Parton Reggeization Approach // Phys. Rev. D. 2013. V. 87. P. 094030.

- Kimber M. A., Martin A. D., Ryskin M. G. Unintegrated Parton Distributions // Phys. Rev. D. 2001. V. 63. P. 114027.
- Lipatov L. N. Gauge Invariant Effective Action for High-Energy Processes in QCD // Nucl. Phys. B. 1995. V. 452. P. 369.
- 5. Aaltonen T. et al. (CDF Collab.). Production of $\psi(2S)$ Mesons in p Anti-p Collisions at 1.96 TeV // Phys. Rev. D. 2009. V. 80. P. 031103.
- Aad G. et al. (ATLAS Collab.). Measurement of the Production Cross Section of ψ(2S) → J/ψ(→ μ⁺μ⁻)π⁺π⁻ in pp Collisions at √s = 7 TeV at ATLAS // JHEP. 2014. V. 1409. P. 079.
- 7. *Khachatryan V. et al. (CMS Collab.).* Measurement of J/ψ and $\psi(2S)$ Prompt Double-Differential Cross Sections in pp Collisions at $\sqrt{s} = 7$ TeV // Phys. Rev. Lett. 2015. V. 114. P. 191802.
- Aad G. et al. (ATLAS Collab.). Measurement of Upsilon Production in 7 TeV pp Collisions at ATLAS // Phys. Rev. D. 2013. V. 87. P. 052004.
- 9. Braaten E., Kniehl B.A., Lee J. Polarization of Prompt J/ψ at the Tevatron // Phys. Rev. D. 2000. V. 62. P. 094005.
- Eichten E. J., Quigg C. Quarkonium Wave Functions at the Origin // Phys. Rev. D. 1995. V. 52. P. 1726.
- Faccioli P. et al. Towards the Experimental Clarification of Quarkonium Polarization // Eur. Phys. J. C. 2010. V. 69. P. 657.
- 12. Chatrchyan S. et al. (CMS Collab.). Measurement of the Prompt J/ψ and $\psi(2S)$ Polarizations in pp Collisions at $\sqrt{s} = 7$ TeV // Phys. Lett. B. 2013. V.727. P.381; Measurement of the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ Polarizations in pp Collisions at $\sqrt{s} = 7$ TeV // Phys. Rev. Lett. 2013. V. 110. P.081802.
- Abulencia A. et al. (CDF Collab.). Polarization of J/ψ and ψ(2S) Mesons Produced in pp̄ Collisions at √s = 1.96 TeV // Phys. Rev. Lett. 2007. V. 99. P. 132001; Aaltonen T. et al. (CDF Collab.). Measurements of Angular Distributions of Muons from Υ Meson Decays in pp̄ Collisions at √s = 1.96 TeV // Phys. Rev. Lett. 2012. V. 108. P. 151802.
- 14. Butenshön M., Kniehl B.A. Next-to-Leading-Order Tests of NRQCD Factorization with J/ψ Yield and Polarization // Mod. Phys. Lett. A. 2013. V. 28. P. 1350027.