ИЗУЧЕНИЕ ОБРАЗОВАНИЯ $\phi \pi^0$ -СИСТЕМЫ В РЕАКЦИИ ПЕРЕЗАРЯДКИ 29-ГэВ ПИОННОГО ПУЧКА НА БЕРИЛЛИЕВОЙ МИШЕНИ УСТАНОВКИ ВЕС

В. Г. Готман¹, В. А. Дорофеев^{1,*}, Д. Р. Еремеев¹, А. М. Зайцев^{1,2}, А. В. Ивашин¹, И. А. Качаев¹, В. Ф. Константинов¹, В. И. Лисин¹, В. Д. Матвеев¹, Е. В. Назаров¹, А. Н. Плеханов¹, Д. И. Рябчиков¹, В. П. Сугоняев¹, М. С. Холоденко¹, Ю. А. Хохлов^{1,2}, А. А. Шумаков¹

¹ Институт физики высоких энергий им. А. А. Логунова Национального исследовательского центра «Курчатовский институт», Протвино, Россия

² Московский физико-технический институт (национальный исследовательский университет), Долгопрудный, Россия

Представлен статус изучения (2403 ± 98) событий π^- + Be $\rightarrow \phi \pi^0$ + A^* , полученных в экспозиции 2,5 · 10¹¹ π^- -мезонами с импульсом 29 ГэВ бериллиевой мишени установки ВЕС. Наблюдается образование $\phi \pi^0$ в векторном состоянии предпочтительно вместе с Δ (1232)-изобарой в процессе с преобладанием π -обмена. Спектр масс $\phi \pi^0$ имеет сложную форму.

Status of study of (2403 ± 98) events of the $\pi^- + \text{Be} \rightarrow \phi \pi^0 + A^*$ collected in exposition of the Be target of BEC setup by $2.5 \cdot 10^{11} \pi^-$ mesons with 29 GeV momentum is presented. The $\phi \pi^0$ production in vector state is observed preferably associated with the $\Delta(1232)$ isobar in a process with the π -exchange dominance. The $\phi \pi^0$ mass spectrum has complicated shape.

PACS: 14.40.Cs; 13.25.-k; 13.60.Le

введение

Изучается реакция перезарядки $\pi^- + \text{Be} \to \phi \pi^0 + A^*$, $\phi \to K^+ K^$ и $\pi^0 \to \gamma \gamma$, где A^* — возбужденное ядро или его остатки. Система $\phi \pi^0$ имеет изоспин I = 1 и, следовательно, состоит из $q\overline{qss}$ -кварков, где $q(\overline{q})$ -, *u*- или *d*-(анти)кварк. Соответственно, ожидается подавление по правилу Цвейга (OZI) [1–3] по сравнению с образованием $\omega \pi^0$ в реакции с π -пучком. Для набора квантовых чисел системы $\phi \pi^0$ наиболее

^{*} E-mail: Valery.Dorofeev@ihep.ru

вероятно образование состояний b_1 , ρ_3 и возбуждений ρ . В эксперименте «Лептон-Ф» [4] обнаружено узкое экзотическое состояние C(1480), нарушающее правило OZI в реакции перезарядки 32,5-ГэВ пионного пучка. В эксперименте E852 [5] не нашли C(1480) в спектре масс $M_{\phi\pi} < 1,75$ ГэВ в реакции перезарядки при 18 ГэВ. В последнее время $\phi\pi^0$ -система изучалась в экспериментах BaBar [6, 7], SND [8], BESIII [9] на небольшой статистике из-за малого сечения процесса рождения на e^+e^- -коллайдерах.

ОПИСАНИЕ УСТАНОВКИ

Установка ВЕС (рис. 1) — это комбинированный широкоапертурный магнитный спектрометр заряженных и нейтральных частиц с фиксированной мишенью 3. Магнитный спектрометр состоит из магнита 5, системы пропорцианальных камер 4 до магнита, двух дрейфовых камер 6 в магните и системы дрейфовых трубок 10 после магнита. Многоканальный черенковский счетчик 9 (МЧС) [10] предназначен для идентификации заряженных частиц. Фотоны регистрируются многоканальным электромагнитным калориметром 11 (ЭМК) [11] с радиатором счетчиков в виде набора чередующихся пластин из свинца и сцинтиллятора. Пучковая частица регистрируется и идентифицируется в пучковом спектрометре (1, 2). Для регистрации событий применяются триггеры:

- MWG: $S_1 S_2 S_3 \overline{A_{10}} \overline{A_{11}} \overline{K_1} \overline{K_2}$;
- MAIN: MWG · TargetVeto.

Триггер MWG формируется на основе информации от сцинтилляционных счетчиков. Счетчики $S_{1,2,3}$, $A_{10,11}$ расположены до мишени и опре-

Рис. 1. Установка ВЕС

деляют апертуру пучка, $K_{1,2}$ — после магнита и запрещают события с непровзаимодействовавшей частицей пучка. В триггере MAIN добавлен запрет охранной системы вокруг мишени событий с энергичными заряженными частицами, вылетающими вбок, а также с частицами и фотонами, летящими вперед под большими углами.

ДАННЫЕ И МЕТОД МОНТЕ-КАРЛО

Анализировались данные экспозиции 2,5 · 10¹¹ пучковых частиц без учета мертвого времени. Экспозиция состояла из 5 сеансов. Распределение количества набранных данных по сеансам представлено в таблице.

Распределение данных по сеансам и годам. В скобках — коэффициент подавления при записи

Триггер	run44 (2012)	run45 (2013)	run47 (2015)	run48 (2015)	run59 (2022)	Сумма
MAIN,10 ⁹	2,20	1,46	1,08	1,29	0,87	6,90
MWG,10 ⁸	0,15 (255)	0,10 (255)	1,50 (10)	1,90 (10)	1,58 (10)	5,23

Прохождение частиц через установку и процесс их регистрации моделировался программой, созданной на основе GEANT4 версии 10.05.р01. Параметры модели детекторов подбирались из сравнения откликов в известном физическом процессе, полученных методом Монте-Карло (МК) и в данных. Для настройки ЭМК, МЧС, вето-мишени использовались дифракционные реакции образования $\pi^{-2}\pi^{0}$, $\pi^{+2}\pi^{-}$, $K^{-K^{0}}(\pi^{+}\pi^{-})$. Для определения эффективностей и сравнения с данными были сгенерированы наборы событий образования на нуклонах $\phi\pi^{0}$ -системы в волне $J^{P}M^{\eta} = 1^{-0^{-}}$ с $\Delta(1232)$ и $\phi\rho^{-}$ в волне $J^{P}M^{\eta}LS = 2^{-0^{+}P2}$ с нуклоном для оценки фона, где J^{P} — полный момент и четность, M^{η} — проекция J на ось z и натуральность частицы обмена. Распределения по массе и по величине $t' = t - t_{\min}$ брались из результатов этого эксперимента, где t, t_{\min} — квадрат переданного четырехимпульса и его минимальное значение [12]. Процесс рождения $\phi\pi^{0}$ на ядре Ве представляется как сумма вкладов процессов на отдельных нуклонах.

ОТБОРЫ СОБЫТИЙ $\pi^- + \mathrm{Be} o K^+ K^- \pi^0 + A^*$

Первоначально проводилась реконструкция зарегистрированных событий, которая для каждого события включала нахождение траекторий пучовых и вторичных заряженных частиц в трековых детекторах пучкового и магнитного спектрометров, определение параметров треков, нахождение вершин взаимодействий, ассоциацию треков с сигналами в МЧС и ЭМК, нахождение и классификацию кластеров ячеек с энерговыделением в ЭМК и определение параметров фотонов. Для отбора событий $\pi^- + \text{Be} \to h^+ h^- \pi^0 + A^*$ из данных после реконструкции применялись следующие требования:

• флаг успешной реконструкции;

• метка триггера MAIN;

1 вершина и 1 пучковая частица, идентифицированная как π-мезон;

• *z*-координата вершины совпадает с геометрическим положением мишени;

• 2 противоположно заряженных трека в магнитном спектрометре;

• 2–3 фотона с $|m_{\gamma\gamma} - m_{\pi^0}| < 20$ МэВ, где $m_{\gamma\gamma} -$ дифотонная масса, $m_{\pi^0} -$ табличное значение массы π^0 -мезона. Энергия неспаренного фотона $E_{\gamma} < 0.5$ ГэВ;

• проекция импульса $h^+h^-\pi^0$ -системы на направление пучка P_{xL} . $26 \leqslant P_{xL} < 30$ ГэВ;

• отсутствие коротких треков, наблюдаемых только в трех соседних камерах, стоящих сразу за мишенью.

Для отбора событий с K^+K^- в конечном состоянии производилась идентификация заряженных частиц. Был применен амплитудный метод [10] с 4 гипотезами $\pi\pi$, πK , $K\pi$, KK. Критерием идентификации служило условие, что отношение второй по величине вероятности к максимальной $\alpha = \frac{P(\text{hyp})_{\text{next}}}{P(\text{hyp})_{\text{max}}} \leq 0,4$. С таким критерием вклад e, π в отобранные события является пренебрежимо малым. В спектре масс $K^+K^-\pi^0$ (рис. 2, a) наблюдаются плечо распада $f_1(1285)$ -мезона

Рис. 2. Спектры инвариантных масс: *a*) $K^+K^-\pi^0$; *b*) $K^+\pi^0$; *b*) $K^-\pi^0$; *c*) K^+K^-

и открытие порога K^*K около 1,4 ГэВ. В спектрах масс $K^+K^-\pi^0$ (рис. 2, *б*, *в*) виден пик распада K^* -мезона. В спектрах масс K^+K^- (рис. 2, *г*) наблюдается пик распада ϕ -мезона на большой фоновой подложке.

ВЫДЕЛЕНИЕ $\phi \pi^0$ -СИСТЕМЫ В СОБЫТИЯХ $K^+K^-\pi^0$ И ОЦЕНКА ФОНА

Для выделения сигнала $\phi\pi^0$ применялся интегральный метод вычитания фона под пиком ϕ -мезона (рис. 3). Для этого в спектре масс $K^+K^ M_{KK}$ были определены сигнальный (1,015 $\leq M_{KK} <$ 1,025 ГэВ) и фоновые интервалы слева от пика (1,000 $\leq M_{KK} <$ 1,010 ГэВ) и справа (1,030 $\leq M_{KK} <$ 1,040 ГэВ) (см. рис. 3). Распределение интересующей характеристики $\phi\pi^0$ получалось вычитанием оценки фона под пиком из распределения событий с M_{KK} из сигнального интервала. Оценкой фона являлась полусумма распределений для фоновых интервалов. Вычитание фона проводилось для каждого сеанса отдельно. Границы интервалов являлись общими для всех сеансов ввиду тождественности формы сигнала в пределах ошибки. После вычитания фона осталось (2403 ± 98) событий $\phi\pi^0$.

Источником фона в изучаемую реакцию может быть дифракционное рождение системы $\phi \pi^- \pi^0$ с потерей π^- . Полученные непоправленные на эффективность характеристики процессов образования и распада на $\phi \pi^- \pi^0$ представлены на рис. 4. МК события нормировались на число событий в спектре масс $\phi \pi^- \pi^0$ на рис. 4, *a*. В спектре масс $\phi \pi^0$ на рис. 4, *б* широкий бугор с максимумом в ~ 1,5 ГэВ. Система $\pi^- \pi^0$ образуется

Рис. 3. Спектр инвариантных масс K^+K^- для $K^+K^-\pi^0$ событий run44

Рис. 4 (цветной в электронной версии). Спектры инвариантных масс: а) $K^+K^-\pi^-\pi^0$; б) $K^+K^-\pi^0$; в) $\pi^-\pi^0$; г) -t'. Красным цветом показан МК

не только из распада ρ -мезона. Распределение по -t' (рис. 4, ε) имеет характерную для дифракционных процессов форму. События с потерянным π^- -мезоном из этого МК-набора $\phi\pi^-\pi^0$ были использованы для получения оценки вклада фона $\phi\pi^-\pi^0$ в $\phi\pi^0$. На рис. 5 видно, что этот фон мало влияет на форму спектра масс $\phi\pi^0$.

Рис. 5 (цветной в электронной версии). Оценка вклада фона (красный цвет) в спектр масс $\phi \pi^0$ (без данных run59)

СВОЙСТВА СОБЫТИЙ С $\phi \pi^0$

На рис.6 приведены распределения непоправленных на эффективность событий образования $\phi\pi^0$ -системы. Спектр масс $\phi\pi^0$ (рис. 6, *a*) имеет двугорбую структуру с пиками в районе ~ 1,5 и ~ 2,1 ГэВ. В спектрах масс $K^+K^-\pi^0 M_{K\pi}$ (рис. 6, *b*) наблюдаются широкие пики с максимумами около ~ 1 и ~ 1,4 ГэВ, которые близки к табличным значениям масс $K^*(892)$ - и $K^*_{0,2}(1430)$ -мезонов.

В формализме Земаха [13] амплитуда распада векторного мезона в состоянии $J^P M^\eta = 1^- 0^-$ на вектор и псевдоскаляр записывается в виде

$$A = P_{\pi^0} P_{K^-} \sin \Theta_{\pi^0} \sin \Theta_{CK^-} \sin (\phi_{CK^-} - \phi_{\pi^0}),$$

где P_{π^0} , Θ_{π^0} , ϕ_{π^0} — импульс π^0 в системе Готтфрида–Джексона $\phi\pi^0$, а P_{K^-} , Θ_{CK^-} , ϕ_{CK^-} — импульс K^- -мезона в канонической системе покоя K^+K^- .

На рис. 7 приведены угловые распределения в распаде $\phi \pi^0$ для непоправленных событий в сравнении с МК. Распределения для π^0 (рис. 7, *a*, *б*) и K^- (рис. 7, *в*, *г*) в системах координат Готтфрида–Джексона и канонической ϕ -мезона соответственно имеют одинаковый вид и хорошо описываются МК. Эффективности для углов, исключая полярный угол π^0 (рис. 7, *a*) с большей, чем данные точностью, постоянны во всем

Рис. 6 (цветной в электронной версии). Спектры инвариантных масс: *a*) $K^+K^-\pi^0$; *b*) $K^+\pi^0$; *b*) $K^-\pi^0$; *c*) -t'. Красным цветом показан MK

Рис. 7 (цветной в электронной версии). Распределения по: *a*) $\cos \Theta_{\pi^0}$; *б*) ϕ_{π^0}/π ; *в*) $\cos \Theta_{CK^-}$; *c*) ϕ_{CK^-}/π . Красным цветом показан МК

диапазоне масс. Соответственно, можно сделать вывод о доминировании векторного состояния в системе $\phi \pi^0$, которое рождается с $M^{\eta} = 0^-$.

На рис. 8, *а*, *б* приведены угловые распределения K^- в спиральной системе координат распада $\phi \to K^+K^-$ в сравнении с МК. Ортогональность импульса K^- импульсу ϕ -мезона означает параллельность орбитального момента, который определяет направление спина ϕ , направлению его импульса, т. е. спиральность ϕ -мезона равна ± 1 . Форма пика в распределении по P_{xL} (рис. 8, *в*) в целом описывается МК эксклюзивного процесса. Положение пика в распределении по квадрату недостающей массы MM^2 описывается МК с ассоциированным $\phi \pi^0$ -рождением $\Delta(1232)$ -изобары.

Форма спектра на рис. 6, а может быть результатом вкладов $\rho(1450)$ и $\rho(1700)$ в левый пик, а $\rho(2150)$ — в правый. Другим вариантом может быть интерференция $\rho(1900)$ и $\rho(2150)$ с ρ -мезоном. Также возможна нерезонансная природа, когда из рожденной K^*K -системы после перерассеивания с обменом K-мезоном образуется $\phi \pi^0$.

Исследуемая реакция может проходить с обменом в *t*-канале системой с квантовыми числами пиона или a_2 -мезона. Форма -t'-распределения для $\phi \pi^0$ (см. рис. 6, *e*), описанная экспонентой с наклоном (6,6 ± 0,4) ГэВ⁻², значительно отличается от таковой a_2 -обмена, полученной в данном эксперименте в реакции образования η -мезона и описываемой функцией (1 – *cgt'*) ехр(*ct'*), где $c = (7,8 \pm 0,1)$ ГэВ⁻² и

Рис. 8 (цветной в электронной версии). Распределения по: *a*) $\cos \Theta_{HK^-}$; *б*) ϕ_{HK^-}/π ; *в*) P_{xL} ; *г*) MM^2 . Красным цветом показан МК

 $g = 5,6 \pm 0,5$. Ввиду малости вклада дифракционного фона, который может имитировать π -обмен, можно сделать заключение о доминировании π -обмена. Изовекторные состояния только с $J^{PC} = 1^{--}, 3^{--} \dots$ могут образовываться π -пучком в π -обмене, что согласуется с независимым анализом угловых распределений.

СИСТЕМАТИЧЕСКИЕ ПОГРЕШНОСТИ

Для изучения систематических погрешностей изменялись параметры процедур, использованные в анализе, и налагались дополнительные требования.

• Применена другая процедура вычитания фона под ϕ -мезоном — фильтрация. В ней диапазон величины, для которой надо получить распределение событий $\phi \pi^0$, разбивается на интервалы. Для событий из каждого интервала строится спектр масс K^+K^- , который подгоняется суммой сигнала ϕ -мезона фиксированной формы и фона. Полученный набор чисел событий с ϕ -мезоном представляет искомое распределение.

• Проверена устойчивость процедур вычитания и фильтрации:

— сдвиг начала бинов на 0,03 ГэВ в вычитании и на 0,0025 МэВ в гистограмме M_{KK} для фильтрации;

расширение на 4 МэВ интервалов в вычитании;

— добавление $\pm \sigma$ к ширине сигнала ϕ -мезона в фильтрации.

• Исследована зависимость спектра масс $\phi\pi^0$ от порога и метода идентификации:

 $-\alpha = [0,2,0,4,0,6,0,8,1];$

— применен пороговый метод [10].

• Исследована зависимость спектра масс $\phi \pi^0$ от нижнего предела отбора по $P_{xL} = [26, 27, 27, 5, 28]$ ГэВ.

• Введены дополнительные требования:

— обрезание по -t' < 0,2 Гэ \dot{B}^2 ;

 отсутствие сигнала в сэндвичах из свинца и сцинтиллятора охранной системы мишени.

• Проведено сравнение со свойствами $\phi\pi^0$ -системы, образованной в K-пучке.

• Оценен фон от $\phi \pi^0 \pi^0$ и $\phi \pi^- \pi^0$ в виде фазового объема $\phi \pi \pi$ или $\phi \rho^-$.

• Выполнена оценка вклада $J^P M^\eta = 1^{-1+}$ волны, образованной в результате a_2 -обмена.

Форма распределений сохраняется в пределах статистических ошибок.

ЗАКЛЮЧЕНИЕ

Проводится изучение $\phi\pi^0$ -системы, образующейся в реакции перезарядки 29-ГэВ пионного пучка на Ве-мишени установки ВЕС, в данных, полученных в экспозиции интегральным потоком 2,5 · 10¹¹ пучковых частиц. Наблюдается (2403 ± 98) событий рождения $\phi\pi^0$ -системы в состоянии $J^P M^\eta = 1^{-0^-}$ в основном вместе с $\Delta(1232)$ -изобарой в процессе с доминированием π -обмена. Спектр масс имеет сложную двугорбую форму.

СПИСОК ЛИТЕРАТУРЫ

- 1. Okubo S. // Phys. Lett. 1963. V.5. P.165-168; doi: 10.1016/S0375-9601(63) 92548-9.
- 2. Zweig G. doi: 10.17181/CERN-TH-412.
- 3. *Iizuka J.* // Prog. Theor. Phys. Suppl. 1966. V. 37. P. 21–34; doi: 10.1143/ PTPS.37.21.
- 4. Bityukov S.I. et al. // Phys. Lett. B. 1987. V.88. P.383; doi: 10.1016/0370-2693(87)91402-X.
- Adams G.S. et al. (E852 Collab.) // Phys. Lett. B. 2001. V.516. P. 264–272; doi: 10.1016/S0370-2693(01)00951-0; arXiv:hep-ex/0107042 [hep-ex].
- Aubert B. et al. (BaBar Collab.) // Phys. Rev. D. 2008. V. 77. P. 092002; doi: 10.1103/PhysRevD.77.092002; arXiv:0710.4451 [hep-ex].
- 7. Lees J. P. et al. (BaBar Collab.) // Phys. Rev. D. 2017. V. 95, No.5. P. 052001; doi: 10.1103/PhysRevD.95.052001; arXiv:1701.08297 [hep-ex].
- 8. Achasov M. N. et al. (SND Collab.) // Eur. Phys. J. C. 2020. V. 80, No. 12. P. 1139; doi: 10.1140/epjc/s10052-020-08719-9; arXiv:2007.04527 [hep-ex].

- 9. Ablikim M. et al. (BESIII Collab.) // JHEP. 2022. P.045; doi: 10.1007/JHEP07(2022)045; arXiv:2202.06447 [hep-ex].
- 10. Kholodenko M. S. // J. Instrum. 2020. V. 15, No. 07. P. 07024.
- 11. Dorofeev V.A. et al. (VES Collab.) // Instrum. Exp. Tech. 2016. V.59, No.5. P.658-665.
- Workman R.L. et al. Review of Particle Physics // PTEP. 2022. V.083-01. P.745; https://doi.org/10.1093/ptep/ptac097.
- 13. Zemach C. // Phys. Rev. 1965. V.140. P.B97-B108; doi: 10.1103/PhysRev. 140.B97.