# ИЗУЧЕНИЕ РАСПАДА *Z*-БОЗОНА НА ЛЕПТОННУЮ ПАРУ И ФОТОН ПО ДАННЫМ С ДЕТЕКТОРА ATLAS НА БОЛЬШОМ АДРОННОМ КОЛЛАЙДЕРЕ

## А. Г. Харламов\*, Т. А. Харламова, А. С. Купич, В. Н. Жабин

Институт ядерной физики им. Г. И. Будкера СО РАН, Новосибирск, Россия

Представлено изучение распада Z-бозона на 2 лептона и фотон с рекордной точностью. Систематические неопределенности измерения дифференциальных распределений не превышают 0,6%. В целом предсказания последних версий современных генераторов PowHeg + PHOTOS, Sherpa 2.2.4 и ККМСhh хорошо описывают экспериментальные данные, в то же время небольшие отклонения присутствуют вблизи границ фазового объема:  $20 < M_{ll} < 45$  ГэВ,  $\Delta R_{l\gamma} \approx 2,5$ ,  $M_{l\gamma} \approx 80$  ГэВ. Значимость отклонения при  $M_{l\gamma} \approx 80$  ГэВ превышает  $3\sigma$ .

In this paper, we present the study of the *Z*-boson decay into two leptons and photon with world best accuracy. The systematic uncertainties for measured differential distributions do not exceed 0.6%. In general, the predictions of the latest versions of modern generators PowHeg + PHOTOS, Sherpa 2.2.4 and KKMChh describe the experimental data well. At the same time, small deviations are present near the phase volume boundaries:  $20 < M_{ll} < 45$  GeV,  $\Delta R_{l\gamma} \approx 2.5$ ,  $M_{l\gamma} \approx 80$  MeV. The significance of the deviation at  $M_{l\gamma} \approx 80$  GeV exceeds  $3\sigma$ .

PACS: 14.70.Hp; 12.15.-y; 12.15.Lk; 12.20.-m; 12.38.-t; 12.60.-I; 13.40.Ks

#### введение

Стандартная модель (СМ) физики частиц — прекрасно работающая теория, которая позволяет объяснить и предсказать практически все явления, наблюдаемые в экспериментах по физике высоких энергий [1]. Триумфом Стандартной модели было открытие Z- и W-бозонов с предсказанными массами [2, 3]. Открытие бозона Хиггса в 2012 г. на Большом адронном коллайдере стало завершающим кирпичиком в построении СМ [4]. Усилия физиков после открытия бозона Хиггса были перенесены на поиски новой физики — явлений за рамками Стандартной модели.

<sup>\*</sup> E-mail: A.G.Kharlamov@inp.nsk.su



Рис. 1. Распределение по инвариантной массе лептона и фотона в процессе  $pp \rightarrow Z + X \rightarrow 2l\gamma + X$  и его отношение к моделированию в древесном приближении. Линии на рисунке снизу — пример поиска резонансов, линии соответствуют резонансной формуле с массой  $M_W$  и шириной  $\Gamma_W$  для W-бозона, амплитуда резонанса определяется из аппроксимации. fltvis — линия с учетом разрешения детектора, fltrue — истинное распределение

Нашей группой проведен анализ процесса  $pp \rightarrow Z + X \rightarrow 2l\gamma + X$  на детекторе ATLAS. Измерено дифференциальное распределение по инвариантной массе лептона и фотона. Инвариантная масса лептона и фотона в наших условиях отбора распределена в интервале от 4 до 90 ГэВ, и основная статистика находится в диапазоне энергий 40–70 ГэВ (рис. 1).

Процесс распада  $Z \to 2l\gamma$  впервые изучался на коллайдере LEP в эксперименте OPAL [5], где в электрон-позитронных столкновениях в области энергии рождения Z-бозона было измерено распределение по энергии фотонов с порогом 100 МэВ и наблюдалось примерно 300 событий во всех трех каналах распада ( $Z \to e^+e^-\gamma$ ,  $Z \to \mu^+\mu^-\gamma$  и  $Z \to \tau^+\tau^-\gamma$ ).

Результатом эксперимента OPAL на LEP в данном канале стал верхний предел на относительную вероятность распада  $Z \rightarrow 2l\gamma$  в модели прямой вершины взаимодействия (рис. 2): Вг ( $Z \rightarrow 2l\gamma$ ) < 5,6 · 10<sup>-4</sup>.

Одной из важных задач является извлечение вероятности распада Вг  $(Z \rightarrow 2l\gamma)$  из экспериментально доступных распределений с использованием модели прямой вершины.

Изучение процесса  $Z \rightarrow 2l\gamma$  на Большом адронном коллайдере проводилось с помощью детектора CMS [6], и точность измерений составила около 5%. Помимо распределения по поперечному импульсу фотонов CMS измерил также распределение по эффективному углу,  $\Delta R_{l\gamma}$ , между лептоном и фотоном.

Выполненное нами измерение на детекторе ATLAS [7] имеет сравнительно высокую точность: средняя систематическая неопределенность составляет 0,6%. В эксперименте ATLAS было отобрано примерно по 30 000 событий в каждом из каналов распада Z-бозона (а именно — мюонном и электронном, распад на  $\tau$ -лептоны не исследовался). Таким образом, современные экспериментальные данные имеют точность на порядок лучше, чем измерения на LEP.



Рис. 2. Прямая вершина взаимодействия для процесса  $Z \rightarrow 2 l \gamma$ .  $f_{V/A}$  — константа взаимодействия с векторной/аксиальной частью тока

Теоретическое описание распадов Z-бозона намного опередило экспериментальные возможности, доступные на LEP [8-13]. Расчеты для Большого адронного коллайдера отличаются тем, что в начальном состоянии имеются сильно взаимодействующие частицы и становятся важны поправки квантовой хромодинамики (КХД). При этом излучение из начального состояния не играет уже столь важной роли, как в е+е-столкновениях. В работе [12] было показано, что поправки на излучение в конечном состоянии для процессов распада Z-бозона могут быть отделены от поправок КХД в начальном состоянии. Для описания поправок КЭД в конечном состоянии существуют несколько специализированных программ: PHOTOS [13-16], SANC [17] и PHOTONS++ [18]. Все три программы активно используются для моделирования процессов на LHC. Программа PHOTONS++ является частью генератора Sherpa и использует подход YFS [19] для учета инфракрасных расходимостей для излучения в конечном состоянии. PHOTOS использует собственный подход к ресуммированию и экспоненцированию [14]. Программа SANC содержит поправки КЭД и электрослабые поправки в следующем за главным приближении (NLO). В версии программы ККМС-hh присутствует процесс Дрелла-Яна  $pp \to Z \to ll$  [20] и электрослабые поправки реализованы с помощью того же программного кода, что и в SANC.

Для описания проведенных измерений оказались важны петлевые поправки. Например, на рис. 3, *а* видно значительное отклонение в распределении по инвариантной массе лептона и фотона от предсказания генератора событий Sherpa 1.4  $ME(Z \rightarrow ll\gamma)$  в ведущем приближении (так называемое древесное приближение). Для описания данных были использованы Монте-Карло генераторы событий, использующие расчет квантовой электродинамики (КЭД) в однопетлевом приближении PowHeg + PHOTOS и Sherpa 2.2, которые заметно лучше описывают экспериментальные данные (рис. 3,  $\delta$ ).



Рис. 3. Отношение распределения по инвариантной массе лептона и фотона в процессе  $pp \to Z + X \to 2l\gamma + X$  к предсказаниям моделирования в древесном приближении (LO) (*a*) и моделирования в следующем за главным приближении (NLO) (*b*)

В основном результаты измерения согласуются с предсказаниями имеющихся генераторов PowHeg + PHOTOS и Sherpa 2.2.4, но в некоторых областях на краях фазового пространства наблюдаются существенные отклонения. Например, если нарисовать зарядовую асимметрию между комбинациями инвариантных масс лептона с зарядом «плюс» и фотона,  $l^+\gamma$ , и лептона с зарядом «минус» и фотона,  $l^-\gamma$ , то при инвариантной массе лептона и фотона, равной массе W-бозона, наблюдается ненулевая асимметрия: локальное отклонение превышает 4 стандартных отклонения (рис. 4).



Рис. 4. Зарядовая асимметрия в процессе  $pp \to Z + X \to 2l\gamma + X$ , приведенная к одному фазовому объему для электронов и мюонов, число экспериментальных событий было поделено на число событий в моделировании [21]

Основной идеей анализа было измерение распределения по инвариантной массе лептона и фотона. Данная масса равна массе виртуального лептона, участвующего в процессе, и пробегает значения от 0 до  $M_Z$ . Дифференциальное сечение по массе лептона и фотона содержит информацию о зависимости формфакторов вершины взаимодействия Z-бозона с лептонами от инвариантной массы одного из лептонов. Зарядовая асимметрия, построенная из двух зарядовых комбинаций массы лептона и фотона, позволяет извлечь бегущий синус Вайнберга. Существуют модели новой физики, вклад которых растет с ростом инвариантной массы лептона и фотона и обращается в нуль при нулевой массе лептона и фотона [22].

### ЭКСПЕРИМЕНТ ATLAS, ОТБОР СОБЫТИЙ И ОЦЕНКА ФОНА

Детектор ATLAS [23] — универсальный магнитный детектор, расположен на Большом адронном коллайдере. Основной особенностью детектора является наличие азимутального магнитного поля в мюонной системе [24], что позволяет измерять импульс мюонов по отклонению траектории.

Отбор событий  $pp \rightarrow Z + X \rightarrow 2l\gamma + X$  проводился в несколько этапов. Предварительно отбирались события, прошедшие процедуру контроля данных на соответствие рабочему состоянию детектора, и требовалось наличие хотя бы одной первичной вершины с тремя и более треками. В событии должен был сработать хотя бы один однолептонный или двухлептонный триггер. Однолептонные триггеры имели наименьший порог по поперечному импульсу  $p_T > 24 \ \Gamma$ эВ, а двухлептонные триггеры требовали наличия двух лептонов с поперечным импульсом  $p_T > 12-13 \ \Gamma$ эВ.

Для отбора событий процесса  $Z \to 2l\gamma$  необходимо наличие в событии не менее двух лептонов одного типа и противоположного знака, а также одного фотона. Требовалось, чтобы фотоны прошли жесткие идентификационные отборы (tight) [28], а электроны — мягкий отбор (loose). При этом выбирался фотон с максимальным поперечным импульсом  $p_T$ , а при наличии более двух лептонов выбиралась комбинация, ближайшая по инвариантной массе трех частиц к массе Z-бозона. Дополнительный лептон присутствовал всего в 2% событий. Наиболее энергичный лептон должен был иметь поперечный импульс  $p_T > 25$  ГэВ, второй лептон  $p_T > 10$  ГэВ. Фотоны отбирались с поперечным импульсом  $p_T > 15$  ГэВ.

Затем накладывались условия отбора на инвариантные массы двух лептонов и всех трех частиц. Ограничение на инвариантную массу двух лептонов  $20 < M_{ll} < 80$  ГэВ, которое хорошо подавляет фон Z + jets. На массу всех трех частиц накладывалось условие  $80 < M_{ll\gamma} < 100$  ГэВ. Более подробно с условиями отбора можно ознакомиться в табл. 1.

| Условие отбора                     | $Z \to e^+ e^- \gamma$                                                                                                                                                                                                                      | $Z 	o \mu^+ \mu^- \gamma$                                                                                                                                                     |  |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Предварительные<br>условия отбора  | В событии сработал хотя бы один триггер.<br>Триггер сработал по отобранным в анализ частицам.<br>Применены списки хороших заходов.<br>Удалены все события с порчей данных.<br>Найдена реконструированная вершина с тремя<br>и более треками |                                                                                                                                                                               |  |
| Отборы<br>на фотон                 | Фотон с наибольшим $p_T(\gamma) > 15$ ГэВ.<br>Пройдена строгая идентификация (tight).<br>$ \eta(\gamma)  < 2,37$ , исключая $1,37 <  \eta(\gamma)  < 1,52$ ;<br>$\delta R(\gamma, l) > 0,4$ ; изоляция topoEtcone40( $\gamma$ ) < 4 ГэВ     |                                                                                                                                                                               |  |
| Отборы<br>на лептоны               | $p_T(e) > 10$ ГэВ;<br>$ \eta(e)  < 2,47.$<br>Пройдена слабая идентифи-<br>кация $e$ .<br>Удалены электроны, найден-<br>ные, как мюоны.<br>Изоляция<br>topoEtcone40 $(e)/E_t < 0,3$                                                          | $p_T(\mu) > 10$ ГэВ;<br>$ \eta(\mu)  < 2,7.$<br>Мюоны идентифицированы<br>мюонной системой или ка-<br>лориметром.<br>Изоляция<br>topoEtcone40( $\mu$ )/ $E_t < 0,2$           |  |
| Отборы<br>на инвариантные<br>массы | Не менее одного фотона<br>и двух электронов с проти-<br>воположным знаком.<br>$\max (p_{T1}, p_{T2}) > 25$ ГэВ;<br>45 < M(ee) < 80 ГэВ;<br>$80 < M(ee\gamma) < 100$ ГэВ                                                                     | Не менее одного фотона<br>и двух мюонов с противопо-<br>ложным знаком.<br>$\max (p_{T1}, p_{T2}) > 25$ ГэВ;<br>$45 < M(\mu\mu) < 80$ ГэВ;<br>$80 < M(\mu\mu\gamma) < 100$ ГэВ |  |

Таблица 1. Условия отбора для процесса  $pp \to Z + X \to 2l\gamma + X$ 

После наложения условий отбора основной фон Z + jets был сильно подавлен, и доминирующим оказался фон от рождения пары топкварк-антикварк (рис. 5). Также небольшой вклад вносят фоновые процессы WZ,  $W\gamma$  и  $\tau\tau\gamma$ . Всего было отобрано 30 571 событие  $Z \to e^+e^-\gamma$ , из них (810 ± 100) событий фона и 34 948 событий  $Z \to \mu^+\mu^-\gamma$ , из них (790 ± 100) событий фона.

Для более точной оценки фона мы использовали два метода: аппроксимацию распределения по  $M_{ll\gamma}$  суммой распределений эффекта и фона и так называемый ABCD-метод — двумерный вариант sideband-метода. Оценки, полученные обоими методами, согласуются между собой (см. рис. 5).



Рис. 5. Распределение по инвариантной массе положительно заряженного лептона и фотона. Показан вклад основных фоновых процессов, оцененный по экспериментальным данным, в сравнении с оценкой по моделированию методом Монте-Карло отдельных фоновых процессов. Оценка фоновых процессов по данным производилась подгонкой методом максимального правдоподобия и ABCD-методом [21]

Основным считался метод аппроксимации распределения по инвариантной массе трех частиц. Распределение по  $M_{ll\gamma}$  аппроксимировалось в каждом бине по интересующей нас переменной, например, по массе лептона и фотона,  $M_{l\gamma}$ . Форма распределений сигнала и фона фиксировалась из моделирования. Для распределения фона по  $M_{ll\gamma}$  были изучены различные варианты формы: форма из моделирования, форма распределения из данных для неизолированных слабо идентифицированных фотонов (loose not isolated), форма из данных для неизолированных средне идентифицированных фотонов (medium not isolated) и полиномы различной степени. Результаты вычитания фона с разными формами согласуются между собой. Аппроксимация распределения по  $M_{ll\gamma}$  производилась в более широком диапазоне  $60 < M_{ll\gamma} < 120$  ГэВ с последующей интерполяцией в сигнальную область.

Результаты измерений сравнивались с предсказаниями генераторов PowHeg, Pythia8 [25] + PHOTOS [26], Sherpa 2.2.4 [27] и ККМСhh [20]. Сравнение проводилось на так называемом первичном (truth) уровне: использовались параметры частиц из генератора без моделирования отклика детектора. При этом применялись результаты измерений после процедуры обратной свертки (unfolding): были введены поправки на аппаратные эффекты в данных так, чтобы привести их к истинным значениям (уровню truth). В генераторе Sherpa 2.2.4 точность расчета сечений рождения Z-бозона соответствует однопетлевому приближению для эффектов как квантовой хромодинамики, так и квантовой электродинамики. Моделирование ККМСhh эквивалентно моделированию PHOTOS в своей квантово-электродинамической части. При этом оно включает как однопетлевые электрослабые поправки, так и излучение из начального состояния (ISR) и интерференцию между излучением в начальном и конечном состояниях (IFI).

## ДИФФЕРЕНЦИАЛЬНЫЕ РАСПРЕДЕЛЕНИЯ И ИНТЕРПРЕТАЦИИ

Из измеренных дифференциальных распределений были восстановлены *истинные* распределения с учетом условий проведения эксперимента методом обратной свертки [29]. Для этого использовался итерационный байесовский метод, реализованный в программе RooUnfold [30]. Эта процедура позволяет исключить влияние детекторных эффектов и миграций из бина в бин, обусловленных дискретизацией распределений. Использование истинных распределений вместо измеренных позволяет сравнивать измерения, выполненные в различных экспериментах. Источники систематических неопределенностей перечислены в табл. 2.

Для проведения количественного сравнения согласия измеренных распределений с предсказаниями Стандартной модели был использован критерий хи-квадрат ( $\chi^2$ ). Для каждого генератора было вычислено значение  $\chi^2$  с учетом полной матрицы ошибок, и затем рассчитан уровень

Таблица 2. Основные источники систематических неопределенностей измеренных нормированных дифференциальных сечений. Приведенные значения соответствуют большей части области определения используемых кинематических переменных

| Параметр                                                                                                                                            | Источник неопределенности    |                                     |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------|--|--|--|--|
| r · · r                                                                                                                                             | Канал $Z \to e e \gamma$     | Канал $Z  ightarrow \mu \mu \gamma$ |  |  |  |  |
| Экспериментальные                                                                                                                                   |                              |                                     |  |  |  |  |
| Калибровка энергии и импульса,<br>разрешение, %<br>Эффективность регистрации, %<br>Обратная сверка (unfolding), %<br>Вычитание фоновых процессов, % | $0,2 \\ 0,3 \\ < 0,1 \\ 0,3$ | $0,2 \\ 0,3 \\ < 0,1 \\ 0,3$        |  |  |  |  |
| Теоретические                                                                                                                                       |                              |                                     |  |  |  |  |
| Партонные функции распределения, %<br>Изменение масштаба КХД, %<br>Моделирование эффектов КХД, %                                                    | < 0,1<br>0,1<br>0,3          | < 0,1<br>0,10<br>0,3                |  |  |  |  |
| Bcero, %                                                                                                                                            | 0,6                          | 0,6                                 |  |  |  |  |

значимости (p-value) согласия предсказаний генератора с экспериментальными данными. Результаты вычисления вероятности представлены в табл. 3 и 4.

Четыре из шести измеренных распределений с отбором  $M_{ll} > 20$  ГэВ имеют уровень значимости согласия с предсказанием хотя бы одного генератора выше 0,28%, что соответствует отсутствию разницы величиной

Таблица 3. Значение  $\chi^2$  с учетом полной матрицы ошибок и вероятность согласия предсказаний Стандартной модели с экспериментальными данными для фазового объема с условием  $M_{ll} > 20$  ГэВ

| Генератор, канал                   | $M_{l+\gamma}$     |         | $\Delta R_{l\gamma}$ |       | $P_T^{\gamma}$     |         |
|------------------------------------|--------------------|---------|----------------------|-------|--------------------|---------|
| reneparop, Ranasi                  | $X^2/\mathrm{ndf}$ | Prob    | $X^2/\mathrm{ndf}$   | Prob  | $X^2/\mathrm{ndf}$ | Prob    |
| Sherpa 2.2                         |                    |         |                      |       |                    |         |
| $Z \rightarrow e^+ e^- \gamma$     | 78,0/41            | 4,4e-04 | 15,4/22              | 0,84  | 19,9/16            | 0,23    |
| PowHeg + PHOTOS                    |                    |         |                      |       |                    |         |
| $Z \to e^+ e^- \gamma$             | 70,8/41            | 2,6e-03 | 29,7/22              | 0,126 | 15,7/16            | 0,48    |
| KKMChh                             |                    |         |                      |       |                    |         |
| $Z \to e^+ e^- \gamma$             | 101,3/41           | 5,2e-07 | 17,8/22              | 0,72  | 19,7/16            | 0,23    |
| Sherpa 2.2                         |                    |         |                      |       |                    |         |
| $Z \rightarrow \mu + \mu^- \gamma$ | 46,3/41            | 0,26    | 23,2/22              | 0,39  | 59,5/16            | 6,3e-07 |
| PowHeg + PHOTOS                    |                    |         |                      |       |                    |         |
| $Z \to \mu + \mu^- \gamma$         | 44,1/41            | 0,34    | 23,1/22              | 0,40  | 37,8/16            | 1,6e-03 |
| KKMChh                             |                    |         |                      |       |                    |         |
| $Z \to \mu + \mu^- \gamma$         | 44,8/41            | 0,31    | 20,3/22              | 0,57  | 57,9/16            | 1,2e-06 |

Tаблица~4.Значение  $\chi^2$  с учетом полной матрицы ошибок и вероятность согласия предсказаний Стандартной модели с экспериментальными данными для фазового объема с условием  $M_{ll}>45~{\rm ГэB}$ 

| Генератор, канал                   | $M_{l+\gamma}$     |         | $\Delta R_{l\gamma}$ |         | $P_T^{\gamma}$     |         |
|------------------------------------|--------------------|---------|----------------------|---------|--------------------|---------|
|                                    | $X^2/\mathrm{ndf}$ | Prob    | $X^2/\mathrm{ndf}$   | Prob    | $X^2/\mathrm{ndf}$ | Prob    |
| Sherpa 1.4 (LO)                    |                    |         |                      |         |                    |         |
| $Z \to e^+ e^- \gamma$             | 112,96/41          | 1,2e-08 | 47,01/12             | 4,6e-06 | 29,42/16           | 0,02    |
| Sherpa 2.2                         |                    |         |                      |         |                    |         |
| $Z \rightarrow e^+ e^- \gamma$     | 87,71/41           | 3,0e-05 | 24,51/12             | 0,02    | 25,29/16           | 0,06    |
| PowHeg + PHOTOS                    |                    |         |                      |         |                    |         |
| $Z \to e^+ e^- \gamma$             | 66,37/41           | 7,3e-03 | 49,22/12             | 1,9e-06 | 16,91/16           | 0,39    |
| Sherpa 1.4 (LO)                    |                    |         |                      |         |                    |         |
| $Z \rightarrow \mu + \mu^- \gamma$ | 109,04/41          | 4,3e-08 | 98,25/12             | 1,2e-15 | 49,71/16           | 2,5e-05 |
| Sherpa 2.2                         |                    |         |                      |         |                    |         |
| $Z \to \mu + \mu^- \gamma$         | 45,42/41           | 0,29    | 12,38/12             | 0,42    | 47,73/16           | 5,2e-05 |
| PowHeg + PHOTOS                    |                    |         |                      |         |                    |         |
| $Z \to \mu + \mu^- \gamma$         | 44,80/41           | 0,32    | 14,12/12             | 0,29    | 32,96/16           | 7,5e-03 |

больше трех стандартных отклонений ( $3\sigma$ ). Распределение по инвариантной массе положительного лептона и фотона для канала с электронами и распределение по поперечному импульсу фотона для канала с мюонами имеют вероятности 0,26 и 0,16 % для PowHeg + PHOTOS соответственно, что эквивалентно отклонению в  $3\sigma$ .

Для тех же распределений с отбором  $M_{ll} > 45$  ГэВ и генератора РоwHeg + PHOTOS вероятность согласия улучшается и составляет 0,73 и 0,75% соответственно. При отборе  $M_{ll} > 45$  ГэВ все распределения описываются хотя бы одним генератором с отклонением менее  $3\sigma$ . Тем не менее  $\chi^2$ , деленный на число степеней свободы, меньше единицы присутствует только для распределения  $\Delta R_{l\gamma}$  в электронном канале с  $M_{ll} > 20$  ГэВ для генератора Sherpa 2.2. То есть, несмотря на хорошее описание в целом, поведение  $\chi^2$  не является полностью статистическим, что может указывать на наличие отклонений от предсказания Стандартной модели на уровне порядка точности измерения.

В работе [31] мы проанализировали отклонения в данных от предсказаний Sherpa 2.2 и PowHeg + PHOTOS с помощью метода эффективного лагранжиана. К предсказаниям указанных генераторов добавлялся вклад эффективного взаимодействия Z-бозона с двумя лептонами и фотоном (прямая вершина). Величина дополнительного вклада определялась методом максимального правдоподобия. Значимость добавки прямой вершины оказалась равной 5 стандартным отклонениям для PowHeg + PHOTOS и 4,7 стандартным отклонениям для Sherpa 2.2, причем модель PowHeg + PHOTOS + прямая вершина имела наименьший  $\chi^2$ , и, следовательно, лучше всего описывает дан-

ные. Также из аппроксимации данных суммой древесного приближения СМ и прямой вершины были определены вероятности распада *Z*-бозона на два лептона и фотон: Br  $(Z \to e^+e^-\gamma) = (3,81 \pm 0,53) \cdot 10^{-5}$ , Br  $(Z \to \mu^+\mu^-\gamma) = (3,99 \pm 0,47) \cdot 10^{-5}$ .

#### ЗАКЛЮЧЕНИЕ

При изучении процесса  $pp \to Z + X \to 2l\gamma + X$  были с высокой точностью измерены дифференциальные распределения по поперечному импульсу фотонов, минимальному углу между лептоном и фотоном ( $\Delta R_{l\gamma}$ ) и инвариантной массе лептона и фотона. Статистическая точность измерения составила 1–2% при систематической неопределенности 0,6%.

Измеренные распределения в целом близки к предсказаниям Стандартной модели, реализованным с помощью современных Монте-Карло генераторов: Sherpa 2.2, PowHeg + PHOTOS и KKMChh. Следует отметить, что предсказания, выполненные в древесном приближении квантовой электродинамики (LO QED), значительно отклоняются от экспериментальных результатов. Поскольку экспериментальные данные лучше согласуются с предсказаниями в однопетлевом приближении квантовой электродинамики, то можно сделать вывод о чувствительности измеренных распределений к петлевым поправкам. Максимальное отклонение на рис. 3, *а* составляет 15–20% и находится в области масс 35–45 ГэВ, т. е. величина петлевых поправок в данном фазовом объеме может достигать 20%. Более детальный анализ показал [31] наличие значимого вклада прямой вершины взаимодействия *Z*-бозона с двумя лептонами и фотоном.

Перечислим основные результаты нашей работы.

1. С высокой точностью измерены дифференциальные распределения по  $M_{l\pm\gamma}$ ,  $\Delta R_{l\gamma}$ ,  $p_T^{\gamma}$ . Средняя систематическая неопределенность 0,6%. Показано, что для описания этих распределений важны однопетлевые поправки.

2. Результаты близки к предсказаниям последних версий современных генераторов PowHeg + Pythia8 + PHOTOS, Sherpa 2.2.4 и KKMChh. Небольшие отклонения в данных от предсказаний генераторов PowHeg + + Pythia8 + PHOTOS, Sherpa 2.2.4 и KKMChh присутствуют вблизи границ фазового объема:  $20 < M_{ll} < 45$  ГэВ,  $\Delta R_{l\gamma} \approx 2.5$ ,  $M_{l\gamma} \approx 80$  ГэВ.

3. Установлено, что добавление вклада эффективной вершины к предсказаниям генераторов PowHeg + PHOTOS и Sherpa 2.2 является статистически значимым на уровне достоверности 5 стандартных отклонений и 4,7 стандартных отклонения соответственно. Извлечен вклад прямой вершины взаимодействия Z-бозона с двумя лептонами и фотоном и интерпретирован как вероятность соответствующего распада.

4. Впервые наблюдался процесс  $Z \rightarrow 2l2\gamma$ , дифференциальные распределения для него согласуются с древесным приближением, и полное сечение совпадает с предсказанием Sherpa 2.2.4. Финансирование. Работа поддержана Российским научным фондом (проект № 23-22-00193).

**Конфликт интересов.** Авторы заявляют, что у них нет конфликта интересов.

#### СПИСОК ЛИТЕРАТУРЫ

- 1. Quigg Ch. // Ann. Rev. Nucl. Part. Sci. 2009. V. 59. P. 505-555.
- 2. Arnison G. et al. (UA1 Collab.) // Phys. Lett. B. 1983. V. 122. P. 103.
- 3. Banner M. et al. (UA2 Collab.) // Ibid. P. 476.
- 4. Aad G. et al. // Phys. Lett. B. 2012. V. 716. P. 1–29; Chatrchyan S. et al. // Phys. Lett. B. 2012. V. 716. P. 30.
- 5. Acton P.D. et al. // Phys. Lett. B. 1991. V. 273. P. 338-354.
- 6. Khachatryan V. et al. // Phys. Rev. D. 2015. V. 91. P. 092012.
- 7. ATLAS Collab. Study of  $Z \rightarrow ll\gamma$  Decays at  $\sqrt{s} = 8$  TeV with the ATLAS Detector // Eur. Phys. J. C. 2024. V. 84. P. 195.
- Report of the Working Group on Precision Calculations for the Z Resonance. CERN 95-03. 1995; https://cds.cern.ch/record/280836/files/CERN-95-03.pdf.
- 9. Высоцкий М.И., Новиков В.А., Окунь Л.Б., Розанов А.Н. // УФН. 1996. Т. 166, № 5.
- 10. Novikov V.A. et al. // Rep. Prog. Phys. 1999. V.62. P.1275-1332.
- 11. Bardin D. Y., Passarino G. The Standard Model in the Making: Precision Study of the Electroweak Interactions. Intern. Ser. of Monogr. on Physics. Oxford: Clarendon, 1999. P. 104.
- 12. Arbuzov A. B., Sadykov R. R., Was Z. QED Bremsstrahlung in Decays of Electroweak Bosons // Eur. Phys. J. C. 2013. V. 73. P. 2625.
- Barberio E., van Eijk B., Was Z. // Comput. Phys. Commun. 1991. V. 66. P. 115–128.
- 14. Barberio E., Was Z. // Comput. Phys. Commun. 1994. V.79. P.291-308.
- 15. Golonka P., Was Z. // Eur. Phys. J. C. 2006. V. 45. P. 97-107.
- 16. Davidson N., Przedzinski T., Was Z. arXiv:1011.0937 [hep-ph].
- Andonov A., Arbuzov A., Bardin D., Bondarenko S., Christova P. et al. // Comput. Phys. Commun. 2006. V. 174. P. 481–517.
- Schoenherr M., Krauss F. // JHEP. 2008. V.12. P.018; arXiv:0810.5071v2 [hep-ph].
- 19. Yennie D. R., Frautschi S. C., Suura H. The Infrared Divergence Phenomena and High-Energy Processes // Ann. Phys. 1961. V. 13. P. 379-452.
- 20. Yost S., Ward B. F. L. arXiv:1606.09032 [hep-ph].
- 21. ATLAS Collab. Study of  $Z \rightarrow ll\gamma$  Decays at  $\sqrt{s} = 8$  TeV with the ATLAS Detector. https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-05/.
- 22. Bruss D., Nachtmann O., Overmann P. // Eur. Phys. J. C. 1998. V. 1. P. 191.
- ATLAS Collab. The ATLAS Experiment at the CERN Large Hadron Collider // J. Instrum. 2008. V. 3. P. S08003.
- 24. ATLAS Collab. // Eur. Phys. J. C. 2010. V. 70. P. 875-916.
- 25. Sjöstrand T. et al. // Comput. Phys. Commun. 2008. V. 178, No. 11. P. 852-867.
- 26. Davidson N. et al. // Comput. Phys. Commun. 2016. V. 199. P. 86-101.

- 27. Bothmann E. et al. // SciPost Phys. 2019. V.7. P.034.
- ATLAS Collab. Measurement of the Photon Identification Efficiencies with the ATLAS Detector Using LHC Run-1 Data // Eur. Phys. J. C. 2016. V. 76. P. 666; arXiv:1606.01813 [hep-ex].
- 29. Богомолов Ю. В. и др. // УФН. 2023. Т. 193. С. 669-685.
- 30. *Adye T.* Unfolding Algorithms and Tests Using RooUnfold. 2011. P.313; arXiv:1105.1160.
- Харламов А. Г., Харламова Т. А., Жабин В. Н., Купич А. С. Вклад прямой вершины взаимодействия в процессе Z → l<sup>+</sup>l<sup>-</sup> γ // Письма в ЭЧАЯ. 2024. Т. 21, № 4(255). С. 838.