ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА 2017. Т. 48. ВЫП. 6. С. 836–845

ДВУХ- И ТРЕХЧАСТИЧНЫЕ КЛАСТЕРЫ ИНЕРТНЫХ ГАЗОВ

А. А. Коробицин^{1,*}, *Е. А. Колганова*^{1,2}

1 Объединенный институт ядерных исследований, Дубна

² Университет «Дубна», Дубна, Россия

На основе уравнений Фаддеева исследованы свойства трехатомной системы гелия. Рассчитаны спектры и радиусы всех возможных однородных и неоднородных димеров инертных газов. Показано, что во всех димерах имеются состояния с энергией, близкой к порогу развала.

Properties of helium triatomic system are studied using Faddeev approach. Spectra and radii of all possible homogeneous and heterogeneous rare gas dimers are calculated. It is shown that all rare gas dimers have excited states with the energy close to breakup threshold.

PACS: 51.90.tr

введение

Кластеры инертных газов представляют собой большой класс молекул, взаимодействие которых описывается потенциалами ван-дер-ваальсового типа. Исследование таких кластеров всегда привлекало повышенное внимание физиков-теоретиков и экспериментаторов в течение многих лет и продолжает оставаться актуальным и в наши дни, в особенности из-за их интересных свойств, например, эффекта Ефимова [1]. Квантово-механический эффект Ефимова был впервые предсказан в 1970 г. российским физиком-теоретиком Виталием Ефимовым. Этот эффект прекрасно демонстрирует разнообразие возможностей при переходе от задачи двух тел к трехчастичной задаче. Хорошо известно, что любая система двух частиц с достаточно быстро убывающим и не слишком сингулярным взаимодействием имеет конечное число связанных состояний. В случае системы трех частиц при определенных условиях реализуется противоположная ситуация: число связанных состояний может быть бесконечным. Такая спектральная ситуация имеет место в случае, когда ни одна из парных подсистем не имеет связанных состояний, но хотя бы две

^{*}E-mail: koroaa@theor.jinr.ru

из них обладают бесконечными длинами рассеяния [2, 3]. Разумеется, конкретные двухчастичные системы обладают конечными длинами рассеяния, и поэтому можно говорить о системах ефимовского типа, в которых этот эффект проявляется лишь частично. Одной из таких систем, несомненно, является тример гелия ⁴He₃, возбужденное состояние которого имеет ефимовскую природу [2–13].

Для изучения проявления эффекта Ефимова в трехатомных кластерах необходимы хорошие знания волновых функций димеров. В настоящей работе мы вычисляем волновые функции и спектры двухатомных молекул инертных газов He₂, Ne₂, Ar₂, Kr₂ и Xe₂ с различными межатомными потенциал лами. Среди ранних потенциалов, описывающих взаимодействие между этими атомами, наиболее удачным считается эмпирический потенциал Леннард-Джонса (LJ) [14]. В настоящее время наиболее адекватными потенциальными моделями считаются чисто теоретический потенциал К. А. Танга и Я. П. Тоенниса (TT) [15], а также полуфеноменологические потенциалы LM2M2 [16], HFD-B2 [17, 18], HFD-B [19], построенные Р. А. Азизом с сотрудниками. Эти потенциалы более глубокие по сравнению с LJ и поддерживают слабосвязанные состояния, которые особенно интересны с точки зрения существования ефимовских резонансов [3, 20].

1. ДВУХЧАСТИЧНЫЕ КЛАСТЕРЫ

Вопрос о существовании связанных состояний димеров инертных газов многие годы оставался открытым. Так, димер гелия был впервые открыт в независимых экспериментах [21] и [22], а первая экспериментальная оценка его энергии связи была получена лишь в 1996 г. [23]. Согласно более позднему эксперименту [24] среднее значение длины связи димера гелия составило $\langle r \rangle = (52 \pm 4)$ Å, а это указывает на то, что димер гелия является самой протяженной среди известных двухатомных молекул. В этой же работе была дана оценка энергии связи димера $1,1^{+0,3}_{-0,2}$ мК и длина рассеяния 104⁺⁸ Å. Отметим, что такая слабая связь позволяет двум атомам гелия находиться в связанном состоянии только с нулевым угловым моментом. Возбужденные же уровни (вращательные или колебательные) у этой молекулы отсутствуют. Анализ экспериментальных данных [24], проведенный недавно в работе [25], дает несколько другую оценку энергии связи 1,3^{+0,25}_{-0.19} мК. Прояснение этой ситуации, безусловно, требует дальнейших экспериментальных исследований этой системы. Первые экспериментальные измерения спектра димера неона были выполнены в [26]. Всего дискретный спектр димера неона в з-состоянии содержит три уровня, два из которых экспериментально измерены в работе [27] и имеют значения энергии $(24,22 \pm 0.02)$ К и $(4,405\pm0,02)$ К соответственно. Для энергии второго возбужденного состояния получена только оценка сверху — меньше 0,14 К [27].

Уровень	Не2, мК		Ne	2, K	Ar ₂ , K		
	TT	LM2M2	TT	HFD-B2	TT	HFD-B	
E_0	1,3240	1,3036	24,1316	24,4421	121,5004	121,9369	
E_1			4,2777	4,5279	83,7284	84,9491	
E_2			0,0222	0,0327	54,0021	55,3693	
E_3					31,8334	32,9571	
E_4					16,5115	17,2461	
E_5					7,0383	7,4253	
E_6					2,1227	2,2811	
E_7					0,2823	0,3213	

Таблица 1. Спектры E_n однородных димеров инертных газов гелия, неона и аргона, вычисленные с потенциалами ТТ [15], LM2M2 [16], HFD-B2 [17,18], HFD-B [19]

Таблица 2. Спектры E_n (К) однородных димеров инертных газов криптона и ксенона, вычисленные с потенциалами ТТ [15] и HFD-B2 [18]

Vnopouu	K	\mathbf{r}_2	Xe_2			
уровень	TT	HFD-B2	TT	HFD-B2		
E_0	184,7897	184,7685	267,1759	268,0782		
E_1	153,1110	153,9699	238,6889	239,8699		
E_2	124,8287	126,2006	212,0169	213,3263		
E_3	99,8756	101,4508	187,1428	188,4631		
E_4	78,1658	79,7117	164,0472	165,3147		
E_5	59,5926	60,9850	142,7075	143,8921		
E_6	44,0234	45,2075	123,0977	124,1661		
E_7	31,2940	32,2453	105,1879	106,1196		
E_8	21,2031	21,9275	88,9437	89,7246		
E_9	<i>E</i> ₉ 13,5088		74,3252	74,9522		
E_{10}	7,9285	8,2844	61,2863	61,7655		
E_{11}	4,1441	4,3684	49,7742	50,1195		
E_{12}	1,8129	1,9386	39,7280	39,9593		
E_{13}	0,5801	0,6377	31,0784	31,2192		
E_{14}	0,0912	0,1080	23,7471	23,8215		
E_{15}	1,39E-04	5,63E-04	17,6446	17,6762		
E_{16}			12,6781	12,6822		
E_{17}			8,7381	8,7290		
E_{18}			5,7122	5,6992		
E_{19}			3,4831	3,4706		
E_{20}			1,9286	1,9189		
E_{21}			0,9256	0,9192		
E_{22}			0,3511	0,3476		
E_{23}			0,0837	0,0823		
E_{24}			4.80E-03	4.58E-03		

Для исследования кластеров инертных газов была рассмотрена квантовомеханическая задача двух частиц, взаимодействующих при помощи центрального потенциала ван-дер-ваальсового типа. В результате решения радиального уравнения Шредингера были вычислены спектры для двухатомных систем инертных газов и их радиальные волновые функции.

Был выполнен расчет, в котором в качестве межатомного взаимодействия использовались современные потенциальные модели TT [15], LM2M2 [16], HFD-B2 [17, 18] и HFD-B [19]. Вычисленные спектры с этими потенциалами для всех однородных двухчастичных систем He₂, Ne₂, Ar₂, Kr₂ и Xe₂ приведены в табл. 1 и 2. Как и ожидалось, с увеличением массы атомов возрастает число уровней в спектрах этих систем. В то время как димер гелия имеет одно связанное состояние, спектр димера неона содержит три уровня, а димер ксенона — 24 уровня.

Для всех неоднородных димеров инертных газов расчеты проводились в потенциальной модели TT [15]. Результаты вычислений энергии связи основных и наиболее слабосвязанных состояний E (K), среднеквадратичного радиуса $\sqrt{\langle r^2 \rangle}$ (Å) и среднего радиуса $\langle r \rangle$ (Å) приведены в табл. 3 и 4. Как и для однородных систем, энергия связи основного состояния увеличивается с увеличением массы атомов, формирующих димер. Практически во всех си-

Таблица 3. Энергия связи основного состояния E_0 (K), средний радиус $\langle r \rangle$ (Å) и среднеквадратичный радиус $\sqrt{\langle r^2 \rangle}$ (Å) для всех неоднородных димеров инертных газов, вычисленные с потенциалом TT [15]

Атом	Параметр	He	Ne	Ar	Kr	Xe
	<i>E</i> ₀ , K	1,3240 мК	3,442	9,886	11,540	11,978
He	$\langle r \rangle$, Å	51,784	4,041	4,093	4,236	4,505
	$\sqrt{\langle r^2 \rangle}$, Å	70,618	4,138	4,137	4,274	4,541
	E_0, \mathbf{K}		24,132	47,963	53,845	55,565
Ne	$\langle r \rangle$, Å		3,331	3,627	3,777	4,015
	$\sqrt{\langle r^2 \rangle}$, Å		3,346	3,636	3,784	4,022
	E_0, \mathbf{K}			121,500	147,334	168,742
Ar	$\langle r \rangle$, Å			3,836	3,954	4,145
	$\sqrt{\langle r^2 \rangle}$, Å			3,840	3,957	4,148
Kr	E_0, \mathbf{K}				184,790	217,189
	$\langle r \rangle$, Å				4,055	2,235
	$\sqrt{\langle r^2 \rangle}$, Å				4,057	4,237
	E_0, \mathbf{K}					267,176
Xe	$\langle r \rangle$, Å					4,398
	$\sqrt{\langle r^2 \rangle}$, Å					4,399

стемах, кроме Ar₂, имеется слабосвязанное состояние с энергией, близкой к нулю, поэтому можно ожидать в трехчастичных кластерах наличия ефимовских резонансов вблизи этих порогов.

Таблица 4. Энергия связи наиболее слабосвязанного состояния E_0 (К), средний радиус $\langle r \rangle$ (Å) и среднеквадратичный радиус $\sqrt{\langle r^2 \rangle}$ (Å) для всех неоднородных димеров инертных газов, вычисленные с потенциалом TT [15]

Атом	Параметр	He	Ne	Ar	Kr	Xe
	E_0, \mathbf{K}	1,3240 мК	3,442	9,886	0,034	0,141
He	$\langle r \rangle$, Å	51,784	4,041	4,093	13,355	9,801
	$\sqrt{\langle r^2 \rangle}$, Å	70,618	4,138	4,137	15,095	10,462
	E_0, \mathbf{K}		0,022	0,689	0,263	1,019
Ne	$\langle r \rangle$, Å		11,825	6,858	8,551	7,222
	$\sqrt{\langle r^2 \rangle}$, Å		13,040	6,995	8,712	7,338
Ar	E_0, \mathbf{K}			0,282	0,031	0,026
	$\langle r \rangle$, Å			9,601	14,878	16,274
	$\sqrt{\langle r^2 \rangle}$, Å			9,790	15,331	16,739
Kr	E_0, \mathbf{K}				1,39E-04	0,030
	$\langle r \rangle$, Å				53,339	16,693
	$\sqrt{\langle r^2 \rangle}$, Å				62,446	17,055
Xe	E_0, \mathbf{K}					4,80E-03
	$\langle r \rangle$, Å					31,111
	$\sqrt{\langle r^2 \rangle}$, Å					32,087

Рис. 1. Радиальные волновые функци
и φ основного состояния димеров Ne2–Xe2 для потенциала TT [15]

Рис. 2. Радиальные волновые функции φ для четных (*a*) и нечетных (*б*) состояний Ar₂, вычисленные с потенциалом TT [15]

Радиальные волновые функции φ основного состояния димеров Ne₂–Xe₂, вычисленные с потенциалом TT [15], приведены на рис. 1. На рис. 2, *а* и *б* построены радиальные волновые функции φ для всех состояний димера аргона.

2. ТРЕХЧАСТИЧНЫЕ КЛАСТЕРЫ

Для эффективного исследования трехчастичных систем применяются вычислительные алгоритмы, основанные на использовании дифференциальных уравнений Фаддеева [7, 28, 29]. Положение системы трех частиц в конфигурационном пространстве после отделения движения центра масс описывается парами приведенных координат Якоби \mathbf{x}_{α} , \mathbf{y}_{α} , $\alpha = 1, 2, 3$:

$$\mathbf{x}_{\alpha} = \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta} + m_{\gamma}}\right]^{1/2} (\mathbf{r}_{\beta} - \mathbf{r}_{\gamma}),$$

$$\mathbf{y}_{\alpha} = \left[\frac{2m_{\alpha}(m_{\beta} + m_{\gamma})}{m_{\alpha} + m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\mathbf{r}_{\alpha} - \frac{m_{\beta}\mathbf{r}_{\beta} + m_{\gamma}\mathbf{r}_{\gamma}}{m_{\beta} + m_{\gamma}}\right),$$
(1)

где \mathbf{r}_{α} — радиусы-векторы частиц с массами m_{α} , а α, β, γ образуют циклическую перестановку индексов 1, 2, 3. Набор координат α описывает разбиение трех частиц на пару частиц $\beta\gamma$ и отдельную частицу α .

Полную волновую функцию Ψ трехчастичной системы можно записать в виде суммы компонент Фаддеева Φ_{α} :

$$\Psi(\mathbf{x}_{\alpha}, \mathbf{y}_{\alpha}) = \sum_{\alpha} \Phi_{\alpha}(\mathbf{x}_{\alpha}, \mathbf{y}_{\alpha}), \qquad (2)$$

которые удовлетворяют системе дифференциальных уравнений

$$(-\Delta_{\mathbf{x}_{\alpha}} - \Delta_{\mathbf{y}_{\alpha}} + V_{\alpha}(\mathbf{x}_{\alpha}) - E) \ \Phi_{\alpha}(\mathbf{x}_{\alpha}, \mathbf{y}_{\alpha}) = -V_{\alpha}(\mathbf{x}_{\alpha}) \sum_{\beta \neq \alpha} \Phi_{\beta}(\mathbf{x}_{\beta}, \mathbf{y}_{\beta}), \quad (3)$$

где V_{α} — потенциал взаимодействия в паре α и E — полная энергия системы. Для тождественных частиц между компонентами Фаддеева возникает простая связь, которая описывается с помощью операторов циклической перестановки частиц P, а система уравнений (3) сводится к одному уравнению [28]. После углового анализа для случая нулевого полного орбитального момента получается трехмерное дифференциальное уравнение для соответствующей проекции компоненты Фаддеева [7, 29]

$$\left(-\frac{\partial^2}{\partial x^2} - \frac{\partial^2}{\partial y^2} - \left(\frac{1}{x^2} + \frac{1}{y^2}\right)\frac{\partial}{\partial z}(1-z^2)\frac{\partial}{\partial z} + V(x) - E\right)\phi(x,y,z) = = -V(x)P\phi(x,y,z), \quad (4)$$

где x, y и z связаны с соответствующими координатами Якоби:

$$x = |\mathbf{x}|, \quad y = |\mathbf{y}|, \quad z = \frac{(\mathbf{x}, \mathbf{y})}{xy}, \quad xy \in (0, \infty), \quad z \in (-1, 1).$$

Впервые существование тримера гелия было установлено в эксперименте [22], позднее был измерен средний радиус основного состояния молекулы $\langle r \rangle = 1, 1^{+0,4}_{-0,5}$ нм [30], что хорошо согласуется с теоретическими предсказаниями [4,6]. Малость энергии связи димера гелия позволяет предполагать

Таблица 5. Энергия связи (мК) основного E_0 и возбужденного E_1^* состояний тримера гелия ⁴He₃, вычисленная с потенциалом LM2M2 [16]

Состояние	LM2M2	[3]	[7]	[8]	[9]	[10]	[11]	[12]	[13]
E_0	126,5	125,9	126,4	126,4	126,2	126,4	126,5	126,5	126,4
E_1^*	2,277	2,282	2,271	2,268		2,265	2,278	2,278	2,271

наличие возбужденного состояния ефимовского типа в трехатомной молекуле. На протяжении последних лет было проведено множество теоретических расчетов системы ⁴He₃ с различными реалистическими атом-атомными потенциалами (см. обзоры [2, 3]). И действительно, во всех этих расчетах было получено два уровня с энергиями около 126 мК для основного и 2,28 мК для возбужденного состояний. Более того, в целой серии работ [3,20] показано, что наличие возбужденного состояния связано именно с эффектом Ефимова [1]. Однако экспериментального подтверждения этого факта не было до совсем недавнего времени. В [31] удалось экспериментально измерить энергию связи возбужденного состояния тримера гелия относительно парного порога развала, которая получилась равной $(0,92 \pm 0,2)$ мК.

В настоящей работе для расчета спектра тримера гелия использованы дифференциальные уравнения Фаддеева (4). Для описания межатомного взаимодействия V использовались потенциалы LM2M2 [16] и HFD-B2 [17]. В табл. 5 приведены результаты расчетов энергии связи тримера гелия, которые демонстрируют хорошее согласие с результатами других авторов и с экспериментальными данными.

ЗАКЛЮЧЕНИЕ

В работе исследовались свойства димеров инертных газов, а именно были вычислены спектр, средний радиус и среднеквадратичный радиус всех возможных однородных и неоднородных димеров инертных газов в различных потенциальных моделях. Показано, что во всех димерах, кроме Ar₂, имеются состояния с энергией, близкой к порогу развала. Это обстоятельство позволяет предположить наличие ефимовских резонансов в трехатомных системах инертных газов. В рамках дифференциальных уравнений Фаддеева в представлении полного углового момента выполнен расчет спектра тримера гелия.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефимов В. Н. Слабосвязанные состояния трех резонансно взаимодействующих частиц // ЯФ. 1970. Т. 12. С. 1080–1090.
- 2. Колганова Е.А., Мотовилов А.К., Зандхас В. Ультрахолодные столкновения в системе трех атомов гелия // ЭЧАЯ. 2009. Т. 40. С. 396–456.

- Kolganova E. A., Motovilov A. K., Sandhas W. The ⁴He Trimer as an Efimov System // Few-Body Syst. 2011. V. 51. P. 249–257.
- 4. *Roudnev V.A., Yakovlev S.L.* Investigation of ⁴He₃ Trimer on the Base of Faddeev Equations in Configuration Space // Chem. Phys. Lett. 2000. V. 328. P.97–106.
- Motovilov A. K. et al. Binding Energies and Scattering Observables in the ⁴He₃ Atomic System // Eur. J. Phys. 2001. V. 13. P. 33–41.
- Barletta P., Kievsky A. Variational Description of the Helium Trimer Using Correlated Hyperspherical Harmonic Basis Functions // Phys. Rev. A. 2001. V. 64. P. 042514.
- Roudnev V. A., Yakovlev S. L., Sofianos S. A. Bound-State Calculations for Three Atoms without Explicit Partial Wave Decomposition // Few-Body Syst. 2005. V. 37. P. 179– 196.
- Lazauskas R., Carbonell J. Description of He₄ Tetramer Bound and Scattering States // Phys. Rev. A. 2006. V.73. P. 062717.
- 9. Salci M. et al. A Finite Element Investigation of the Ground States of the Helium Trimers ⁴He₃ and ⁴He₂-³He // Intern. J. Quant. Chem. 2007. V. 107. P. 464–468.
- Kievsky A. et al. The Helium Trimer with Soft-Core Potentials // Few-Body Syst. 2011. V. 51. P. 259–269.
- Roudnev V., Cavagnero M. Benchmark Helium Dimer and Trimer Calculations with a Public Few-Body Code // J. Phys. B. 2011. V.45. P.025101.
- Hiyama E., Kamimura M. Linear Correlations between ⁴He Trimer and Tetramer Energies Calculated with Various Realistic ⁴He Potentials // Phys. Rev. A. 2012. V. 85. P. 062505; Variational Calculation of ⁴He Tetramer Ground and Excited States Using a Realistic Pair Potential // Ibid. P. 022502.
- Deltuva A. Momentum-Space Calculation of ⁴He Triatomic System with Realistic Potential // Few-Body Syst. 2015. V. 56. P. 897–903; arXiv:1505.03927.
- Leither D. M., Doll J. D., Whitnell R. M. Quantum Mechanics of Small Ne, Ar, Kr, and Xe Clusters // J. Chem. Phys. 1991. V. 94. P. 6644–6659.
- 15. *Tang K.T., Toennies J.P.* The van der Waals Potentials between All the Rare Gas Atoms from He to Rn // J. Chem. Phys. 2003. V. 118. P.4976–4983.
- Aziz R.A., Slaman M. J. An Examination of Ab Initio Results for the Helium Potential Energy Curve // J. Chem. Phys. 1991. V. 94. P. 8047–8053.
- 17. Aziz R.A., Slaman M.J. The Ne–Ne Interatomic Potential Revisited // J. Chem. Phys. 1989. V. 130. P. 187–194.
- Aziz R.A. A Highly Accurate Interatomic Potential for Argon // J. Chem. Phys. 1993. V. 99. P. 4518–4525.
- Aziz R.A., Slaman M.J. XC AND HFD-B Potential Energy Curves for Xe–Xe and Related Physical Properties // J. Chem. Phys. 1990. V. 142. P. 173–189.
- Колганова Е. А., Мотовилов А. К. О механизме возникновения ефимовских состояний в тримере гелия ⁴Не // ЯФ. 1999. Т. 62. С. 1253–1267.

- 21. *Luo F. et al.* The Weakest Bond: Experimental Observation of Helium Dimer // J. Chem. Phys. 1993. V. 98. P. 9687.
- 22. Schöllkopf W., Toennies J. P. Nondestructive Mass Selection of Small van der Waals Clusters // Science. 1994. V. 266. P. 1345–1348.
- 23. Luo F., Giese C.F., Gentry W.R. Direct Measurement of the Size of the Helium Dimer // J. Chem. Phys. 1996. V. 104. P. 1151–1154.
- Grisenti R. et al. Determination of the Bond Length and Binding Energy of the Helium Dimer by Diffraction from a Transmission Grating // Phys. Rev. Lett. 2000. V. 85. P. 2284–2287.
- Cencek W. et al. Effects of Adiabatic, Relativistic, and Quantum Electrodynamics Interactions on the Pair Potential and Thermophysical Properties of Helium // J. Chem. Phys. 2012. V. 136. P. 224303.
- 26. *Tanaka Y., Yoshino K.* Absorption Spectra of Ne₂ and HeNe Molecules in the Vacuum UV Region // J. Chem. Phys. 1972. V. 57. P. 2964–2976.
- Wüest A., Merkt F. Determination of the Interaction Potential of the Ground Electronic State of Ne₂ by High-Resolution Vacuum Ultraviolet Laser Spectroscopy // J. Chem. Phys. 2003. V. 118. P. 8807–8812.
- 28. Меркурьев С. П., Фаддеев Л. Д. Квантовая теория рассеяния для систем нескольких частиц. М.: Наука, 1985. 400 с.
- 29. *Kostrykin V. V., Kvitsinsky A. A., Merkuriev S. P.* Faddeev Approach to the Three-Body Problem in Total-Angular-Momentum Representation // Few-Body Syst. 1989. V.6. P. 97–113.
- Brühl R. et al. Matter Wave Diffraction from an Inclined Transmission Grating: Searching for the Elusive ⁴He Trimer Efimov State // Phys. Rev. Lett. 2005. V.95. P.063002.
- 31. *Kunitski M. et al.* Observation of the Efimov State of the Helium Trimer // Science. 2015. V. 348. P. 551–555.