ОБ АСИМПТОТИЧЕСКОЙ БЕЗОПАСНОСТИ В МОДЕЛИ ЛИТИМА-САННИНО

А.В.Бедняков*, А.И.Мухаева**

Объединенный институт ядерных исследований, Дубна

В калибровочной теории $SU(N_c)$ с N_f цветными кварками и N_f^2 бесцветными комплексными скалярами получено выражение для нетривиальной ультрафиолетовой неподвижной точки в виде разложения по параметру Венециано вплоть до третьего порядка. Фиксированная точка имеет одномерную критическую поверхность и реализует сценарий асимптотической безопасности. Обсуждается величина конформного окна, а также спектр аномальных размерностей различных операторов.

In the $SU(N_c)$ gauge theory with N_f color quarks and N_f^2 colorless complex scalars, we obtain an expression for nontrivial ultraviolet fixed point as an expansion in the Veneziano parameter up to the third order. The fixed point has one-dimensional UV critical surface and perturbatively realizes the asymptotic safety scenario. We discuss conformal window and the spectrum of anomalous dimensions of different operators.

PACS: 03.70.+k; 11.10.Gh

введение

Анализ ультрафиолетовых (УФ) свойств квантово-полевых моделей традиционно играет важную роль при построении самосогласованных теорий в современной физике. Примером здесь служит квантовая хромодинамика (КХД), в которой наблюдается явление асимптотической свободы [1, 2]: сильная константа взаимодействия становится исчезающе малой при увеличении характерного энергетического масштаба. Такая невзаимодействующая теория глюонов и кварков является гауссовой фиксированной точкой ренормгруппового потока в КХД. Сценарий асимптотической безопасности [3] представляет собой обобщение асимптотической свободы, в котором параметры модели в УФ-области стремятся к нетривиальной фиксированной точке с остаточными взаимодействиями. В литературе можно найти обсуждения многочисленных попыток построить как игрушечные модели с асимптотической безопасностью, так

^{*} E-mail: bednya@jinr.ru

^{**} E-mail: mukhaeva@theor.jinr.ru

и реалистичные сценарии, обобщающие Стандартную модель фундаментальных взаимодействий (см., например, недавние обзоры [4-6]).

Характерной особенностью таких сценариев является степенной закон «бега» (в общем случае бесконечного набора) безразмерных констант связи $\alpha_i \equiv g_i^2/(16\pi^2)$ вблизи нулей α^* бета-функций $\beta_i(\alpha^*) = 0$. Действительно, линеаризируя ренормгрупповой поток

$$\partial_t \alpha_i = \beta_i(\alpha), \quad t \equiv \ln \mu,$$
 (1)

около фиксированной точки $\alpha^* = \{\alpha^*_i\}$

$$\partial_t (\alpha_i - \alpha_i^*) = \omega_{ij} (\alpha_j - \alpha_j^*) + \dots, \quad \omega_{ij} \equiv \partial_j \beta_i (\alpha^*), \tag{2}$$

можно получить

$$\alpha_i(\mu) \approx \alpha_i^* + \sum_{j=1}^k c_{ij} \left(\frac{\mu}{\mu_0}\right)^{\theta_j^{\text{IR}}} + \sum_{j=k+1}^\infty c_{ij} \left(\frac{\mu}{\mu_0}\right)^{\theta_j^{\text{UV}}},\tag{3}$$

где $\mu_0 - \mathcal{Y}\Phi$ -шкала, на которой задается начальное значение $\alpha_i(\mu_0)$ в окрестности α^* , а $\theta_i^{\mathrm{IR},\mathrm{UV}}$ — собственные значения матрицы ω_{ij} . Конечному набору отрицательных собственных чисел $\theta_i^{\mathrm{IR}} < 0$, i = 1, k, соответствуют инфракрасно (ИК) отталкивающие направления. Последние определяют конечномерную $\mathcal{Y}\Phi$ критическую поверхность. Небольшие отклонения начальной точки, лежащие на этой поверхности, при продолжении в ИК-область могут привести к значительным отклонениям при $\mu \ll \mu_0$. В то же время направления, соответствующие $\theta_i^{\mathrm{UV}} > 0$, являются ИК притягивающими, и поэтому отклонения начальной точки, лежащие вне $\mathcal{Y}\Phi$ критической поверхности, «вымирают» в ИК-области. Размерность критической поверхности k является важной характеристикой асимптотически безопасных сценариев, так как определяет число независимых параметров модели в этом случае. Это число обычно (значительно) меньше числа констант связи в исходном наборе α_i и определяет ИК релевантные возмущения конформной теории, соответствующей $\alpha_i = \alpha_i^*$.

Изначальная идея Вайнберга [3] асимптотически безопасной гравитации требует использования непертурбативных методов анализа (см., например, [7,8]). В данной работе мы рассмотрим несуперсимметричное обобщение КХД с N_c цветами, в котором может реализоваться асимптотически безопасный сценарий в пертурбативной области параметров, — модель Литима-Саннино [9,10]. Последняя описывает взаимодействия N_f цветных дираковских фермионов и N_f^2 мезоноподобных бесцветных скалярных состояний. Модель может быть исследована в рамках теории возмущений в пределе Венециано, т.е. в пределе больших N_f и N_c , когда отношение последних, задаваемое параметром $\epsilon \equiv N_f/N_c - 11/2$, конечно, но мало.

МОДЕЛЬ ЛИТИМА-САННИНО

Лагранжиан рассматриваемой четырехмерной модели имеет вид

$$\mathcal{L} = -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu} + \left[F^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu + g f^{abc} G^b_\mu G^c_\nu \right] + \operatorname{Tr} \left[\overline{\psi} i \hat{D} \psi \right] + \operatorname{Tr} \left[\partial^\mu H^\dagger \partial_\mu H \right] - y \operatorname{Tr} \left[\overline{\psi} (H \mathcal{P}_R + H^\dagger \mathcal{P}_L) \psi \right] - - m^2 \operatorname{Tr} \left[H^\dagger H \right] - u \operatorname{Tr} \left[(H^\dagger H)^2 \right] - v \left(\operatorname{Tr} \left[H^\dagger H \right] \right)^2,$$
(4)

где $G^a_{\mu\nu}$ — калибровочное поле, ψ соответствует N_f дираковским цветным полям^{*}, а комплексная матрица H размерности $N_f \times N_f$ описывает бесцветные скаляры. На классическом уровне модель (4) обладает глобальной симметрией $U(N_f)_L \times U(N_f)_R$, соответствующей независимым унитарным вращениям левых $\psi_L = P_L \psi$ и правых $\psi_R = P_R \psi$ кварковых полей соответственно. Вдобавок к (4) нами были рассмотрены операторы размерности три, нарушающие глобальную симметрию до диагональной подгруппы $U(N_f)$:

$$\delta \mathcal{L} = -m_{\psi} \operatorname{Tr}\left(\overline{\psi}\psi\right) - \frac{h_2}{2} \left[\operatorname{Tr}\left(HH^{\dagger}H\right) + \text{h. c.}\right] - \frac{h_3}{2} \left[\operatorname{Tr}\left(HH^{\dagger}\right) \operatorname{Tr}\left(H\right) + \text{h. c.}\right] \equiv -m_{\psi}O_1 - h_2O_2 - h_3O_3 = -\vec{\kappa} \cdot \vec{O}.$$
 (5)

В основе анализа модели лежат ренормгрупповые уравнения для безразмерных констант связи. Удобно ввести следующие обозначения:

$$\alpha_g = \frac{g^2 N_c}{(4\pi)^2}, \quad \alpha_y = \frac{y^2 N_c}{(4\pi)^2}, \quad \alpha_u = \frac{u N_f}{(4\pi)^2}, \quad \alpha_v = \frac{v N_f^2}{(4\pi)^2}, \tag{6}$$

позволяющие записать

$$\partial_t \alpha_i = \mathcal{B}(\alpha_j, \epsilon, N_c) = \beta_i(\alpha_j, \epsilon) + \mathcal{O}\left(\frac{1}{N_c}\right),$$
(7)

где лидирующие по N_c слагаемые β_i (соответствующие пределу Венециано) зависят от N_c и N_f только через отношение ϵ . Аналогичным образом удобно переопределить размерные константы

$$m'_{\psi} = m_{\psi}\sqrt{N_c}, \quad h'_2 = h_2 N_f, \quad h'_3 = h_3 N_f^2,$$
 (8)

связанные с операторами

$$O_1' = \frac{1}{\sqrt{N_c}} \operatorname{Tr}\left[\overline{\psi}\psi\right],\tag{9}$$

$$O'_{2} = \frac{1}{2N_{f}} \left(\text{Tr} \left[H H^{\dagger} H \right] + \text{h. c.} \right),$$
 (10)

$$O'_{3} = \frac{1}{2N_{f}^{2}} \left(\text{Tr} \left[H H^{\dagger} \right] \text{Tr} \left[H \right] + \text{h. c.} \right).$$
(11)

^{*} Здесь и далее мы опускаем цветовые и флейворные индексы.

СЦЕНАРИЙ АСИМПТОТИЧЕСКОЙ БЕЗОПАСНОСТИ: РЕЗУЛЬТАТЫ

Для малого $\epsilon \ll 1$ можно использовать теорию возмущений и искать фиксированные точки ренормгруппового потока (7) в виде

$$\alpha_x^* = \sum_{i=1}^{\infty} c_x^{(i)} \epsilon^i, \quad x = \{g, y, u, v\},$$
(12)

где предполагается, что в фиксированной точке все размерные параметры (4) и (5) равны нулю. В пределе Венециано коэффициент однопетлевой бета-функции β_g калибровочной константы α_g пропорционален ϵ :

$$\partial_t \alpha_g = \alpha_g^2 \left[\frac{4}{3} \epsilon + \dots \right]. \tag{13}$$

Поэтому условие $\epsilon < 0$ соответствует сценарию асимптотической свободы. В данной работе исследован случай $0 < \epsilon \ll 1$. Подставляя анзац (12) в бета-функции (7), можно заметить, что однопетлевой и двухпетлевой вклады в β_g имеют один и тот же порядок $\mathcal{O}(\epsilon^2)$. Именно этот факт позволяет построить контролируемое разложение вида (12), причем для определения коэффициента $c_x^{(n)}$ мы должны знать (n+1)-петлевую бетафункцию α_g и *n*-петлевые вклады в $\beta_{y,u,v}$. Учет вкладов таких порядков определяет так называемую (n+1,n,n)-схему, где первое число обозначает старший порядок β_g , второе — старший порядок β_y , а третье — порядок $\beta_{u,v}$. Первые два коэффициента разложения для всех констант связи были получены в работах [10, 11] соответственно. В недавних работах [12, 13] в рамках схемы 433 были найдены коэффициенты $c_x^{(3)}$. Кроме того, нами был рассмотрен случай конечного N_c [6]. Следуя авторам [14], мы определили зависящие от N_c коэффициенты $f_x^{(n)}(N_c)$ в разложении

$$\alpha_x^* = c_x^{(1)} f_x^{(1)}(N_c)\epsilon + c_x^{(2)} f_x^{(2)}(N_c)\epsilon^2 + c_x^{(3)} f_x^{(3)}(N_c)\epsilon^3$$
(14)

вплоть до третьего порядка по ϵ . При этом предполагается, что коэффициенты удовлетворяют $\lim_{N_c \to \infty} f_x^{(n)}(N_c) = 1$. Выражения для $f_x^{(n)}(N_c)$ довольно громоздки и в работе [13] представлены в приближенном виде. В дальнейшем мы рассмотрим случай $N_c \to \infty$ и лишь в конце прокомментируем, как ситуация меняется при учете конечных N_c .

В пределе Венециано среди решений системы уравнений на $c_x^{(n)}$, возникающих из условия $\beta_i(\alpha_i^*) = 0$, можно выделить* фиксированную

^{*} Коэффициенты известны аналитически.

точку [12, 13]

$$\begin{aligned}
\alpha_g^* &= 0.456\epsilon + 0.781\epsilon^2 + 6.610\epsilon^3, \\
\alpha_y^* &= 0.211\epsilon + 0.508\epsilon^2 + 3.322\epsilon^3, \\
\alpha_u^* &= 0.200\epsilon + 0.440\epsilon^2 + 2.693\epsilon^3, \\
-\alpha_v^* &= 0.137\epsilon + 0.632\epsilon^2 + 4.313\epsilon^3,
\end{aligned}$$
(15)

для которой УФ критическая поверхность одномерна. Соответственно, собственные значения θ_i матрицы ω удовлетворяют соотношению

$$\theta_1(\alpha^*) < 0 < \theta_{2,3,4}(\alpha^*).$$
 (16)

В пределе $N_c \rightarrow \infty$ получаем [12, 13]

$$\begin{aligned} -\theta_1 &= 0,608\epsilon^2 - 0,707\epsilon^3 - 6,947\epsilon^4, \\ \theta_2 &= 2,737\epsilon + 6,676\epsilon^2 + 22,120\epsilon^3, \\ \theta_3 &= 2,941\epsilon + 1,041\epsilon^2 + 5,137\epsilon^3, \\ \theta_4 &= 4,039\epsilon + 9,107\epsilon^2 + 38,646\epsilon^3. \end{aligned}$$
(17)

Таким образом, только одна линейная комбинация операторов размерности четыре оказывается ИК существенной. Также можно исследовать, как квантовые поправки модифицируют каноническую размерность d_O некоторого оператора O:

$$\Delta_O = d_O + \gamma_O^*, \qquad \gamma_O^* \equiv \gamma_O(\alpha^*), \tag{18}$$

где γ_O^* — значение аномальной размерности оператора в фиксированной точке. Актуальной задачей является определение величины конформного окна, т.е. максимального значения ϵ_{\max} , при котором реализуется сценарий асимптотической безопасности. При этом обычно накладываются следующие ограничения (см., например, [10, 15]):

• пертурбативность, условно характеризующаяся $0 < |\alpha_x| \lesssim 1$;

• отсутствие слияния УФ и ИК фиксированных точек, соответствующее изменению знака у критических индексов θ_i ;

• стабильность вакуума, в древесном случае выражающееся условием $\alpha_u^* > 0, \ \alpha_u^* + \alpha_v^* > 0;$

• унитарность теории в фиксированной точке, соответствующая тому, что критические размерности скалярных операторов в четырехмерии должны удовлетворять $\Delta_O \ge 1$ [16].

Рассмотрим пока первые три из этих условий. Исходя из выражений (15) и (17), нетрудно заметить, что граница пертурбативности соответствует $\alpha_g^* = 1$, слияние фиксированных точек может произойти при $\theta_1 = 0$, а граница стабильности вакуума древесного потенциала возникает, когда $\alpha_u^* + \alpha_v^* = 0$. На рис. 1 показана зависимость максимального значения ϵ_{\max} от N_c , получаемого из соответствующих условий в рамках схемы 433. Штриховые линии получены в пределе Венециано. Наиболее сильным условием здесь является условие стабильности вакуума. Исхо

Рис. 1. Зависимость от N_c значения ϵ , удовлетворяющего условию $\alpha_g^* = 1$, $\theta_1 = 0$ и $\alpha_u^* + \alpha_v^* = 0$ соответственно. Штриховые линии отвечают случаю $N_c \to \infty$. Точками обозначены значения ϵ , при которых N_f оказывается целочисленным

дя из рисунка, можно найти пары (N_c, N_f) , соответствующие точкам, лежащим под кривой $\alpha_u^* + \alpha_v^* = 0$:

$$(N_c, N_f) = (5, 28), (7, 39), (8, 45), (9, 50), (10, 56), (11, 61),$$

(11, 62), (12, 67) ... (19)

Именно при этих значениях числа цветов и ароматов потенциально реализуется сценарий асимптотической безопасности [12, 13]. В работе [13] также была рассмотрена возможность получать ограничения с использованием различных аппроксимантов Падэ (см. [12]) для возникающих рядов по ϵ . Однако наш предварительный анализ [13] показал, что малое число известных коэффициентов разложения не дает построить надежные аппроксиманты, и поэтому требуется более тщательное исследование.

Вернемся теперь к условию унитарности, накладываемому на критические размерности операторов. Авторами [12] с помощью подхода вспомогательных (dummy) полей были найдены аномальные размерности параметров m^2 и m_{ψ} . Последние соответствуют операторам $\operatorname{Tr}[H^{\dagger}H]$ и $\operatorname{Tr}[\overline{\psi}\psi] = O_1$. Первый не нарушает исходную глобальную симметрию, а второй, как указывалось ранее, является оператором размерности три и наряду с $O_{2,3}$ нарушает симметрию до диагональной $U(N_f)$. В фиксированной точке (15) оказалось, что выражение для γ_{m^2} всегда положительно, а $\gamma_{m_{\psi}}$ представляет собой знакопеременный ряд, причем коэффициент при ϵ отрицательный. Данная ситуация потенциально могла привести к нарушению условия унитарности. Несмотря на то, что для значений ϵ_{\max} , полученных ранее, условие унитарности не нарушалось, нами в работе [13] было показано, что игнорирование смешивания операторов $O_{1,2,3}$ приводит к неправильному результату.

Было рассмотрено семейство четырех операторов размерности три: помимо \vec{O} , мы также учли смешивание с $O_4 = 1/2 \left[\partial^2 \text{Tr} \left[H \right] + \text{h.c.} \right]$, который входит в уравнение движения (в терминах «голых» величин):

$$(O_4)_{\text{bare}} + \vec{\Lambda}_{\text{bare}} \cdot \vec{O}_{\text{bare}} = 0, \quad \vec{\Lambda}_{\text{bare}} \equiv \{y/2, 2u, 2v\}_{\text{bare}}.$$
 (20)

Перенормированные операторы $[\vec{O}]_R$ выражаются через операторы, записанные через голые поля как

$$[\vec{O}]_R = Z_O \cdot \vec{O}_{\text{bare}} + \vec{Z} \cdot (O_4)_{\text{bare}}, \quad [O_4]_R = Z_H^{-1/2}(O_4)_{\text{bare}}$$

Здесь Z_H — константа перенормировки поля H, а Z_O и \vec{Z} — матрица 3×3 и трехмерный вектор констант перенормировки соответственно. Последние можно объединить в матрицу \overline{Z}_O размерности 4×4 , схематически показанную на рис. 2. Матрица \overline{Z}_O определяет аномальную размерность семейства операторов:

$$\overline{\gamma}_O \equiv -(\partial_t \overline{Z}_O) \cdot \overline{Z}_O^{-1},\tag{21}$$

которая в фиксированной точке (при $N_c \to \infty$) имеет следующие собственные значения [13]:

$$\gamma_H^* = \gamma_1 = -\gamma_2 = 0.21053\epsilon + 0.46247\epsilon^2 + 2.47105\epsilon^3, \tag{22}$$

$$\gamma_3 = 2,22982\epsilon + 3,88519\epsilon^2 + 20,5012\epsilon^3,\tag{23}$$

$$\gamma_4 = 1,68082\epsilon + 0,98321\epsilon^2 + 5,03949\epsilon^3. \tag{24}$$

Можно заметить, что два собственных значения $\gamma_{1,2}$ отличаются знаком и равны по модулю аномальной размерности поля γ_H^* . В нашей работе

Рис. 2. Матрица констант перенормировки операторов размерности три [6]. Схематически показаны диаграммы, дающие вклады в матричные элементы при применении R-операции без последнего вычитания \mathcal{KR}' . Штриховые линии соответствуют скалярам H, сплошные линии со стрелками — левым и правым фермионам

$$\begin{split} \widetilde{\gamma}_{O}^{*} & (3 \times 3) & \overline{\gamma}_{O}^{*} & (4 \times 4) & \gamma_{O}^{*} & (3 \times 3) \\ \gamma_{1} & \stackrel{+}{\longleftarrow} \gamma_{H}^{*} & \gamma_{1}, \gamma_{2} & \stackrel{-}{\longleftarrow} \gamma_{H}^{*} & \gamma_{2} \\ \gamma_{3}, \gamma_{4} & \gamma_{3}, \gamma_{4} & \gamma_{3}, \gamma_{4} \\ \text{Descendant} & \text{Tr} & (\delta S / \delta H) + \text{h. c.} \\ \text{of Tr} & (H) + \text{h. c.} & \text{Zero onshell} \end{split}$$

Рис. 3. Матричные аномальные размерности и их собственные значения. Отрицательное собственное значение $\gamma_2 = -\gamma_H^*$ соответствует оператору, исчезающему при учете уравнений движения, а $\gamma_1 = \gamma_H^*$ — линейной комбинации $O_{1,2,3}$, являющейся потомком оператора $\partial^2 \operatorname{Tr}(H) + \mathrm{h.c.}$

мы показали, что отрицательное собственное значение γ_2 соответствует линейной комбинации операторов $\propto \text{Tr} [\delta S/\delta H]$, где S — действие теории, и исчезающей на уравнениях движения. В то же время $\gamma_1 = \gamma_H^*$ можно интерпретировать как линейную комбинацию операторов $O_{1,2,3}$, которая является «потомком» оператора Tr [H] и имеет такую же аномальную размерность. Действительно, подставляя $(O_4)_{\text{bare}}$ из уравнения движения (20) в (21), можно определить матрицу \tilde{Z}_O размерности 3×3 и соответствующую аномальную размерность $\tilde{\gamma}_O$:

$$\tilde{Z}_O = Z_O - \vec{Z} \otimes \Lambda_{\text{bare}}, \quad \tilde{\gamma}_O \equiv -(\partial_t \tilde{Z}_O) \cdot \tilde{Z}_O^{-1},$$
(25)

собственные значения которой оказываются равными $\gamma_1, \gamma_3, \gamma_4$ из (22)–(24). На рис. 3 мы схематически представили обсуждаемые матрицы аномальных размерностей* в фиксированной точке $\gamma_O^*, \overline{\gamma}_O^*$ и $\tilde{\gamma}_O^*$, а также соотношения между соответствующими собственными значениями.

ЗАКЛЮЧЕНИЕ

В данной работе мы на основе прямых расчетов бета-функций β_x в схеме 433 получили выражения для фиксированной точки, вблизи которой реализуется сценарий асимптотической безопасности. Мы подтвердили результаты работы [12], полученные в пределе Венециано, и обобщили ответ на случай конечного числа цветов N_c . Мы также провели расчет аномальных размерностей семейства операторов, входящих в уравнение движения для скалярного поля H. Учет смешивания операторов и уравнений движения позволил показать, что все аномальные размерности положительны в рамках рассматриваемого сценария и не представляют угрозы для унитарности теории. Мы рассмотрели различные ограничения на величину конформного окна при конечных N_c и показали, что наиболее сильное ограничение возникает из условия стабильности вакуума. При этом зависимость максимального значения параметра Венециано ϵ от N_c в этом случае оказывается довольно слабой,

^{*} γ_O^* вычислена стандартным способом из матрицы Z_O , входящей в (21).

что позволяет использовать асимптотическое значение ϵ_{\max} при нахождении пар (N_c, N_f) , для которых реализуется изучаемый сценарий. В заключение заметим, что актуальной задачей является учет радиационных поправок к эффективному потенциалу [17], а также расчет следующих порядков разложения по ϵ в рамках схемы 544.

Благодарности. Мы благодарны М. Компаниецу за полезные обсуждения и помощь с анализом аппроксимантов Падэ. Также мы хотим сказать спасибо организаторам Научной сессии секции ядерной физики ОФН РАН за возможность выступить с результатами, представленными в данной работе.

Финансирование работы. Данная работа финансировалась за счет средств бюджета Объединенного института ядерных исследований. Никаких дополнительных грантов на проведение или руководство данным конкретным исследованием получено не было.

Конфликт интересов. Авторы данной работы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Gross D. J., Wilczek F. Ultraviolet Behavior of Non-Abelian Gauge Theories // Phys. Rev. Lett. 1973. V. 30. P. 1343–1346.
- Politzer H.D. Reliable Perturbative Results for Strong Interactions? // Phys. Rev. Lett. 1973. V. 30. P. 1346–1349.
- 3. *Weinberg S.* Ultraviolet Divergences in Quantum Theories of Gravitation // General Relativity: An Einstein Centenary Survey. 1980. P. 790–831.
- Hiller G., Hormigos-Feliu C., Litim D. F., Steudtner T. Model Building from Asymptotic Safety with Higgs and Flavor Portals // Phys. Rev. D. 2020. V. 102, No. 9. P. 095023; arXiv:2008.08606.
- 5. *Eichhorn A., Schiffer M.* Asymptotic Safety of Gravity with Matter. arXiv:2212.07456. 2022.
- Bednyakov A., Mukhaeva A. Perturbative Asymptotic Safety and Its Phenomenological Applications // Symmetry. 2023. V.15, No.8. P.1497; arXiv:2309.08258.
- Dupuis N., Canet L., Eichhorn A., Metzner W., Pawlowski J.M., Tissier M., Wschebor N. The Nonperturbative Functional Renormalization Group and Its Applications // Phys. Rep. 2021. V. 910. P. 1–114; arXiv:2006.04853.
- Bonanno A., Eichhorn A., Gies H., Pawlowski J. M., Percacci R., Reuter M., Saueressig F., Vacca G. P. Critical Reflections on Asymptotically Safe Gravity // Front. Phys. 2020. V. 8. P. 269; arXiv:2004.06810.
- Antipin O., Gillioz M., Mølgaard E., Sannino F. The a Theorem for Gauge-Yukawa Theories beyond Banks-Zaks Fixed Point // Phys. Rev. D. 2013. V. 87, No. 12. P. 125017; arXiv:1303.1525 [hep-th].
- Litim D. F., Sannino F. Asymptotic Safety Guaranteed // J. High Energy Phys. 2014. V. 12. P. 178; arXiv:1406.2337 [hep-th].

- Bond A. D., Litim D. F., Medina Vazquez G., Steudtner T. UV Conformal Window for Asymptotic Safety // Phys. Rev. D. 2018. V.97, No.3. P.036019; arXiv:1710.07615.
- Litim D. F., Riyaz N., Stamou E., Steudtner T. Asymptotic Safety Guaranteed at Four-Loop Order // Phys. Rev. D. 2023. V. 108, No. 7. P. 076006; arXiv: 2307.08747.
- Bednyakov A. V., Mukhaeva A. I. Asymptotic Safety in the Litim-Sannino Model at Four Loops // Phys. Rev. D. 2024. V. 109, No. 6. P. 065030; arXiv: 2312.12128.
- Bond A. D., Litim D. F., Vazquez G. M. Conformal Windows beyond Asymptotic Freedom // Phys. Rev. D. 2021. V. 104, No. 10. P. 105002; arXiv:2107.13020.
- Litim D. F., Mojaza M., Sannino F. Vacuum Stability of Asymptotically Safe Gauge-Yukawa Theories // J. High Energy Phys. 2016. V.01. P.081; arXiv: 1501.03061.
- 16. *Mack G.* All Unitary Ray Representations of the Conformal Group *SU*(2, 2) with Positive Energy // Commun. Math. Phys. 1977. V. 55. P. 1.
- 17. Steudtner T. Effective Potential and Vacuum Stability in the Litim-Sannino Model // J. High Energy Phys. 2024. V. 05. P. 149; arXiv:2402.16950.