РАЗРАБОТКА СЦИНИЛЛЯЦИОННОГО ТРЕКОВОГО ДЕТЕКТОРА, ОСНОВАННОГО НА МНОГОКАНАЛЬНЫХ ФОТОДЕТЕКТОРАХ

А. Ф. Яниц 1,* , И. М. Дзапарова 1,2 , Е. А. Горбачева 1 ,
А. Н. Куреня 1 , В. Б. Петков 1,2 , А. В. Сергеев 1,2
1 Институт ядерных исследований РАН, Москва
2 Институт астрономии РАН, Москва

Матрицы кремниевых фотоумножителей (КФЭУ) являются перспективными многоканальными фотосенсорами для сцинтилляционных детекторов. Они могут использоваться для построения треков релятивистских частиц внутри детекторов. Представлены первые разработки детекторов с непосредственным контактом матриц КФЭУ с поверхностью сцинтилляционного детектора и с использованием линз Френеля, а также предложены перспективные варианты для больших детекторов нейтрино астрофизики и геофизики.

The matrices of silicon photomultipliers (SiPM) are promising multi-channel photosensors for scintillation detectors. They can be used to construct tracks of the passage of relativistic particles inside the detectors. The first developments of detectors based on the direct contact of the SiPM matrices with the surface of the scintillation detector and using Fresnel lenses are presented, and also promising variants for large detectors of neutrino astrophysics and geophysics are proposed.

PACS: 95.85.Ry; 29.85.Ca; 42.79.Pw

ВВЕДЕНИЕ

Во многих областях экспериментальной физики, связанных со сбором информации в многоканальных системах, вместо традиционных вакуумных фотоумножителей применяют кремниевые фотоэлектронные умножители (КФЭУ). Они обладают рядом преимуществ перед вакуумными: нечувствительностью к магнитному полю, высокой эффективностью регистрации фотонов, компактностью и механической прочностью [1–4]. Низкое напряжение питания и высокий коэффициент усиления КФЭУ (10^3–10^7) позволяют значительно упростить электронные схемы считывания данных. Рабочие характер

*E-mail: yanin@yandex.ru
ристики и доступная стоимость позволяют широко использовать КФЭУ в физике высоких энергий при создании детекторов с большим количеством фотоприемников. Пример массового применения КФЭУ — нейтринный эксперимент T2K. В этом эксперименте в сцинтилляционных счетчиках различных детекторов в качестве фотоприемников задействовано около 60 тыс. КФЭУ [5]. Для таких массовых проектов разрабатывают специализированные многоканальные системы сбора данных на основе специальных программируемых микросхем [5, 6].

Развитие технологий производства кремниевых фотоприемников увеличенной площади привело к созданию монолитных матриц из КФЭУ, которые используют в позитронно-эмиссионной томографии [7, 8]. В настоящее время КФЭУ и матрицы из них широко применяют в ядерной медицине. По сравнению с системами сбора данных, эксплуатируемыми в физике высоких энергий, в ядерной медицине, несмотря на относительно малое число каналов, для считывания информации также используют системы сбора данных на основе специально разработанных микросхем [9].

Матрицы из КФЭУ являются перспективными многоканальными фотоприемниками сцинтилляторов. С помощью таких матриц можно отбирать и изучать события в различных частях сцинтиллятора [13]. Для этой цели авторы предлагают использовать матрицы ArtayC-60035-64P-PCB (фирма SensL, Ирландия), состоящие из 64 одночных КФЭУ серии C [14]. Подложка такой матрицы изготовлена из стеклотекстолита. Плата ABL-ARRAY64P-HDR [15], имеющая 64 канала, предназначена для усиления и считывания сигналов с каждого КФЭУ матрицы.

ХАРАКТЕРИСТИКИ СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА С МАТРИЦАМИ КФЭУ

Задачи и результаты. С целью создания прототипов детекторов с визуализацией треков релятивистских частиц в Баксанской нейтринной обсер-
ватории проводилось подробное изучение этих матриц. На рис.1 представлена матрица КФЭУ вместе с платой усилителей и разъемами питания и схема информации. Матрица КФЭУ включает 64 кремниевых ФЭУ в формате 8 × 8. Каждый КФЭУ состоит из 18 980 пикселей. Квантовая эффективность составляет 31–41% в рабочем диапазоне напряжений. Для работы с матрицами КФЭУ предварительно была разработана и создана многоканальная измерительная система для сбора данных с матриц из КФЭУ в стандарте VME, подробное описание которой приведено в [16]. Функциональная схема системы сбора данных с матриц КФЭУ представлена на рис.2. Лиши задержки служат для согласования моментов поступления магистрального импульса и измеряемых сигналов. Часть электроники была разработана и собрана собственными силами (128-канальная линия задержки, схема формирования магистрального импульса, детектор из пластика и др.), а основные электронные блоки были приобретены (две матрицы КФЭУ, промышленный компьютер, крейт VME, зарядочувствительные преобразователи (QDC) и др.). На основе двух матриц была проведена разработка прототипов малых детекторов: с непосредственным контактом матриц с поверхностью пластического детектора и с использованием линз Френеля (рис.3). Дополнительно перед разработчиками стояла задача построения треков мюонов, проходящих через детекторы, в двух ортогональных проекциях. Для эксперимента с непосредственным контактом матриц со сцинтиллятором (рис.3, а) полученные типовые треки представлены на рис.4, а, б, в. Для эксперимента с использованием линз Френеля (рис.3, б) полученные типовые треки представлены на рис.4, г, д, е. Ширина треков при непосредственном контакте в общем случае шире, так как отсутствует фокусировка фотонов. Для рис.4, б трек узкий, поскольку частица проходила практически параллельно грани детектора в непосредственной близости от поверхности (нижний ряд КФЭУ в горизонтально расположенных матрицах практически не засвечивается, что видно из рис.3, а). При размещении объекта (в данном случае детектора) на удалении больше двух фокусных расстояний размер изображения объекта снижается. По этой причине размер детектора может значительно превышать размер ма-
Рис. 2. Функциональная схема системы сбора информации с КФЭУ. QDC — зарядо-чувствительный преобразователь; V2718 — мост связи крейта VME с промышленным компьютером.
Рис. 3. Схема эксперимента: а) с непосредственным контактом матрицы SiPM с детектором; б) с применением линз Френеля

треции. Нельзя получить изображение одинаковой резкости для любой части детектора. Наиболее резко его можно сфокусировать только на определенном удалении, например, на центр детектора. Но так как объект имеет протяженные геометрические размеры, то фокусировка ухудшается к ближнему и дальнему краям детектора. Например, на рис. 5 расфокусировка для ближнего края детектора размером 118 × 118 × 118 мм будет равна 3,86 мм, что значительно меньше размера КФЭУ (для дальнего края расфокусировка будет еще меньше — 3,06 мм). Размер детектора с линзами Френеля можно уменьшить, если снизить требования к фокусировке, потому что даже при плохой фокусировке центр трека можно определить математической обработкой.

Калибровка КФЭУ. Для калибровки КФЭУ было использовано два метода.

1. С помощью синего светодиода, излучающего свет с длиной волны 430 нм (что хорошо согласуется с длиной волны, излучаемой используемым сцинтилятором), на матрицу КФЭУ подавались стабильные непрерывные потоки фотонов (по разные по интенсивности). На частоте 100 Гц QDC запускался в работу в течение длительности мастерного сигнала 225 ис, что немного больше длительности импульсов, приходящих с матрицы КФЭУ. Данные обрабатывались с помощью зарядочувствительных преобразователей QDC. К полученным данным (рис. 6, а) применялась формула (1) и строился график 1 (рис. 6, б — линия 1)

\[n_e = \left(\frac{\bar{A}}{\sigma_e} \right)^2, \]

(1)
Рис. 4. a–e) Треки, полученные в эксперименте с непосредственным контактом матрицы с детектором. 2–e) Треки, полученные в эксперименте с использованием линз Френеля

где n_e — среднее число фотоэлектронов; \bar{A} — среднее значение заряда, полученное при постоянном потоке фотонов; σ_e — среднеквадратичное отклонение зарядов. В свою очередь σ_e состоит из нескольких параметров, влияющих на суммарную нестабильность:

$$
\sigma_e^2 = \sigma_n^2 + \sigma_{с,д}^2 + \sigma_{к,д}^2 + \sigma_{м,п,п,}^2,
$$

где σ_n — среднеквадратичное отклонение, вызванное вариацией плотности фотонов в пространстве в направлении исследуемого КФЭУ. Этот параметр является основным и будет иметь место даже для случая, когда светодиод излучает стабильное число фотонов на каждый импульс генератора; $\sigma_{с,д}$ — среднеквадратичное отклонение, обусловленное вариацией числа фотонов из-
Рис. 5. Иллюстрация уменьшения размера изображения объекта и пояснение глубины резкости d_1

Рис. 6. a) Спектр КФЭУ при фиксированных потоках фотонов; b) калибровка КФЭУ: 1 — калибровка по методу 1; 2 — калибровка по методу 2

лучаемых светочувствительность; $\sigma_{1,2}$ — среднеквадратичное отклонение, обусловленное квантовой эффективностью КФЭУ; $\sigma_{\text{макс}}$ — среднеквадратичное отклонение, обусловленное наличием межпиксельных промежутков (не все фотонов, движущиеся в направлении исследуемого КФЭУ, попадают в активную зону КФЭУ — часть фотонов попадает в межпиксельные промежутки).

2. Второй способ сложнее, но точнее. Было замечено, что в энергетическом спектре КФЭУ в условиях только темнового тока появляются слабо выраженные фотонные максимумы (рис. 7). Если дополнительно матрицу КФЭУ облучать фотонами, то максимумы проявляют себя гораздо четче (рис. 8, a).
1418 ЯНИН А. Ф. И ДР.

Рис. 7. Спектр КФЭУ в отсутствие внешних фотонов

Рис. 8. Зависимость числа фотоэлектронов от заряда при дополнительном облучении фотонами. а) Кроме темнового тока добавляется небольшое количество \(n \) фотонов; б) количество фотонов \(n + m \)

Если поток фотонов еще немного увеличить, то максимумы проявляют себя еще лучше, но относительное число событий с малым количеством фотоэлектронов может уменьшиться (рис. 8, б). Из рисунка можно найти, сколько каналов QDC приходится на один фотоэлектрон. На рис. 9 представлена за-
Рис. 9. Зависимость числа каналов QDC, приходящихся на 1 фотоэлектрон, для каждого КФЭУ обеих матриц

всем числа каналов QDC, приходящихся на один фотоэлектрон, для всех КФЭУ обеих матриц. Канал 6 (КФЭУ 6) матрицы 2 неисправен. А на рис. 6, б кривая 2 показывает зависимость числа фотоэлектронов от заряда (номер канала QDC) для КФЭУ № 65. Чувствительность приблизительно на 40 % выше, чем для первого метода. Различие можно объяснить следующим образом. Если исключить из суммарного среднеквадратичного отклонения (формула (2)) хотя бы один параметр, например \(\sigma_{c_a} \), то ширина пиков и для рис. 6, a и 6, b уменьшится, а число фотоэлектронов, согласно формуле (3), увеличится. Таким образом, наклон линии \(l \) из рис. 6, a увеличивается. Для рис. 8, b ширина пиков тоже уменьшится, но межпиковые интервалы не изменяются, т. е. чувствительность в фотоэлектронах всегда остается максимальной.

\[
n_e = \frac{A^2}{\sigma_e^2 - \sigma_{c_a}^2}.
\]

Но так как параметры, входящие в формулу (2), неизвестны, то формула (1) применяется как оценочная. Ее также удобно применять при относительно большой плотности потока фотонов, когда отдельные пики в спектре уже неразличимы.

Перспективы. В ИЯИ РАН также разрабатывается большой детектор для Баксанской нейтриноной обсерватории с целью изучения потоков естественных нейтрино в гео- и астрофизике (рис. 10). Предполагаемый объем детектора 5–20 кт. Проведенные нами теоретические расчеты [17] позволяют
Рис. 10. Большой детектор для Баксанской нейтринной обсерватории для изучения потоков естественных нейтрино в гео- и астрофизике

Рис. 11. Прохождение фотона внутри усеченного конуса со светоотражающей внутренней поверхностью. Ph — фотон

сделать вывод о возможности регистрации коротких треков. Так, например, для детектора с массой сцинтиллятора 5 кг с апертурой линзы в 2000 см² при длине трека в 1,2 см в центре детектора может быть зарегистрирован 1 фотоэлектрон (чувствительность нашей системы сбора данных не хуже чем 6 каналов на 1 фотон (см. рис. 9), что должно позволить фиксировать такие события даже с учетом оптических потерь). На практике использовать линзы Френеля для получения большой апертуры проблематично из-за больших габаритов оптической системы.

Первоначально планировалось собирать фотонь с помощью усеченного конуса со светоотражающей внутренней поверхностью. Но, как видно из рис. 11, большинство фотонов не доходят до выходного отверстия конуса потому, что с каждым отражением от стенок конуса увеличивается угол отражения (вплоть до разворачивания фотонов в обратную сторону). Для некоторых фотонов угол $\alpha < \beta < \gamma$ и т. д.
Рис. 12. Каскадирование усеченных конусов с целью получения большой апертуры: Ph — фотон; F — фокусное расстояние; l — усеченный конус; l' — суммирующий конус; 2 — матрица КФЭУ; 3 — матрица механического сопряжения; 4 — оптоволоконные жгуты; 5 — линзы Френеля

Для решения этой задачи предлагается в начале конуса без светоотражающего покрытия ставить линзу Френеля с фокусным расстоянием F, в точке фокуса располагать оптоволоконный жгут с отшлифованным торцом (рис. 12) либо специальный согласующий оптический адаптер. В оптоволоконном основном будут попадать фотонсы, движущиеся параллельно оси конуса, а также под некоторым небольшим углом. Если небольшую часть усеченного конуса в районе выходного отверстия покрыть светоотражающим слоем, то эффективность сбора фотонов увеличится. Это происходит потому, что фотоны, попавшие недалеко от выходного отверстия, будут отражаться непосредственно в оптоволокне.

Для больших апертур можно брать относительно небольшие конусы и каскадировать их с помощью дополнительного конуса. На рис. 12 видно, как четыре конуса по координате Y объединяются и суммарный сигнал попадает в один из кремниевых ФЭУ матрицы. Должно соблюдаться требование одинаковой длины оптоволокон 1–4. Суммирующий конус можно располагать
в удобном месте (даже на большом удалении), так как затухания сигнала в оптоволокне на расстоянии десятков метров практически нет. То же самое относится и к оптоволокну, идущему к матрице КФЭУ от суммирующего конуса. Таким образом можно сформировать практически любую апертуру при малых размерах конусов. Из результатов калибровки (см. рис. 9) следует, что система имеет разрешение лучше чем 1 фотон, а поэтому имеет разрешение не хуже чем 1 см для детектора массой 5 кт даже для больших потеря в трактах прохождения фотонов. Время срабатывания кремниевых ФЭУ субнаносекундное, поэтому при должной электронике можно получить временное разрешение детекторов лучше 1 нс.

ВЫВОДЫ

• При непосредственном контакте матриц КФЭУ со сцинтиллятором имеется ограничение на размер детектора. Использование оптической системы устраняет это ограничение и улучшает отношение сигнал/шум.

• Мы использовали линзы Френеля из оптического акрила с трехкратным увеличением размером A4. Линзы Френеля в настоящее время доступны, имеют массовое производство, дешевы и их можно приобрести практически любого размера.

• Глубина резкости оптической системы достаточна, чтобы световая дорожка на матрице имела ширину менее одного размера КФЭУ, что подтверждают полученные снимки с использованием оптической системы.

• Эксперименты с оптикой проводились с детектором размером 50 × 59 × 59 мм. Мы планируем увеличить размер сцинтиллятора до 500 × 500 × 500 мм.

С целью увеличения апертуры для детекторов килотонного класса предполагается применить каскадирование усеченных конусов совместно с линзами Френеля. Для изготовления конусов можно применять 3D-принтеры, позволяющие распечатывать объемные детали с разрешением 50–100 мкм. Кроме того, в едином технологическом процессе можно изготовить все необходимые крепления.

Работа выполнена на УНУ Баксанский подземный сцинтилляционный телескоп (ЦКП Баксанская нейтринная обсерватория ИЯИ РАН) при поддержке Российского научного фонда (проект 17-12-01331).

СПИСОК ЛИТЕРАТУРЫ

16. Яшн А. Ф., Дзапарова И. М., Волченко В. И., Горбачева Е. А., Куреха А. И., Петков В. Б. Многофункциональная измерительная система сбора данных с матриц из кремниевых фоточувствительных элементов // Измерительная техника. 2017. № 3. С. 8–11.