РЕЗОНАНСНАЯ СТРУКТУРА СЕЧЕНИЯ НЕЙТРИННОГО ЗАХВАТА И ДВОЙНОЙ БЕТА-РАСПАД ЯДЕР 100 Мо

Ю. С. Лютостанский ^{1, *}, Г. А. Коротеев ^{1, 2}, А. Ю. Лютостанский¹, А. П. Осипенко¹, В. Н. Тихонов¹, А. Н. Фазлиахметов^{1,2,3}

¹ Национальный исследовательский центр «Курчатовский институт», Москва ² Московский физико-технический институт (государственный университет), Москва

³ Институт ядерных исследований РАН, Москва

Представлены расчеты сечения захвата солнечных нейтрино $\sigma(E_{\nu})$ ядрами ¹⁰⁰ Мо. В расчетах использовались как экспериментальные данные по силовой функции $\hat{S}(E)$, полученные в зарядово-обменных реакциях (³He, t), так и функции S(E), вычисленные в рамках самосогласованной теории конечных фермисистем. Исследовалось влияние резонансной структуры S(E) на рассчитываемое сечение захвата солнечных нейтрино, и выделены вклады каждого из резонансов в сечение захвата $\sigma(E_{\nu})$ ядром ¹⁰⁰Мо. Рассчитан вклад всех компонентов солнечного нейтринного спектра. Оценен вклад фоновых солнечных нейтрино в двойной бета-распад ядер ¹⁰⁰Мо.

The paper presents the calculations of the cross section for the capture of solar neutrinos $\sigma(E_{\nu})$ by ¹⁰⁰Mo nuclei. The calculations used both the experimental data on the strength function S(E) obtained in charge-exchange reactions (³He, t) and the functions S(E) calculated within the framework of the self-consistent theory of finite Fermi systems. The influence of the resonance structure S(E) on the calculated cross section for the capture of solar neutrinos was investigated, and the contributions of each of the resonances to the cross section for the capture of $\sigma(E_{\nu})$ by the ¹⁰⁰Mo nucleus were distinguished. The contribution of all components of the solar neutrino spectrum is calculated. The contribution of background solar neutrinos to double beta decay of ¹⁰⁰Mo nuclei is estimated.

PACS: 23.40.-s: 26.65.+t

введение

При исследовании процессов взаимодействия нейтрино с конкретными атомными ядрами необходимо рассчитывать структуру зарядово-обменной силовой функции S(E) ядра, которая имеет резонанс-

^{*} E-mail: lutostansky@yandex.ru

ный характер. Экспериментально структура силовой функции S(E) наблюдается в реакциях перезарядки, таких как (p, n), (n, p), $({}^{3}\text{He}, t)$, $(t, {}^{3}\text{He})$, $({}^{6}\text{Li}, {}^{6}\text{He})$ и др., или в β -переходах ядер. В настоящей работе анализировались экспериментальные данные по силовой функции S(E) изотопов 100 Мо, полученные в зарядово-обменной реакции 100 Мо $({}^{3}\text{He}, t){}^{100}$ Тс [1, 2], а также представлены расчеты сечения захвата солнечных нейтрино $\sigma(E_{\nu})$ этими ядрами. Выбор этого изотопа обусловлен интересом к его двойному бета-распаду и тем, что расчеты сечения захвата солнечных нейтрино $\sigma(E_{\nu})$ ядрами 100 Мо частично определяют фоны в этом процессе [3, 4].

Схема зарядово-обменных возбуждений ядра ¹⁰⁰Мо при нейтринном захвате с последующим распадом образующегося ¹⁰⁰Tc представлена на рис. 1. Видно, что образующиеся возбужденные состояния изотопа ¹⁰⁰Tc распадаются в основное состояние, которое за время $T_{1/2} = 15,5$ с переходит в ¹⁰⁰Ru, что имитирует двойной бета-распад ¹⁰⁰Мо. Это является фоновым событием в эксперименте по двойному бета-распаду ¹⁰⁰Мо, определяемым в основном потоком солнечных нейтрино.

Для моделирования таких процессов нам в первую очередь надо рассчитать вероятность возбуждения состояний в ядре ¹⁰⁰ Tc, являю-

Рис. 1. Схема зарядово-обменных возбуждений ядра $^{100}{\rm Mo}$ в реакции $^{100}{\rm Mo}(^{3}{\rm He},t)^{100}{\rm Tc}$

щихся изобарическими зарядово-обменными возбуждениями ядра ¹⁰⁰ Мо. Как видно из рис. 1, среди возбужденных состояний ¹⁰⁰ Тс наблюдаются интенсивные резонансы, такие как гамов-теллеровский (GTR) и аналоговый (AR) резонансы, а также менее интенсивные так называемые пигми-резонансы (PR), расположенные ниже по энергии.

В расчетах фоновых нейтринных событий для двойного бета-распада в данном случае решающее значение имеет малость разницы энергий между основными состояниями (g. s.) ядер ¹⁰⁰Мо и ¹⁰⁰Tc (см. рис. 1). Так $\Delta E_{\rm gs} = Q_{\rm EC} = (172, 1 \pm 1, 4)$ кэВ [5], и это приводит к тому, что в процессе захвата солнечных нейтрино ядром ¹⁰⁰Мо основную роль играют (*pp*) солнечные нейтрино с меньшими энергиями, которых на порядки больше, чем более жестких нейтрино, что создает существенный фон.

1. ЗАРЯДОВО-ОБМЕННЫЕ ВОЗБУЖДЕНИЯ ИЗОТОПОВ ¹⁰⁰Мо

Резонансная структура зарядово-обменных возбуждений ядра ¹⁰⁰ Мо представлена на рис. 2, где показаны экспериментальные данные по силовой функции, которые были получены в реакции ¹⁰⁰ Mo(³He, t)¹⁰⁰ Tc [2]. Данные на рис. 2 изображены в виде графика зависимости измеренной силовой функции $S(E_x)$ от энергии возбуждения E_x . Выделенные на графике резонансы аппроксимированы Гауссом (G) и Брейтом-Вигнером (B-W). Также представлены суммарные зависимости $S_{GT}(E) = S_{GTR} + S_{PR1}$ в двух аппроксимациях. К сожалению, в работе [2] данные по резонансам в табличном виде приведены не были, в

Рис. 2 (цветной в электронной версии). Графики зарядово-обменной силовой функции S(E) изотопа ¹⁰⁰Tc, полученные из обработки экспериментальных данных по реакции ¹⁰⁰Mo(³He, t)¹⁰⁰Tc [2]. Выделены: гигантский гамов-теллеровский резонанс (GTR) и пигми-резонанс (PR1), аппроксимированные Гауссом (G) (голубая кривая, 1) и Брейтом-Вигнером (B-W) (красная кривая, 2)

отличие от работы [1]. Полученные нами из обработки экспериментальной зависимости $S(E_x)$ энергии равны: $E_{\rm GTR} = 13,20$ МэВ для аппроксимаций G и B-W и $E_{\rm PR1} = 7,69$ МэВ в B-W-, и $E_{\rm PR1} = 7,52$ МэВ в G-аппроксимациях. В более ранней работе [1] низколежащие возбуждения представлены в табличном виде с энергиями (в МэВ): $E_0 = 0,0, E_1 = 1,4$ и $E_2 = 2,6$. Выше расположены $E_{\rm PR1} = 8,0$ МэВ и $E_{\rm GTR} = 13,3$ МэВ [1]. При малых энергиях самый интенсивный переход идет в основное состояние ¹⁰⁰ Tc с $B_{\rm GT} = 0,33$ [1], что сравнимо с данными [2], где $B_{\rm GT} = 0,348$.

Основной вопрос был в нормировке S(E), так как в работе [2] нет численных данных по зависимости $B_{\rm GT}$ от E_x в широком диапазоне значений энергии и суммарное значение $\Sigma B_{\rm GT}$ не приводится. Но в более ранней работе [1] было сказано, что сумма GT матричных элементов до энергии 18,8 МэВ равна 34,56 или 0,72 (72%) от максимально возможного значения 3(N-Z) = 48, что связано с quenching-эффектом [6]. Для аналогового резонанса с энергией $E_{\rm AR} = 11,085$ МэВ [2] получен матричный элемент $B_{\rm F} = 15,97$, что составляет 99,8% от (N-Z).

Расчеты зарядово-обменной силовой функции S(E) изотопа ¹⁰⁰ Мо проводились в рамках самосогласованной теории конечных ферми-систем (ТКФС) [7,8], как ранее для других ядер [9,10]. Энергии и матричные элементы возбужденных состояний дочернего ядра определялись системой секулярных уравнений ТКФС для эффективного поля согласно [7,8]. В расчетах использовались параметры f'_0 и g'_0 локального изоспин-изоспинового и спин-изоспинового взаимодействия квазичастиц, полученные недавно [11] из анализа экспериментальных данных по энергиям аналоговых (38 ядер) и гамов-теллеровских (20 ядер) резонансов. Непрерывная часть спектра функции S(E) рассчитывалась, как в [10], с уширением по Брейту–Вигнеру (см. [12]).

Расчетная зарядово-обменная силовая функция S(E) изотопа ¹⁰⁰ Tc для GT-возбуждений ¹⁰⁰ Mo представлена на рис. 3. Рассчитаны энергии резонансов $E_{\rm GTR} = 13,20$ МэВ, $E_{\rm PR1} = 8,09$ МэВ, $E_{\rm PR2} = 6,32$ МэВ и $E_{\rm PR3} = 4,65$ МэВ, а экспериментальное значение $E_{\rm GTR} \sim 13,3$ МэВ [1], т. е. разница с расчетным значением мала и равна 0,10 МэВ. Что касается наблюдаемого пигми-резонанса с энергией $E_{\rm PR1} = 8,0$ МэВ [1] в В-W-и $E_{\rm PR1} = 7,52$ МэВ [2] в G-аппроксимациях (см. рис. 2), то расчетное значение оказалось ближе к экспериментальному [1], чем к [2]. Отмеченные в более ранней работе [1] низколежащие возбуждения с энергиями $E_1 = 1,4$ и $E_2 = 2,6$ МэВ (см. рис. 2) получились и в настоящих расчетах как дублет с энергиями 1,30 и 1,42 МэВ и изобарическое состояние с $E_2 = 2,70$ МэВ. Аналоговые резонансы считаются хорошо. Так, расчетное значение $E_{\rm AR} = 10,99$ МэВ, а экспериментальное $E_{\rm AR} = 95$ кэВ, что сравнимо с нашими предыдущими расчетами [13] и [14].

Представленная на рис. 3 рассчитанная для GT-возбуждений силовая функция S(E) имеет непрерывный резонансный характер и нормирова-

Рис. 3 (цветной в электронной версии). Зарядово-обменная силовая функция S(E) изотопа ¹⁰⁰Tc для GT-возбуждений ¹⁰⁰Mo. Сплошные линии: 1 (синяя линия) — экспериментальные данные [2], 2 (черные) — наш расчет по ТКФС; пунктирные кривые — резонансы GTR, PR1, PR2 и PR3

лась, как в [12], согласно правилу сумм, для GT-переходов:

$$\Sigma M_i^2 = \Sigma B_i(\text{GT}) = q[3(N-Z)] = e_q^2[3(N-Z)] \approx \int_0^{E_{\text{max}}} S(E)dE = I(E_{\text{max}}),$$
(1)

где $E_{\rm max}$ — максимальная энергия, учитываемая в расчетах или в эксперименте. В расчетах для ¹⁰⁰Мо $E_{\rm max} = 20$ МэВ и в эксперименте $E_{\rm max} \approx 19$ МэВ [2]. Параметр q < 1 в (1) определяет quenching-эффект (недобор в правиле сумм) и при q = 1, $\Sigma M_i^2 = \Sigma B_i ({\rm GT}) = 3(N-Z)$, что соответствует максимальному значению в правиле сумм. В ТКФС $q = e_q^2$, где e_q — эффективный заряд [7]. В работе [1] было получено q = 0,72 (72%), что соответствует $e_q \approx 0.85$ и не противоречит более ранним значениям $e_q = 0.8$ [15] и $e_q \approx 0.9$ [16].

2. СЕЧЕНИЯ ЗАХВАТА СОЛНЕЧНЫХ НЕЙТРИНО ЯДРОМ ¹⁰⁰Мо

Формула для сечения реакции (ν_e, e^-), зависящего от энергии налетающего нейтрино E_{ν} , имеет вид [12]

$$\sigma(E_{\nu}) = \frac{(G_F g_A)^2}{\pi c^3 \hbar^4} \int_{0}^{E_{\nu}-Q} E_e p_e F(Z, A, E_e) S(x) \, dx,$$

$$E_e = E_\nu - Q - x + m_e c^2$$
, $cp_e = \sqrt{E_e^2 - (mc^2)^2}$, (2)

где $F(Z,A,E_e)$ — функция Ферми; S(E) — силовая функция, $G_F/(\hbar c)^3=1,1663787(6)\cdot 10^{-5}$ ГэВ $^{-2}$ — фермиевская константа слабого взаимодействия; $g_A=-1,2723(23)$ — аксиально-векторная константа.

Скорость захвата нейтрино *R* (число поглощенных нейтрино за единицу времени) связана с потоком солнечных нейтрино и сечением поглощения следующей формулой:

$$R = \int_{0}^{E_{\text{max}}} \rho_{\text{solar}}(E_{\nu}) \sigma_{\text{tot}}(E_{\nu}) dE_{\nu}, \qquad (3)$$

где для энергии $E_{\rm max}$ можно ограничиться hep нейтрино (реакция ${}^{3}{\rm He} + p \rightarrow {}^{4}{\rm He} + e^{+} + \nu_{e}$) с $E_{\rm max} \leqslant 18,79$ МэВ или борными нейтрино (реакция ${}^{8}{\rm B} \rightarrow {}^{8}{\rm Be} + e^{+} + \nu_{e}$) с $E_{\rm max} \leqslant 16,36$ МэВ [17]. Скорость захвата солнечных нейтрино представлена в SNU — это стандартная солнечная единица, соответствующая количеству событий в секунду на 10^{36} ядер мишени.

Численные значения расчетных скоростей захвата солнечных нейтрино R в реакции 100 Мо(ν_e , e^-) 100 Тс показывают, что основной вклад до ~85% pp-нейтрино (реакция $p + p \rightarrow {}^{2}\text{H} + e^+ + \nu_e)$ с энергиями $E_{\text{max}} \leqslant 0,420$ МэВ [17] и неучет GTR приводит к сокращению сечения и скорости захвата на $\approx 5\%$ в основном из-за малого вклада более энергичных hep и борных нейтрино, дающих основной вклад в области резонансов. Это мало по сравнению, например, с 98 Мо [9], где вклад GTR составляет $\approx 25,5\%$, и объясняется тем, что значительная часть возбуждений дочернего ядра 100 Тс приходится на основное состояние (см. рис. 2 и 3) за счет pp-нейтрино с малой энергией, которых на порядки больше в солнечном нейтринном спектре.

ЗАКЛЮЧЕНИЕ

Исследовано влияние высоколежащих резонансов в зарядово-обменной силовой функции S(E) на сечения захвата солнечных нейтрино ядром ¹⁰⁰ Мо. Проведен анализ известных экспериментальных данных по силовой функции S(E), полученных в реакции ¹⁰⁰ Мо(³He, t)¹⁰⁰ Tc в 1997 [1] и в 2012 [2] гг. Новые значения энергий зарядово-обменных резонансов [2] немного отличаются от полученных ранее [1], зато ранее была опубликована таблица энергий и матричных элементов возбужденных состояний, в том числе и наблюдаемых резонансов, а в более поздней работе таких данных нет. Мы обработали экспериментальные силовые функции и получили численные данные, которые сравнили с расчетами силовой функции S(E), проведенными в рамках самосогласованной теории конечных ферми-систем. Сравнение расчетов функции S(E) с экспериментальными данными демонстрирует хорошее согласие как по энергиям, так и по высотам резонансных пиков. Сумма рассчитанных квадратов матричных элементов возбужденных состояний согласуется с теоретическим правилом сумм с эффективным зарядом $e_q = 0,85$ или $q \approx 0,72$, что соответствует наблюдаемому параметру quenching-эффекта — недобору в правиле сумм, представленному в [1].

Проведены расчеты сечений захвата $\sigma(E)$ для солнечных нейтрино, и проанализирован вклад всех компонентов солнечного нейтринного спектра. Показано слабое влияние резонансной структуры на величины рассчитываемых $\sigma(E)$, существенно меньшее, чем у других ядер. Это объясняется тем, что основной вклад до ~ 85 % в реакции 100 Мо $(\nu_e, e^-)^{100}$ Тс дают *pp*-нейтрино с энергиями $E_{\rm max} \leqslant 0,420$ МэВ, которых на порядки больше и резонансная область энергий не затрагивается. Вследствие этого должен быть существенный вклад от солнечных нейтрино в двойной бета-распад 100 Мо в 100 Ru, превышающий аналогичные вклады для других известных изотопов, участвующих в двойном бета-распаде [3, 18].

Авторы благодарны И. Н. Борзову, М. Д. Скорохватову, А. К. Выборову, Л. В. Инжечику и Н. В. Клочковой за стимулирующие дискуссии и помощь в работе.

Работа выполнена при частичной финансовой поддержке гранта отделения нейтринных процессов НИЦ «Курчатовский институт».

СПИСОК ЛИТЕРАТУРЫ

- Akimune H., Ejiri H., Fujiwara M., Daito I., Inomata T., Hazama R., Tamii A., Toyokawa H., Yosoi M. GT Strengths by (³He, t) Reactions and Nuclear Matrix Elements for Double Beta Decays // Phys. Lett. B. 1997. V. 394. P. 23–28.
- 2. Thies J. H., Adachi T., Dozono M., Ejiri H., Frekers D., Fujita H., Fujita Y., Fujiwara M. et al. High-Resolution 100 Mo(3 He, t) 100 Tc Charge-Exchange Experiment and the Impact on Double- β Decays and Neutrino Charged-Current Reactions // Phys. Rev. C. 2012. V. 86. P. 044309.
- *Ejiri H., Elliott S.R.* Solar Neutrino Interactions with the Double-β Decay Nuclei ⁸²Se, ¹⁰⁰Mo, and ¹⁵⁰Nd // Phys. Rev. C. 2017. V. 95. P. 055501.
- Ejiri H., Engel J., Hazama R., Krastev P., Kudomi N., Robertson R. G. H. Spectroscopy of Double-Beta and Inverse-Beta Decays from ¹⁰⁰Mo for Neutrinos // Phys. Rev. Lett. 2000. V. 85. P. 2917–2920.
- Wang M., Audi G., Kondev F. G., Huang W. J., Naimi S., Xing Xu. The 2016 Atomic Mass Evalution (Ame2016) // Chin. Phys. C. 2017. V.41. P.030003.
- Arima A. History of Giant Resonances and Quenching // Nucl. Phys. A. 1999. V. 649. P. 260c-270c.
- 7. Мигдал А.Б. Теория конечных ферми-систем и свойства атомных ядер. М.: Наука, 1983. 432 с.
- Borzov I. N., Fayans S. A., Trykov E. L. Gamow-Teller Strength Functions of Superfluid Odd-A Nuclei and Neutrino Capture Reactions // Nucl. Phys. A. 1995. V. 584. P. 335-361.

- Лютостанский Ю.С. Резонансная структура зарядово-обменной силовой функции // ЯФ. 2019. Т. 82, № 5. С. 440-448.
- Лютостанский Ю. С., Тихонов В. Н. Резонансная структура зарядово-обменной силовой функции и сечения нейтринного захвата изотопов ⁷¹Ga, ⁹⁸Mo, ¹²⁷I // ЯФ. 2018. Т. 81, № 5. С. 515–524.
- 11. Лютостанский Ю.С. Зарядово-обменные изобарические резонансы и параметры локального взаимодействия // ЯФ. 2020. Т. 83, № 1. С. 34–39.
- Lutostansky Yu. S., Shul'gina N. B. Strength Function of ¹²⁷Xe and Iodine-Xenon Neutrino Detector // Phys. Rev. Lett. 1991. V. 67. P. 430-432.
- Гапонов Ю. В., Лютостанский Ю. С. Изобарические конфигурационные 0⁺-состояния, протон-нейтронная дырка в сферических ядрах // ЯФ. 1972. Т. 16, вып. 3. С. 484–496.
- 14. Лютостанский Ю. С., Тихонов В. Н. Феноменологическое описание кулоновских энергий для среднетяжелых и сверхтяжелых ядер // Изв. РАН. Сер. физ. 2015. Т. 79, № 4. С. 466-471.
- Пятов Н. И., Фаянс С. А. Зарядово-обменные возбуждения ядер // ЭЧАЯ. 1983. Т. 14. С. 953–1019.
- 16. Гапонов Ю. В., Лютостанский Ю. С. О возможном существовании 1⁺-резонанса в реакции перезарядки сферических ядер // Письма в ЖЭТФ. 1972. Т. 15, вып. 3. С. 173–175.
- 17. *Essig R., Sholapurkar M., Yu T.-T.* Solar Neutrinos as a Signal and Background in Direct-Detection Experiments Searching for Sub-GeV Dark Matter with Electron Recoils // Phys. Rev. D. 2018. V. 97. P. 095029.
- Frekers D., Alanssari M. Charge-Exchange Reactions and the Quest for Resolution // Eur. Phys. J. A. 2018. V. 54. P. 1–77.