ИЗМЕРЕНИЕ СЕЧЕНИЯ ПРОЦЕССА $e^+e^- \rightarrow \pi^+\pi^-2\pi^0\eta$ НА ДЕТЕКТОРЕ СНД

А. А. Ботов^{1,*}, М. Н. Ачасов^{1,2}, А. Ю. Барняков^{1,2}, К. И. Белобородов^{1,2}, А. В. Бердюгин^{1,2}, А. Г. Богданчиков¹, Т. В. Димова^{1,2}, В. П. Дружинин^{1,2}, В. Н. Жабин¹, Л. В. Кардапольцев^{1,2}, Д. П. Коврижин¹, А. А. Король^{1,2}, А. С. Купич^{1,2}, А. П. Крюков¹, Н. А. Мельникова¹, Н. Ю. Мучной^{1,2}, А. Е. Образовский¹, Е. В. Пахтусова¹, К. В. Пугачев^{1,2}, С. И. Середняков^{1,2}, З. К. Силагадзе^{1,2}, И. К. Сурин¹, А. Г. Харламов^{1,2}, Д. А. Штоль¹

¹ Институт ядерной физики им. Г. И. Будкера СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия

Процесс $e^+e^- \to \pi^+\pi^-2\pi^0\eta$ изучался по данным, набранным детектором СНД на e^+e^- -коллайдере ВЭПП-2000 в 2011, 2012, 2019–2021 гг. Сечение этого процесса измерено в области энергии от 1,55 до 2 ГэВ. Полученное сечение хорошо описывается моделью векторной доминантности с резонансами $\rho(1700)$ и $\rho(2150).$ Проведено сравнение с единственным предыдущим измерением на детекторе BaBar.

The process $e^+e^- \rightarrow \pi^+\pi^-2\pi^0\eta$ is studied on data collected by the SND detector at the VEPP-2000 e^+e^- collider in 2011, 2012, 2019–2021. The cross section for this process is measured in the center-of-mass energy region 1.55–2 GeV. The obtained cross section is well fitted with the VMD model with the $\rho(1700)$ and $\rho(2150)$ resonances. The obtained cross section is compared with the only previous measurement at the BaBar detector.

PACS: 14.40.Be; 13.60.Le

введение

Одной из важных целей экспериментов на e^+e^- -коллайдере ВЭПП-2000 [1] является измерение полного сечения e^+e^- -аннигиляции в адроны. Величина этого сечения используется, в частности, для определения вклада адронной поляризации вакуума в аномальный магнитный момент мюона и вычисления величины бегущей константы электромагнитного взаимодействия. Ниже энергии 2 ГэВ полное адронное сечение определяется как сумма эксклюзивных сечений для всех возможных адронных конечных состояний. В настоящее время большинство таких

^{*} E-mail: A.A.Botov@inp.nsk.su

сечений измерено. В то же время еще остаются процессы, сечения которых либо не измерялись, либо измерены недостаточно точно. К их числу относится и ряд процессов с рождением η -мезона, например, $\pi^+\pi^-2\pi^0\eta$, $K^+K^-\pi^0\eta$ и ряд других.

В настоящей работе в эксперименте с детектором СНД [2] в области энергии E < 2 ГэВ, доступной для коллайдера ВЭПП-2000, изучается процесс $e^+e^- \rightarrow \pi^+\pi^-2\pi^0\eta$ с последующим распадом η -мезона на два фотона. Единственное предыдущее измерение сечения этого процесса было сделано на детекторе BaBar [3] методом радиационного возврата.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ И МОДЕЛИРОВАНИЕ

В данной работе использовались экспериментальные данные с интегральной светимостью 146 пб⁻¹, записанные детектором СНД [2] на e^+e^- -коллайдере ВЭПП-2000 [1] в 2011, 2012, 2019–2021 гг. в 31 точке диапазона энергии 1,55–2,00 ГэВ выше порога изучаемой реакции. В связи с отсутствием узких структур в сечении и малой статистикой 2011, 2012 и 2019 гг. данные для них были сгруппированы в 9 интервалов по энергии с шагом 50 МэВ, и данные первых двух лет были объединены. Средняя энергия \overline{E} в каждом интервале усреднялась с учетом светимости и сечения изучаемого процесса в точках по энергии.

Моделирование сигнального и фоновых процессов делалось с помощью генераторов Монте-Карло. В соответствии с указанной работой ВаВаг [3] моделирование проводилось в модели $e^+e^- \rightarrow \rho(1450) \rightarrow \omega a_0$, с распадом $\omega \to \pi^+ \pi^- \pi^0$, а $a_0 \to \pi^0 \eta$. Также в работе показано, что для энергии Е ≥ 1,944 ГэВ есть вклад других промежуточных состояний. Для оценки разницы в эффективности для этих энергий было также сделано моделирование изучаемого процесса по фазовому объему. Для моделирования фоновых процессов использовался генератор, включающий в себя все известные процессы $e^+e^- \to$ адроны [4] в изучаемой области энергии. Моделирование учитывает радиационные поправки к начальным частицам, вычисленные согласно работе [5]. Необходимая для вычисления энергетическая зависимость борновского сечения получается из экспериментальных данных. Моделирование искомого процесса делается с помощью итераций по используемому сечению, первоначально взятому из работы [3]. При моделировании фоновых процессов радиационные поправки заложены в самом генераторе.

Светимость определялась с помощью процесса рассеяния $e^+e^- \to e^+e^-$ с точностью 2%.

2. УСЛОВИЯ ОТБОРА СОБЫТИЙ

Использовался следующий предварительный отбор. В событии требуются две или три заряженные частицы, летящие из области столкновения пучков, и не менее шести фотонов с энергией более 20 МэВ. На такие

события накладывается условие, что полное энерговыделение в калориметре превышает 300 МэВ.

Для отобранных событий по двум трекам находится вершина события, и вычисляется параметр χ^2_r , показывающий ее качество. В случае трех треков в событии выбирается пара треков с наименьшим χ_r^2 . С учетом найденной вершины уточняются углы вылета заряженных частиц и фотонов. Затем для каждой комбинации из шести фотонов в событии проводится кинематическая реконструкция в гипотезе конечного состояния $\pi^+\pi^-6\gamma$ (параметр $\chi^2_{2\pi6\gamma}$) и выбираются комбинации с $\chi^2_{2\pi6\gamma} < 200$. В реконструкции используются измеренные полярный и азимутальный углы заряженных частиц и фотонов и измеренные энергии последних, а также требуется выполнение закона сохранения энергии-импульса. Для выбранных комбинаций делается кинематическая реконструкция в гипотезе $\pi^+\pi^-2\pi^0\gamma\gamma$ (параметр $\chi^2_{4\pi2\gamma}$), где требуется равенство инвариантных масс пар фотонов — кандидатов в π^0 -мезон — среднемировому значению его массы [6]. По подправленным в результате реконструкции параметрам фотонов вычисляется инвариантная масса третьей пары фотонов — кандидата в η -мезон, обозначаемая далее как M_{η} . Выбирается комбинация с $400 \leqslant M_{\eta} \leqslant 700$ МэВ, дающая наименьший $\chi^2_{4\pi 2\gamma}$.

комоинация с 400 $\leq M_{\eta} \leq 700$ МэБ, дающая наименьшии $\chi_{4\pi 2\gamma}$. Для выделения событий искомого процесса накладывается условие $\chi^2_{4\pi 2\gamma} < 30$. Для подавления основного фона от процессов $e^+e^- \rightarrow \pi^+\pi^-3\pi^0$ и $e^+e^- \rightarrow \pi^+\pi^-4\pi^0$ делается кинематическая реконструкция в гипотезе $e^+e^- \rightarrow \pi^+\pi^-3\pi^0$ и отбрасываются события с $\chi^2_{5\pi} > 100$. Для дальнейшего подавления фона накладывается требование наличия в событии ровно шести фотонов.

Рис. 1. Распределение по параметру $\chi^2_{4\pi^2\gamma}$ для экспериментальных (точки с ошибками) и моделированных $e^+e^- \to \pi^+\pi^-2\pi^0\eta$ и $e^+e^- \to$ адроны (сплошная и штриховая гистограммы) событий. Стрелкой показано используемое ограничение

Распределение по параметру $\chi^2_{4\pi^2\gamma}$ для экспериментальных и моделированных событий показано на рис. 1. В последнем бине (при $\chi^2 = 200$) содержатся также все события, имеющие большие значения параметра χ^2 и удовлетворяющие условию $\chi^2_{2\pi6\gamma} < 200$.

3. ОПРЕДЕЛЕНИЕ ЧИСЛА СОБЫТИЙ СИГНАЛА

Распределение отобранных экспериментальных событий по инвариантной массе η -мезона (M_{η}) для сканирования 2021 г. приведено на рис. 2. Видно, что распределение состоит из примерно 35% событий в области пика η -мезона и нерезонансного фона.

Для определения числа событий с η -мезоном полученные в каждом интервале/точке энергии коллайдера распределения по массе M_{η} аппроксимируются суммой сигнального и фонового распределений. Фоновое распределение — это сумма гистограммы, полученной по моделированию фоновых процессов, и линейной функции. Вклад гистограммы фиксирован с учетом светимости, а параметры линейной функции являются свободными.

Сигнальное распределение получалось в результате аппроксимации моделированного спектра по M_{η} суммой двух распределений Гаусса и линейной функции. Последняя нужна для описания распределения на краях от неправильно реконструированных событий. Для учета возможной неточности моделирования сигнала были введены два параметра: сдвиг положения пика ΔM_{η} и уширение $\Delta \sigma_{M_{\eta}}$, которое квадратично добавля-

Рис. 2. Распределение экспериментальных событий по инвариантной массе двухфотонной пары — кандидата в η -мезон (точки с ошибками) — для сканирования 2021 г. Сплошная гистограмма — результат аппроксимации спектра суммой сигнального и фонового распределений, штриховая — вклад фона

лось к сигмам гауссовых функций. Они определялись при аппроксимации суммарного распределения по M_{η} для каждого сканирования. Полное полученное число сигнальных событий в эксперименте составляет 24 634.

4. ЭФФЕКТИВНОСТЬ РЕГИСТРАЦИИ

Эффективность регистрации для событий изучаемого процесса определялась по моделированию как отношение числа отобранных событий к их полному числу и показана на рис. 3. В связи со сказанным в разд. 1 для энергии $E \ge 1,944$ ГэВ значения эффективности усреднялись между основным моделированием изучаемого процесса и моделированием по фазовому объему, а их ошибки квадратично складывались. Разница в эффективности между сканированиями 2011–2012 и 2019 гг. объясняется разным количеством не работавших в них кристаллов калориметра, учитываемых при моделировании.

Рис. 3. Энергетическая зависимость эффективности регистрации для разных сканирований

5. БОРНОВСКОЕ СЕЧЕНИЕ

Экспериментальные значения видимого сечения вычисляются следующим образом:

$$\sigma_{\mathrm{vis},i} = \frac{N_i}{L_i \varepsilon_i},\tag{1}$$

где N_i , L_i и ε_i — число экспериментальных событий, интегральная светимость и эффективность регистрации для *i*-го энергетического диапазона или точки.

Экспериментальные значения борновского сечения определяются следующим образом [5]:

$$\sigma_i = \frac{\sigma_{\text{vis},i}}{1 + \delta(\overline{E}_i)},\tag{2}$$

где $\delta(\overline{E}_i)$ — радиационная поправка, вычисленная в результате аппроксимации $\sigma_{\mathrm{vis},i}$ модельной зависимостью борновского сечения от энергии. Видимое сечение для одинаковых диапазонов энергии сканирований 2011–2012 и 2019 гг. и точки 1,94 ГэВ сканирований 2020 и 2021 гг. усреднялось с учетом ошибок.

Борновское сечение в используемой нами модели расширенной векторной доминантности состоит из суммы двух вкладов:

$$\sigma(E) = \frac{12\pi}{E^3} \left| \sqrt{\frac{B_{\rho''}}{P_f(m_{\rho''}^2)}} \frac{m_{\rho''}^{3/2} \Gamma_{\rho''}}{D_{\rho''}} + \sqrt{\frac{B_{\rho'''}}{P_f(m_{\rho'''}^2)}} \frac{m_{\rho'''}^{3/2} \Gamma_{\rho'''}}{D_{\rho'''}} e^{i\varphi} \right|^2 P_f(E),$$
(3)

где m_V и Γ_V — масса и ширина векторного мезона $V = \rho'', \rho''', \rho''' \equiv \rho(1700), \rho''' \equiv \rho(2150); f = 4\pi\eta$ — конечное состояние распада; $B_V = B(V \to e^+e^-)B(V \to f)$ — произведение относительных вероятностей распада резонанса V в e^+e^- и конечное состояние $f; D_V = E^2 - m_V^2 + iE\Gamma_V; P_f(E)$ — фактор фазового объема конечного состояния. Свободными параметрами аппроксимации являются $B_{\rho''}, m_{\rho''}, \Gamma_{\rho'''}, B_{\rho'''}, m_{\rho'''}, \Gamma_{\rho'''}$ и φ . Массы и ширины мезонов ρ'' и ρ''' притягиваются к их значениям из PDG [6] в пределах их ошибок (для последнего используются значения $M_{\rho'''} = (2045 \pm 10)$ МэВ, $\Gamma_{\rho'''} = (270 \pm 60)$ МэВ).

Рис. 4. Сечение процесса $e^+e^- \rightarrow \pi^+\pi^-2\pi^0\eta$, измеренное в данной работе (темные кружки со статистическими ошибками) и эксперименте BaBar [3] (светлые кружки). Линия — результат аппроксимации формулой (3)

Полученные значения борновского сечения вместе с аппроксимирующей кривой показаны на рис. 4. Здесь же показаны результаты измерений BaBar [3]. Видно, что ниже 1,9 ГэВ наши данные лежат систематически выше данных BaBar. При энергии же 1,975 ГэВ результат измерения BaBar в 1,6 раза больше нашего. При энергии E > 1,87 ГэВ наши данные имеют лучшую точность.

ЗАКЛЮЧЕНИЕ

В статье представлен анализ процесса $e^+e^- \to \pi^+\pi^-2\pi^0\eta$ по данным 2011, 2012, 2019–2021 гг., набранным в эксперименте с детектором СНД на e^+e^- -коллайдере ВЭПП-2000. Сечение этого процесса измерено в области энергии 1,55–2,00 ГэВ, где растет от 0 до 1,4 нб. При энергии 2 ГэВ оно составляет приблизительно 3 % от полного адронного сечения. Сечение хорошо описывается моделью векторной доминантности с резонансами $\rho(1700)$ и $\rho(2150)$. При энергии ниже 1,9 ГэВ наши данные лежат систематически выше данных ВаВаг. При энергии же 1,975 ГэВ результат измерения ВаВаг в 1,6 раза больше нашего. При энергии E > 1,87 ГэВ наши данные имеют лучшую точность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Romanov A. et al. // Proc. of PAC 2013. Pasadena, CA, USA, 2014. P. 14.
- Achasov M. N. et al. (SND Collab.) // Nucl. Instr. Meth. A. 2009. V. 598. P. 31; Aulchenko V. M. et al. // Ibid. P. 102; Barnyakov A. Yu. et al. // Ibid. P. 163; Aulchenko V. M. et al. // Ibid. P. 340.
- 3. Lees J. P. et al. (BaBar Collab.) // Phys. Rev. D. 2018. V. 98. P. 112015.
- 4. Korobov A. A., Eidelman S. I. // J. Phys. Conf. Ser. 2020. V. 1525. P. 012019.
- 5. Кураев Э. А., Фадин В. С. // ЯФ. 1985. Т. 41. С. 733; Кигаеv Е. А., Fadin V. S. // Sov. J. Nucl. Phys. 1985. V. 41. P. 466.
- Workman R. L. et al. (Particle Data Group) // Prog. Theor. Exp. Phys. 2022. V. 2022. P. 083C01; 2023 update.