ИЗМЕРЕНИЕ *А*-ЗАВИСИМОСТИ ЗАРЯДОВО-ОБМЕННОЙ РЕАКЦИИ (¹²C, ¹²B) И КВАЗИУПРУГОГО РАССЕЯНИЯ ИОНОВ УГЛЕРОДА ПРИ 300 МэВ/НУКЛОН

А. А. Куликовская^{*}, Б. М. Абрамов, С. А. Булычёв, И. А. Духовской, А. П. Крутенкова, В. В. Куликов, М. А. Мартемьянов, М. А. Мацюк

Национальный исследовательский центр «Курчатовский институт», Москва

Приведены результаты измерения A-зависимости зарядово-обменной реакции (12 С, 12 В) при фрагментации ядер углерода на четырех мишенях. Экспериментальные данные были получены на фрагмент-сепараторе ФРАГМ и ускорительном комплексе ТВН при энергии 300 МэВ/нуклон. Фрагменты реакции регистрировались под углом в 3,5° по отношению к падающему пучку. Проводится сравнение с A-зависимостью квазиупругого рассеяния ионов углерода на этих мишенях.

This paper presents the results of the *A*-dependence measurement of the chargeexchange reaction (12 C, 12 B) at the fragmentation of carbon nuclei on four different targets. Experimental data were obtained on the FRAGM fragment separator and the TWN accelerator complex at energy of 300 MeV/nucleon. Reaction fragments were detected at angle 3.5° with respect to the incident beam. A comparison with the *A* dependence of carbon ions quasi-elastic scattering on these targets is presented.

PACS: 25.70.Mn; 25.70.Pq

введение

Зарядово-обменные реакции интенсивно изучаются в физике тяжелых ионов. В области низких энергий они эффективно используются для получения изобар-аналоговых состояний ядер и изучения их свойств. При промежуточных энергиях данный тип реакций служит для изучения механизмов ядерных реакций. В случае, когда энергия возбуждения ниже порога рождения пионов, в так называемой квазиупругой области, эти реакции могут происходить либо только на протонах, либо только на нейтронах сталкивающихся ядер. Эта избирательность делает зарядово-обменные реакции потенциально эффективными для тестирования распределения нейтронов в ядрах. Присущая налетающим многонук-

^{*} E-mail: annkull316@mail.ru

лонным ядрам периферичность делает эти реакции чувствительными к распределению плотности нейтронов на периферии ядра-мишени — наиболее проблемной области структуры ядра. Для оценки этой чувствительности хорошо подходит измерение зависимостей сечений таких реакций от атомного номера ядра-мишени. С точки зрения эксперимента сечения зарядово-обменных реакций сравнительно малы, а выделение квазиупругой области требует высокого импульсного и углового разрешения.

В области промежуточных энергий измерения A-зависимости были получены для следующих зарядово-обменных реакций: (p, n) [1], $(t, {}^{3}\text{He})$ и (⁷Li, ⁷Be) [2], (${}^{12}\text{C}$, ${}^{12}\text{B}$) и (${}^{12}\text{C}$, ${}^{12}\text{N}$) [3], (${}^{112}\text{Sn}$, ${}^{112}\text{ln}$) и (${}^{112}\text{Sn}$, ${}^{112}\text{Sb}$) [4]. Однако первые три реакции были измерены только в неупругой области, а последние две, хотя и были измерены в квазиупругой области, но в соответствующих публикациях не отражены явно полученные результаты по A-зависимостям.

В эксперименте ФРАГМ впервые были проведены измерения квазиупругой реакции (¹²C, ¹²B) при энергии ионов углерода в 300 МэВ/нуклон на бериллиевой мишени [5, 6]. Также был осуществлен набор данных на нескольких ядерных мишенях, результаты которого будут представлены ниже.

ЭКСПЕРИМЕНТ

Эксперимент ФРАГМ проводился на тяжелоионном ускорительном комплексе ТВН (тераваттный накопитель) при фрагментации ядер углерода на внутренних мишенях ускорителя толщиной 50 мкм, изготовленных из ${}^9\text{Be}$, ${}^{27}\text{Al}$, ${}^{64}\text{Cu}$ и ${}^{181}\text{Ta}$. Фрагменты ядра углерода регистрировались под углом $(3,5\pm0,5)^\circ$ к пучку ионов в ускорителе с помощью двухступенчатого магнитооптического канала, где в каждом фокусе располагались сцинтилляционные детекторы для измерения ионизационных потерь и времени пролета. В первом фокусе был установлен сцинтилляционный годоскоп для измерения горизонтальной координаты регистрируемого фрагмента и уточнения его импульса. Для мониторирования интенсивности падающего пучка ионов использовался телескоп из трех сцинтилляционных счетчиков, направленный непосредственно на мишень ускорителя под углом 2° к падающему пучку. Более подробное описание установки ФРАГМ приведено в [7, 8]. Фрагменты идентифицировались на корреляционных распределениях амплитуды сигнала от времени пролета, где амплитуда функция заряда фрагмента, а время пролета — функция его массы. Анализ таких корреляционных распределений дает надежное разделение фрагментов от изотопов водорода до изотопов налетающего ядра углерода. Импульсные спектры фрагментов измерялись путем сканирования по жесткости магнитооптического канала с шагом $50-100 \text{ M}_{\odot}\text{B/c}$ [9].

АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Следует отметить, что по причине тяжелых фоновых условий и подавления образования основного состояния изотопа ¹²N под углом регистрации фрагментов установкой ФРАГМ сечение реакции (¹²C, ¹²N) не удалось измерить [5]. С другой стороны, была обнаружена реакция квазиупругого рассеяния ядер ¹²C, которая протекает как на нейтронах, так и на протонах ядра-мишени и идет с существенно большим сечением, чем в случае измеренной зарядово-обменной реакции (¹²C, ¹²B). Импульсные распределения этих изотопов достаточно узкие, и они полностью укладываются в импульсный захват годоскопа первого фокуса. Изотоп ¹²B регистрировался при жесткости канала 1,9 ГэВ/*с*, а ¹²С при 1,55 ГэВ/*с*.

В модельных расчетах значение полного сечения $\sigma(^{12}C + A)$ взаимодействия необходимо для вычисления сечения образования фрагментов. Это сечение вычислялось в модели LAQGSM [10], оно изменялось от 772,8 мб для ⁹Ве-мишени до 2731,3 мб для ¹⁸¹Та и хорошо согласовывалось с эмпирической параметризацией [11]. Сравнение этих результатов приведено на рис. 1, *а*. Видно, что полные сечения совпадают для ⁹Ве и расходятся всего на 14 % для ¹⁸¹Та. Относительные выходы фрагментов определялись по отношению числа зарегистрированных событий к показаниям монитора, которые затем нормировались на модельные расчеты выхода изотопов ⁴Не. Импульсное распределение ⁴Не измеряется в нашем эксперименте с высокой точностью при жесткостях канала от 1,1 до 2,0 ГэВ/*с* на каждой мишени, кроме того, импульсные спектры в моделировании и эксперименте находятся в хорошем согласии. Дифференциальное сечение рождения ⁴Не под углом в 3,5°, вычисленное в рамках модели QMD [12], в зависимости от атомной массы мишени приведено

Рис. 1. Полное сечение $\sigma(^{12}C + A)$ (*a*), вычисленное в рамках модели LAQGSM [10] и по формуле, приведенной в [11], и дифференциальное сечение выхода фрагмента ⁴He (δ) в зависимости от атомной массы мишени *A*, вычисленное в рамках модели QMD. Модельные данные описываются степенной функцией

на рис. 1, б вместе с аппроксимацией функцией, пропорциональной A^{α} . Полученный параметр $\alpha = 0,209$ хорошо соответствует периферичности образования ⁴Не. Для экспериментальных данных статистическая точность в определении этого параметра составляет 0,2%.

А-ЗАВИСИМОСТЬ ВЫХОДОВ ¹²В И ¹²С

На рис. 2 приведены дифференциальные сечения выходов 12 С и 12 В зависимости от атомного номера мишени A. Экспериментальные точки описываются степенной функцией A^{α} . Параметр α составляет для этих изотопов 0.38 ± 0.02 и 0.47 ± 0.11 соответственно. Большая величина α для выхода 12 В соответствует более быстрому росту числа нейтронов, чем нуклонов ядра с увеличением его массы, что является отражением того факта, что этот изотоп образуется только при взаимодействии с нейтроном мишени.

Можно сравнить параметр α и для других зарядово-обменных реакций. Для полных сечений неупругих реакций были получены следующие величины: (p, n) [1] при 1 ГэВ $\alpha = 0,53 \pm 0,01$; $(t, {}^{3}\text{He})$ [2] при 3 ГэВ/с/нуклон $\alpha = 0,32 \pm 0,04$ и (${}^{7}\text{Li}, {}^{7}\text{Be}$) $\alpha = 0,36 \pm 0,05$. Данные значения параметра α для работ [1, 2] были вычислены нами по табулированным данным. Переход от (p, n) к $(t, {}^{3}\text{He})$ и (${}^{7}\text{Li}, {}^{7}\text{Be}$) отражает большую периферичность более тяжелых ядер и хорошо соответствует нашим данным для квазиупругого рассеяния ионов углерода. Эти реакции не обладают избирательными свойствами по отношению к нейтронам и протонам ядра-мишени. Для A-зависимостей квазиупругих реакций (${}^{112}\text{Sn}, {}^{112}\text{In}$) и (${}^{112}\text{Sn}, {}^{112}\text{Sb}$) в [4] приводится только качественное указание на то, что параметр α и для для драги своих стака.

Сравнение с другими экспериментами здесь вряд ли возможно, так как простая степенная аппроксимация для такого тяжелого налетающего ядра выглядит проблематично. Можно надеяться, что более детальные

Рис. 2. Дифференциальные сечения выходов 12 С (*a*) и 12 В (*б*) в зависимости от атомной массы мишени *A*, измеренные в эксперименте ФРАГМ. Экспериментальные точки описываются степенной функцией

Рис. 3. Распределение относительного выхода ¹²С по номеру ячейки годоскопа, полученное на различных мишенях при жесткости канала 1,55 ГэВ/*с*. Уменьшение номера ячейки годоскопа соответствует увеличению импульса

результаты этого эксперимента по квазиупругим реакциям еще будут опубликованы, как это сделано для неупругой области [13]. Для квазиупругих зарядово-обменных реакций, где сечение вычислялось через усреднение по небольшому участку угловой зависимости вблизи 0°, $\alpha(^{12}\text{C}, ^{12}\text{B}) = 0.37 \pm 0.03$ и $\alpha(^{12}\text{C}, ^{12}\text{N}) = 0.165 \pm 0.023$ [3] при энергии углерода 950 МэВ/нуклон. Эти данные по А-зависимости были пересчитаны из модельно-зависимых данных [3], которые еще более убедительно демонстрировали различие чувствительности этих реакций к протонам и нейтронам. Однако в работе [3] физическая интерпретация этих данных откладывается до измерения угловых зависимостей этих реакций. Параметр α (¹²C, ¹²B) в нашем эксперименте заметно больше, хотя и измерен с большей ошибкой, что может быть связано с изменением угловой зависимости этой реакции при увеличении массы мишени в сторону менее резкого спада с углом рассеяния. К этому приводят как кулоновские эффекты, так и эффекты многократного рассеяния в ядерной среде. Прямым подтверждением такого эффекта является увеличение импульса ¹²С под углом 3,5° при увеличении массы мишени, что отчетливо видно на рис. 3.

ЗАКЛЮЧЕНИЕ

В статье представлены результаты эксперимента ФРАГМ по дифференциальным сечениям выходов изотопов ¹²В и ¹²С под углом 3,5° при фрагментации ядер углерода с энергией 300 МэВ/нуклон на четырех мишенях от ⁹Ве до ¹⁸¹Та. Эти реакции имеют разную чувствительность к распределениям протонов и нейтронов в ядрах мишеней, которая может быть оценена по измерению *А*-зависимости этих реакций в квазиупругой области. Проведенное сравнение с другими экспериментальными данными по зарядово-обменным реакциям показывает, что на этом пути имеются и серьезные трудности, обусловленные как малостью сечений этих реакций и их сильной угловой зависимостью, так и проблемами теоретического описания, особенно в случае тяжелых ядер.

Благодарности. Авторы благодарны персоналу ускорительного комплекса ТВН и техническому персоналу эксперимента ФРАГМ за большой вклад в проведение измерений.

Работа была выполнена в рамках госзадания НИЦ «Курчатовский институт».

СПИСОК ЛИТЕРАТУРЫ

- 1. Гареев Ф. А., Строковский Е. А., Ратис Ю. Л. Зарядово-обменные реакции с участием нуклонов и легких ионов при низких и промежуточных энергиях // ЭЧАЯ. 1994. Т. 25, № 4. С. 855–929.
- 2. Avramenko S.A. et al. Collective Excitation of Delta Isobar in the Charge Exchange Reactions (⁷Li, ⁷Be) and (³H, ³He) at a Momentum of 3-GeV/c/nucleon // JETP Lett. 1992. V. 55. P. 707–712.
- 3. Roy-Stephan M. Collective Excitations of Spin-Isospin Modes // Nucl. Phys. A. 1988. V. 488. P. 187-201.
- 4. Jossitt W., Vargas C. Charge Exchange and Knockout Reactions Induced by Sn Isotopes at Relativistic Energies. Univ. de Santiago de Compostela, 2014. https://igfae.usc.es/~genp/academic/academic/tesis/Tesis_Jossitt.pdf.
- 5. *Куликовская А. А. и др.* Поиск процессов перезарядки нуклонов в фрагментации ионов углерода при энергии 300 МэВ/нуклон // ЯФ. 2022. Т. 85, № 5. С. 339–346.
- 6. *Куликовская А.А. и др.* Процессы перезарядки при фрагментации ионов углерода при энергии 300 МэВ/нуклон: сравнение с моделями ион-ионных взаимодействий // Изв. РАН. Сер. физ. 2023. Т. 87, № 5. С. 1130–1134.
- 7. Абрамов Б. М. и др. Проявление кварковых кластеров в образовании кумулятивных протонов в эксперименте по фрагментации ионов углерода // Письма в ЖЭТФ. 2013. Т. 97, № 7–8. С. 509–513; arXiv:1304.6220 [nucl-ex].
- Абрамов Б. М. и др. Протоны от фрагментации ионов углерода при 0,3-2,0 ГэВ/нуклон: сравнения с моделями ион-ионных взаимодействий // ЯФ. 2015. Т. 78, № 5. С. 403-410.
- 9. *Abramov B. M. et al.* Ion Identification Using a FRAGM Magnetic Spectrometer // Phys. At. Nucl. 2022. V.85, No.9. P. 1541–1545.
- Mashnik S. G. Validation and Verification of MCNP6 against Intermediate and High-Energy Experimental Data and Results by Other Codes // Eur. Phys. J. Plus. 2011. V. 126. P. 49; arXiv:1011.4978 [nucl-th].
- 11. Sihver L. et al. Total Reaction and Partial Cross-Section Calculations in Proton Nucleus ($Z(t) \leq 26$) and Nucleus–Nucleus Reactions (Z(p) and $Z(t) \leq 26$) // Phys. Rev. C. 1993. V. 47. P. 1225–1236.
- Aichelin J. "Quantum" Molecular Dynamics: A Dynamical Microscopic n-Body Approach to Investigate Fragment Formation and the Nuclear Equation of State in Heavy Ion Collisions // Phys. Rep. 1991. V. 202. P. 233–360.
- Rodriguez-Sanchez J. L. et al. Systematic Study of △(1232) Resonance Excitations Using Single Isobaric Charge-Exchange Reactions Induced by Medium-Mass Projectiles of Sn // Phys. Rev. C. 2022. V. 106, No. 1. P. 014618; arXiv:2111.07641 [nucl-ex].