РАДИАЛЬНАЯ ЗАВИСИМОСТЬ ЭФФЕКТИВНОЙ МАССЫ НУКЛОНА И ДИПОЛЬНАЯ ПОЛЯРИЗУЕМОСТЬ ЯДРА

Н. Н. Арсеньев ^{1, *}, А. П. Северюхин ^{1, 2, **}, Д. Ю. Смольянников ^{1, ***}

¹ Объединенный институт ядерных исследований, Дубна ² Государственный университет «Дубна», Дубна, Россия

На примере изотопов ^{40,48}Са исследована зависимость электрической дипольной поляризуемости от эффективной массы нуклона на поверхности ядра. Распределение силы *E*1-переходов вычислялось в рамках приближения случайных фаз с функционалом плотности энергии типа Скирма. Показано, что радиальная зависимость приводит к незначительному изменению распределения силы *E*1-переходов. Величина дипольной поляризуемости не чувствительна к радиальной зависимости эффективной массы нуклона.

The dependence of the electric dipole polarizability on the nucleon effective mass on the nuclear surface was studied in the case of the 40,48 Ca isotopes. The strength distribution of the E1 transitions is calculated within the random phase approximation model based on the Skyrme-type nuclear energy density functional. It is shown that the radial dependence leads to a slight change in the E1 strength distributions. The dipole polarizability is not sensitive to the radial dependence of the nucleon effective mass.

PACS: 21.30.-x; 21.60.Jz; 27.40.+z

С развитием экспериментальных установок и детектирующей техники стали доступны для исследования не только стабильные, но и короткоживущие ядра, обладающие различными экзотическими свойствами: гало-ядра, пузырьковые ядра и ядра с аномальной протон-нейтронной асимметрией. Такие исследования позволяют идентифицировать возбужденные состояния не только в области низких энергий, но и в области гигантских резонансов (ГР). Исследования коллективных возбуждений атомных ядер, таких как ГР [1], позволяют пролить свет на особенности нуклон-нуклонных взаимодействий, ряд динамических характеристик ядра (например, сжимаемость), а также продвинуться в качественной

^{*} E-mail: arsenev@theor.jinr.ru

^{**} E-mail: sever@theor.jinr.ru

^{***} E-mail: dmitrijsmolannikov661@gmail.com

и количественной интерпретации непрерывного спектра [2]. Накопленный в настоящее время большой объем информации по гигантскому дипольному резонансу (ГДР) способствует расширению наших знаний о протон-нейтронном взаимодействии и позволяет определить величину электрической дипольной поляризуемости, которая является индикатором чувствительности к изовекторной части эффективного нуклон-нуклонного взаимодействия [3, 4]. Следует отметить, что асимптотическое значение дипольной поляризуемости позволяет не только определить величину нейтронной шубы, но и оценить значение энергии симметрии ядерной материи [5, 6]. Подобные исследования ограничены скудостью экспериментальных данных о величине дипольной поляризуемости.

Среди возможных экспериментальных инструментов по изучению ГДР с последующим извлечением дипольной поляризуемости можно выделить комптоновский источник монохроматических гамма-квантов, основанный на эффекте обратного комптоновского рассеяния фотонов на релятивистских электронах [7, 8]. Такие уникальные источники комптоновского излучения предоставляют неограниченные возможности для изучения дипольных состояний атомных ядер в широком диапазоне энергий возбуждения. Одним из наиболее успешных теоретических подходов является самосогласованный метод Хартри-Фока (ХФ) на базе функционала плотности энергии (ФПЭ) Скирма [9, 10]. Данный подход позволяет с хорошей точностью описывать характерные свойства атомного ядра: энергию связи, зарядовый радиус, энергии отрыва одного/двух нуклонов и спин-орбитальное расщепление [10]. Однако подходы, базирующиеся на ФПЭ Скирма, сталкиваются с принципиальной проблемой описания плотности одночастичных состояний вблизи поверхности Ферми. Как было показано в [11, 12], модификация радиальной зависимости эффективной массы нуклонов на поверхности ядра приводит к увеличению плотности одночастичных уровней вблизи поверхности Ферми. Такие изменения сказываются на свойствах коллективных возбуждений, например, положении ГДР. В настоящей работе на примере изотопов 40,48 Са исследовано влияние радиальной зависимости эффективной массы нуклона на распределение силы Е1-переходов и дипольную поляризуемость.

Начнем обсуждение с того, что запишем оригинальный функционал Скирма в следующем виде [10]:

$$\mathcal{H}_{\text{Sky}}(r) = \frac{\hbar^2}{2m} \tau_0 + \sum_{t=0,1} C_t^{\rho}(\rho_0) \rho_t^2 + C_t^{\Delta\rho} \rho_t \Delta\rho_t + C_t^{\tau} \rho_t \tau_t + \frac{1}{2} C_t^J J_t^2 + C_t^{\nabla J} \rho_t \nabla \cdot J_t, \quad (1)$$

где индекс t = 0, 1 обозначает изовекторную и изоскалярную части соответствующих нуклонных плотностей ρ (так, например, $\rho_0(r) = \rho_n(r) + \rho_p(r)$). Кинетическая τ и спиновая J плотности, а также явный вид параметров C_t^{ρ} , $C_t^{\Delta\rho}$, C_t^{τ} , C_t^J , $C_t^{\nabla J}$ и соотношения между ними определены в обзоре [10].

Хорошо известно, что около поверхности Ферми плотность одночастичных состояний, рассчитанных с использованием ФПЭ Скирма, отличается от экспериментальной [9]. Как было показано в [12, 13], плотность одночастичных состояний можно увеличить с помощью введения в ФПЭ Скирма (1) новых слагаемых, которые влияют на радиальную зависимость эффективной массы нуклонов вблизи поверхности ядра. Данные слагаемые вводятся в следующем виде (по работе [11]):

$$\mathcal{H} = \mathcal{H}_{\mathrm{Sky}} + \Delta \mathcal{H},\tag{2}$$

где

$$\Delta \mathcal{H} = C_0^{\tau(\nabla\rho)^2} \tau \left(\nabla\rho\right)^2 + C_0^{\rho^2(\nabla\rho)^2} \rho^2 \left(\nabla\rho\right)^2.$$
(3)

Следует отметить, что первое слагаемое в формуле (3) отвечает за изменения зависимости эффективной массы нуклонов на поверхности ядра. Чтобы оставить среднее поле близким к потенциалу, полученному с оригинальным ФПЭ Скирма, в выражение (3) было добавлено второе слагаемое, а между параметрами $C_0^{\tau(\nabla\rho)^2}$ и $C_0^{\rho^2(\nabla\rho)^2}$ установлено следующее соотношение [12]:

$$C_0^{\rho^2(\nabla\rho)^2} = (-10 \,\,\mathrm{фm}) \, C_0^{\tau(\nabla\rho)^2}. \tag{4}$$

В работе [13] показано, что в случае магических ядер ${}^{40.48}$ Са при $C_0^{\tau(\nabla\rho)^2} = -720 \text{ МэВ} \cdot \phi M^{10}$ достигается заметное улучшение описания плотности состояний у поверхности Ферми.

Набор параметров функционала (2) при больших значениях $C_0^{ au(
abla
ho)^2}$ потребует фитирования параметров функционала \mathcal{H}_{Sky} . В случае исследуемых в настоящей работе изотопов 40,48 Са при значении $C_0^{\tau(\nabla \rho)^2} = -720 \text{ МэВ} \cdot \phi \mathrm{M}^{10}$ для взаимодействия Скирма SLy4 [14] необходимо изменить параметр t_0 с -2488,91 до $-2517,18 \text{ МэВ} \cdot \phi \mathrm{M}^3$, при этом достигается описание энергии связи ядра. Рассмотрим влияние новых слагаемых в ФПЭ (2) на распределения нейтронного или протонного избытка в изотопах ^{40,48}Са. В качестве иллюстрации возьмем результаты, полученные с оригинальным ФПЭ Скирма SLy4. На рис. 1, а приведена разность нейтронного и протонного распределения в ядре ⁴⁰Ca, имеющего равное число нейтронов и протонов. Видно, что расхождение между расчетом и экспериментом незначительно, хотя коридор ошибок экспериментальных распределений, полученный из сравнений двух серий измерений [15], весьма заметный. В случае изотопа ⁴⁸Са (см. рис. 1, б) нейтронный избыток располагается на поверхности ядра и расчетное распределение весьма хорошо воспроизводит экспериментальное. Видно, что радиальная зависимость для ядра 40 Са на порядок меньше, чем в ядре 48 Са, и имеет совсем иную форму. Эта форма отражает, по-видимому, тот факт, что протоны в ядре несколько смещены к поверхности ядра вследствие кулоновского отталкивания [15]. На рис. 1 также показаны результаты ХФ-расчетов с функционалом (2). Видно, что рассчитан-

Рис. 1. Радиальная зависимость разности нейтронной и протонной плотностей в ядрах 40 Са (*a*) и 48 Са (*б*). Сплошные кривые — результаты расчетов по методу ХФ с оригинальным ФПЭ SLy4; штриховые — результаты ХФ-расчетов с функционалом (2), учитывающим радиальную зависимость эффективной массы нуклонов при $C_0^{\tau(\nabla \rho)^2} = -720 \text{ МэВ} \cdot \phi \text{м}^{10}$. Заштрихованная область — данные, полученные по теории Глаубера из экспериментов по рассеянию протонов с энергией 1 ГэВ [15]

ные разности нейтронных и протонных распределений обладают схожим с оригинальным ФПЭ SLy4 поведением как по величине, так и по форме.

Перейдем к обсуждению ГДР. Достаточно полное описание свойств ГДР может быть получено в рамках приближения случайных фаз (ПСФ) с самосогласованным средним полем, полученным на базе ФПЭ Скирма [2, 16]. Это позволяет проводить самосогласованные расчеты, в рамках которых и среднее поле, и остаточное взаимодействие получаются на основе одного и того же ФПЭ. Мы представляем частично-дырочное взаимодействие в форме, аналогичной силам Ландау–Мигдала, а матричные элементы остаточного взаимодействия можно представить в виде суммы N сепарабельных членов [17, 18]. Далее мы полагаем, что

основное состояние является фононным вакуумом $|0\rangle$, а возбужденные однофононные состояния генерируются действием оператора рождения фононов на вакуум $|i\rangle = Q^+_{\lambda\mu i}|0\rangle$. Диагонализовав гамильтониан в пространстве однофононных состояний $|i\rangle$, можно получить систему линейных уравнений, решив которую, найдем значения энергии (E_i) и фононные амплитуды возбужденных состояний (X^i, Y^i) . Сепарабельный вид остаточного взаимодействия позволяет свести систему линейных уравнений к секулярному уравнению. При этом вычисляется детерминант матрицы, размерность которой не зависит от размера конфигурационного пространства [17, 18]. Более детальное изложение используемой схемы расчетов ХФ-ПСФ в случае изотопов кальция можно найти в [19].

При изучении свойств ГДР в указанной схеме расчетов трансляционная инвариантность восстанавливалась введением эффективных нейтронных $e^n = -eZ/A$ и протонных $e^p = eN/A$ зарядов [20, 21]. Приведенная вероятность E1-переходов имеет вид

$$B(E1; \mathbf{0}_{gs}^{+} \to \mathbf{1}_{i}^{-}) = \left| e^{n} \langle i | \hat{M}^{n} | \mathbf{0} \rangle + e^{p} \langle i | \hat{M}^{p} | \mathbf{0} \rangle \right|^{2}, \tag{5}$$

где $\hat{M}^n = \sum_{i}^{N} r_i Y_{1\mu}(\vartheta_i, \varphi_i)$ и $\hat{M}^p = \sum_{i}^{Z} r_i Y_{1\mu}(\vartheta_i, \varphi_i); r_i, \vartheta_i, \varphi_i - сферические координаты$ *i*-го нуклона. Для определения электрической диполь-

ские координаты *i*-го нуклона. Для определения электрической дипольной поляризуемости α_D можно использовать следующее выражение:

$$\alpha_D = \frac{8\pi}{9} \sum_i \frac{B(E1; \mathbf{0}_{gs}^+ \to \mathbf{1}_i^-)}{E_{\mathbf{1}_i^-}}.$$
(6)

Обсудим сечение фотопоглощения на ядре ⁴⁰Са, которое представлено на рис. 2, а. Показано, что результаты ПСФ расчета на базе ФПЭ SLv4 близки к экспериментальным данным [22]. В этих расчетах тонкая структура ГДР выражена более резко, чем в экспериментальном сечении, и центральный пик выше экспериментального. С другой стороны, расчеты с функционалом (2), учитывающим радиальную зависимость эффективной массы нуклонов при $C_0^{\tau(\nabla \rho)^2} = -720 \text{ M}$ эВ·фм¹⁰, демонстрируют изменение в расчетном сечении фотопоглощения. В частности, увеличение плотности одночастичных уровней вблизи поверхности Ферми, вызванное радиальной зависимостью эффективной массы нуклона на поверхности ядра, приводит к сдвигу пика при энергии возбуждения 16,2 МэВ в область низких энергий на 700 кэВ. При этом сохраняется магнитуда данного пика. Для изотопа ⁴⁸Са введение новых слагаемых в ФПЭ дает заметное изменение в сечении (см. рис. 2, б). Видно, что в случае ФПЭ SLy4 в рассчитанном сечении доминирует пик при энергии возбуждения 19,2 МэВ, а введение новых слагаемых в ФПЭ приводит к фрагментации данного пика, что заметно улучшает описание сечения [23].

На рис. 2, *в* показана зависимость электрической дипольной поляризуемости от энергии возбуждения ядра ⁴⁰Са. Видно, что зависимость, по-

Сечение фотопоглощения на ядре ⁴⁰Са (*a*) и ⁴⁸Са (*b*). Сплошная линия – ПСФ-расчет с параметризацией = −720 МэВ · фм¹⁰. Точки — экспериментальные данные из работ [22, 23]. Зависимость электрической дипольной ФПЭ SLy4; штриховая — ПСФ-расчет с ФПЭ (2), учитывающим радиальную зависимость эффективной массы нуклона при лоляризуемости α_D от энергии возбуждения в ядре ⁴⁰Са (ε) и ⁴⁸Са (ε), рассчитанная с использованием ФПЭ SLy4 (сплошная линия) и ФПЭ (2), учитывающего радиальную зависимость эффективной массы нуклона (штриховая линия). Штрихпунктирными кривыми указан верхний и нижний экспериментальные пределы на величину α_D [24, 25] Рис. 2. $\int_{0}^{\tau} (\nabla \rho)^2$

лученная в ПСФ, качественно согласуется с экспериментальными данными [24] и выходит на асимптотику при энергии возбуждения 30-40 МэВ. Резкий подъем набегающей суммы наблюдается в интервале энергий возбуждения от 19 до 21 МэВ. Это указывает на то, что рассчитанное положение ГДР хорошо согласуется с экспериментальным пиком [22]. Поведение эффективной массы нуклона на поверхности ядра не влияет на асимптотическое значение α_D , а лишь приводит к изменению зависимости дипольной поляризуемости от энергии возбуждения ядра. В случае изотопа ⁴⁸Са также достигается хорошее описание поведения зависимости дипольной поляризуемости от энергии возбуждения (см. рис. 2, г). Однако видно, что асимптотическое значение, полученное с функционалом (2), слабо отличимо (менее чем на 6%) от значения $\alpha_D = 2,2 \,\, \phi {\rm M}^3$, вычисленного с оригинальным ФПЭ Скирма SLy4. Этот эффект является следствием небольшого увеличения плотности уровней, вызванного радиальной зависимостью эффективной массы нуклона на поверхности ядра, и требует дополнительных систематических исследований, выходящих за рамки настоящей работы.

В рамках приближения случайных фаз с силами Скирма для изотопов ^{40,48}Са исследованы распределения силы *E*1-переходов, а также зависимость электрической дипольной поляризуемости ядра от эффективной массы нуклона на поверхности ядра. Проведенный в настоящей работе анализ позволяет сделать вывод о том, что зависящая от радиуса ядра эффективная масса нуклона оказывает слабое влияние на распределения силы *E*1-переходов. Показано, что величина дипольной поляризуемости ядра не чувствительна к радиальной зависимости эффективной массы нуклона.

Благодарности. Авторы выражают благодарность Жерому Маргуерону за многолетнее сотрудничество. Предложенный им алгоритм фитирования параметров функционала типа Скирма помог значительно улучшить результаты расчетов.

Финансирование. Исследование было поддержано в рамках научной программы Национального центра физики и математики, направление № 6 «Ядерная и радиационная физика» (этап 2023–2025).

Конфликт интересов. Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Harakeh M. N., van der Woude A. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation. Oxford: Clarendon Press, 2001.
- Paar N., Vretenar D., Khan E., Colò G. Exotic Modes of Excitation in Atomic Nuclei far from Stability // Rep. Prog. Phys. 2007. V. 70. P. 691-793.
- 3. Bohigas O., Giai N. V., Vautherin D. Selfconsistent Description of the Static Nuclear Dipole Polarizability // Phys. Lett. B. 1981. V. 102. P. 105-108.

- Satuła W., Wyss R.A., Rajalski M. Global Properties of the Skyrme-Force-Induced Nuclear Symmetry Energy // Phys. Rev. C. 2006. V.74. P.011301(R).
- Roca-Maza X. et al. Neutron Skin Thickness from the Measured Electric Dipole Polarizability in ⁶⁸Ni, ¹²⁰Sn, and ²⁰⁸Pb // Phys. Rev. C. 2015. V.92. P.064304.
- Solonovich N. E., Arsenyev N. N., Severyukhin A. P. The Dipole Polarizability of the Doubly Magic Nuclei // Phys. Part. Nucl. Lett. 2022. V. 19. P. 473-476.
- Zilges A., Balabanski D.L., Isaak J., Pietralla N. Photonuclear Reactions From Basic Research to Applications // Prog. Part. Nucl. Phys. 2022. V. 122. P. 103903.
- 8. Григоренко Л. В. и др. Проект научной программы ИНОК комптоновского источника монохроматических гамма-квантов НЦФМ // Физмат. 2023. Т. 1, № 3-4. С. 123-264.
- Vautherin D., Brink D.M. Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei // Phys. Rev. C. 1972. V.5. P. 626-647.
- Bender M., Heenen P.-H., Reinhard P.-G. Self-Consistent Mean-Field Models for Nuclear Structure // Rev. Mod. Phys. 2003. V. 75. P. 121-180.
- Fantina A. F., Margueron J., Donati P., Pizzochero P. M. Nuclear Energy Functional with a Surface-Peaked Effective Mass: Global Properties // J. Phys. G: Nucl. Part. Phys. 2011. V. 38. P. 025101.
- Severyukhin A. P., Margueron J., Borzov I. N., Giai N. V. Sensitivity of β-Decay Rates to the Radial Dependence of the Nucleon Effective Mass // Phys. Rev. C. 2015. V. 91. P. 034322.
- Смольянников Д. Ю., Арсеньев Н. Н., Северюхин А. П. Радиальная зависимость эффективной массы нуклонов и свойства основного состояния магических ядер // Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия. 2025 (в печати).
- Chabanat E., Bonche P., Haensel P., Meyer J., Schaeffer R.A. Skyrme Parametrization from Subnuclear to Neutron Star Densities. Part II. Nuclei Far from Stabilities // Nucl. Phys. A. 1998. V. 635. P. 231–256.
- Инопин Е. В., Куприков В. И., Гончар В. Ю. Расчет распределений ядерной массы и нейтронов методом ХФ // ЯФ. 1977. Т. 26. С. 528-531.
- Terasaki J., Engel J., Bender M., Dobaczewski J., Nazarewicz W., Stoitsov M. Self-Consistent Description of Multipole Strength in Exotic Nuclei: Method // Phys. Rev. C. 2005. V. 71. P. 034310.
- Giai N. V., Stoyanov Ch., Voronov V. V. Finite Rank Approximation for Random Phase Approximation Calculations with Skyrme Interactions: An Application to Ar Isotopes // Phys. Rev. C. 1998. V. 57. P. 1204–1209.
- Severyukhin A. P., Voronov V. V., Giai N. V. Effects of the Particle–Particle Channel on Properties of Low-Lying Vibrational States // Phys. Rev. C. 2008. V. 77. P. 024322.
- Arsenyev N. N., Severyukhin A. P., Voronov V. V., Giai N. V. Influence of Complex Configurations on the Properties of the Pygmy Dipole Resonance in Neutron-Rich Ca Isotopes // Phys. Rev. C. 2017. V. 95. P. 054312.
- 20. Arsenyev N. N., Severyukhin A. P. Separabelized Skyrme Interaction and Characteristics of Giant Dipole Resonances // Phys. Part. Nucl. Lett. 2010. V. 7. P. 112–116.

- 21. Severyukhin A. P., Arsenyev N. N., Pietralla N. First Calculation of the $\gamma\gamma$ -Decay Width of a Nuclear 2_1^+ State: The Case of 48 Ca // Phys. Rev. C. 2021. V. 104. P. 024310.
- 22. Ahrens J. et al. Total Nuclear Photon Absorption Cross Sections for Some Light Elements // Nucl. Phys. A. 1975. V. 251. P. 479–492.
- O'Keefe G. J. et al. The Photonuclear Cross Sections of ⁴⁸Ca // Nucl. Phys. A. 1987. V. 469. P. 239-252.
- 24. Fearick R. W. et al. Electric Dipole Polarizability of ⁴⁰Ca // Phys. Rev. Res. 2023. V. 5. P. L022044.
- 25. *Birkhan J. et al.* Electric Dipole Polarizability of ⁴⁸Ca and Implications for the Neutron Skin // Phys. Rev. Lett. 2017. V. 118. P. 252501.