ИЗМЕРЕНИЕ МАСС НЕЙТРАЛЬНОГО И ЗАРЯЖЕННОГО *D*-МЕЗОНОВ С ДЕТЕКТОРОМ КЕДР

В. В. Анашин¹, О. В. Анчугов¹, А. В. Андрианов¹, К. В. Астрелина¹, В. М. Аульченко^{1,2}, Е. М. Балдин^{1,2}, Г. Н. Баранов^{1,3}, А. К. Барладян¹, А. Ю. Барняков^{1,3}, М. Ю. Барняков¹, И. Ю. Басок¹, А. М. Батраков¹, О. В. Беликов¹, Д. Е. Беркаев¹, Е. А. Бехтенев^{1,2}, А. Е. Блинов^{1,2}, В. Е. Блинов^{1,2,3}, М. Ф. Блинов¹, А. В. Бобров^{1,2}, В. С. Бобровников^{1,2}, А. В. Богомягков^{1,2}, Д. Ю. Болховитянов¹, А. Е. Бондарь^{1,2}, А. Р. Бузыкаев^{1,2}, 4 И Воробъев¹ В. В. Гамбарян¹ П. Н. Григорьев^{1,2,3} А. И. Воробьев¹, В. В. Гамбарян¹, Д. Н. Григорьев^{1,2,3}, В. Л. Дорохов^{1,2}, Ф. А. Еманов¹, В. Н. Жилич^{1,2}, А. А. Жуков¹, В. В. Жуланов^{1,2}, А. Н. Журавлев^{1,2}, Д. А. Зубков¹, В. В. Каминский^{1,2}, С. Е. Карнаев^{1,2}, Г. В. Карпов¹, С. В. Карпов¹, К. Ю. Карюкина^{1,3}. 1. В. Карпов¹, С. В. Карпов¹, К. Ю. Карюкина^{1,0}, П. В. Касьяненко^{1,3}, А. А. Катцин¹, Д. П. Каштанкин^{1,2}, В. А. Киселев^{1,2}, С. А. Кононов^{1,2}, Е. А. Кравченко^{1,2}, А. А. Краснов^{1,2}, В. Н. Кудрявцев^{1,2}, В. Ф. Куликов^{1,2}, И. А. Куянов¹, Д. А. Кыштымов¹, Е. Б. Левичев^{1,3}, П. В. Логачев¹, Д. А. Максимов^{1,2}, В. М. Малышев¹, Т. В. Мальцев¹, Ю. И. Мальцева¹, А. Л. Масленников^{1,2}, О. И. Мешков^{1,2}, С. И. Мишнев^{1,2}, И. А. Морозов¹, И. И. Морозов^{1,2}, С. А. Никитин¹, Д. А. Никифоров¹ И. И. Морозов^{1,2}, С. А. Пикитин¹, Д. А. Пикифоров¹, И. Б. Николаев^{1,2}, И. В. Овтин^{1,2,*}, И. Н. Окунев^{1,2}, С. Б. Орешкин¹, А. А. Осипов^{1,2}, А. В. Павленко¹, С. В. Пелеганчук^{1,2}, К. Г. Петрухин¹, П. А. Пиминов^{1,2}, С. Г. Пивоваров^{1,3}, Н. А. Подгорнов^{1,2}, А. О. Полуэктов¹, В. Г. Присекин^{1,2}, О. Л. Резанова^{1,2}, А. А. Рубан^{1,2}, Г. А. Савинов¹, Е. А. Симонов^{1,2}, С. В. Синяткин^{1,2}, А. Н. Скринский¹, А. В. Соколов^{1,2}, Е. В. Старостина^{1,2}, Д. П. Суханов^{1,2}, А. М. Сухарев^{1,2}, А. А. Талышев^{1,2},

^{*} E-mail: I.V.Ovtin@inp.nsk.su

В. А. Таюрский¹, В. И. Тельнов^{1,2}, Ю. А. Тихонов^{1,2}, К. Ю. Тодышев^{1,2}, А. Г. Трибендис¹, Г. М. Тумайкин¹, Ю. В. Усов¹, Т. А. Харламова^{1,2}, П. Б. Чеблаков^{1,2}, А. Г. Шамов^{1,2}, Б. А. Шварц^{1,2}, Д. А. Шведов^{1,2}, Л. И. Шехтман^{1,2}

¹ Институт ядерной физики им. Г. И. Будкера СО РАН, Новосибирск, Россия ² Новосибирский государственный университет, Новосибирск, Россия ³ Новосибирский государственный технический университет, Новосибирск, Россия

Представлен предварительный результат эксперимента КЕДР/ВЭПП-4М (ИЯФ СО РАН, Новосибирск) по измерению масс нейтрального и заряженного *D*-мезонов:

 $M_{D^0} = (1865,100 \pm 0,210(\text{стат.}) \pm 0,039(\text{сист.}))$ МэВ, $M_{D^+} = (1869,560 \pm 0,288(\text{стат.}) \pm 0,090(\text{сист.}))$ МэВ.

A preliminary result of the KEDR/VEPP-4M experiment (BINP SB RAS, Novosibirsk) devoted to measuring the masses of the neutral and charged *D*-mesons is presented:

 $M_{D^0} = (1865.100 \pm 0.210 (\text{stat.}) \pm 0.039 (\text{syst.})) \text{ MeV},$ $M_{D^+} = (1869.560 \pm 0.288 (\text{stat.}) \pm 0.090 (\text{syst.})) \text{ MeV}.$

PACS: 14.40.Lb

введение

Нейтральные и заряженные D-мезоны являются основными состояниями в семействе мезонов с открытым чармом. Измерение их масс задает основные реперы в шкале масс для более тяжелых возбужденных состояний. Масса D-мезона важна для определения порога рождения DD^* , а также для понимания природы χ_{c1} (3872) (X(3872)) [1].

Среднемировое значение массы D^0 -мезона в таблицах PDG за 2023 г. составляет $M_{D^0} = (1864,84 \pm 0,05)$ МэВ [2]. В 2014 г. выполнено наиболее точное измерение массы D^0 с использованием данных эксперимента CLEO в распаде $D^0 \rightarrow K^- 2\pi^+\pi^-$ [3]. Измеренное значение составляет $M_{D^0} = (1864,845 \pm 0,025 \pm 0,057)$ МэВ. Другие, менее точные, измерения были выполнены в экспериментах BaBar (2013 г.) [4], LHCb (2013 г.) [5], CLEO (2007 г.) [6] и КЕДР (2010 г.) [7]. Среднемировое значение массы D^+ -мезона составляет $M_{D^+} = (1869,5 \pm 0,4)$ МэВ. Результат эксперимента КЕДР (2010 г.) $M_{D^+} = (1869,53 \pm 0,49 \pm 0,20)$ МэВ по прямому измерению массы заряженного D-мезона остается наиболее точным до настоящего времени [7].

Эксперименты с универсальным магнитным детектором КЕДР проводятся на e^-e^+ -коллайдере ВЭПП-4М при энергии в системе центра масс от 2 до 11 ГэВ [8]. В измерении масс *D*-мезонов с детектором КЕДР

неопределенность калибровки энергии пучков пренебрежимо мала благодаря точному измерению энергии методом резонансной деполяризации. Основная неопределенность результатов измерений связана с ограниченной экспериментальной статистикой, поэтому, для улучшения точности нашего предыдущего результата КЕДР (2010 г.), был проведен новый набор данных.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ И МОДЕЛИРОВАНИЕ

В данной работе использовались экспериментальные данные с интегральной светимостью 4,4 пб⁻¹, записанные детектором КЕДР в 2004 г. и 2016–2017 гг. в пике $\psi(3770)$. В 2004 г. было набрано 0,9 пб⁻¹, и по этим данным получен наш предыдущий результат, представленный в таблице PDG. В этом результате неопределенность, связанная с поправкой на излучение в начальном состоянии (ISR — Initial State Corrections), преобладает в общей систематической ошибке и определяется точностью зависимости сечения $\sigma(e^+e^- \to D\overline{D})$ от энергии. В настоящее время коллаборация BES-III выполнила более точные измерения энергетической зависимости сечения $\sigma(e^+e^- \to D\overline{D})$ [9, 10], поэтому было решено переобработать эти данные. В 2016–2017 гг., после ремонта и обновления детектора КЕДР, были набраны новые данные с интегралом светимости 3,5 пб⁻¹.

Для моделирования эксперимента использовалась программа моделирования работы детектора КЕДР КЕDRSIM [8]. Моделирование сигнальных и фоновых событий выполнялось с использованием пакета JETSET 7.4 [11]. Радиационные поправки в начальном состоянии моделировались с помощью пакета RADCOR [12], основанном на работе Кураева и Фадина [13]. Радиационные поправки в конечном состоянии (FSR — Final State Corrections) моделировались с помощью пакета PHOTOS [14]. При моделировании фона от распадов $e^+e^- \rightarrow D\overline{D}$ сигнальный процесс подавлялся в таблице распадов JETSET 7.4. Комбинаторный фон от событий континуума моделировался как $e^+e^- \rightarrow q\overline{q}$ (q = u, d, s).

2. МЕТОД ИЗМЕРЕНИЯ

Масса *D*-мезонов измеряется в процессе $e^+e^- \rightarrow \psi(3770) \rightarrow D\overline{D}$ с реконструкцией одного из *D*-мезонов. Для реконструкции D^0 -мезона выбран распад $K^-\pi^+$ (Br = $(3,95 \pm 0,03)$ %), а D^+ реконструируется в конечном состоянии $K^-\pi^+\pi^+$ (Br = $(9,38 \pm 0,16)$ %). Для увеличения статистики набор данных проводился в максимуме резонанса $\psi(3770)$. При этом импульс *D*-мезонов от распада $\psi(3770) \rightarrow D\overline{D}$ составляет $p_D = 260$ МэВ/с.

Инвариантная масса D (или beam-constrained mass) вычисляется как

$$M_{\rm bc} = \sqrt{E_{\rm beam}^2 - \left(\sum_i \vec{p_i}\right)^2},\tag{1}$$

где $\vec{p_i}$ — импульсы продуктов распада D-мезона; $E_{\rm beam}$ — энергия пучка, которая в ходе эксперимента определялась с точностью порядка 10 кэВ с помощью метода резонансной деполяризации. Здесь мы воспользовались тем, что в распаде $\psi(3770)$ рождаются два D-мезона с одинаковой массой, и, следовательно, их энергия равна $E_{\rm beam}$ (с точностью до радиационных поправок). Такая замена позволяет значительно улучшить точность реконструкции массы D-мезона по сравнению с вычислением энергии из импульсов продуктов распада. Точность вычисления M_D в одном событии равна

$$\sigma^2(M_D) = \frac{\sigma_W^2}{4} + \left(\frac{p_D}{M_D}\right)^2 \sigma_{p_D}^2 = \frac{\sigma_W^2}{4} + 0.02\sigma_{p_D}^2, \tag{2}$$

где σ_W — энергетический разброс; σ_{p_D} — импульсное разрешение. Вклад импульсного разрешения в точность измерения массы значительно подавлен из-за малости импульса D-мезона по сравнению с его массой.

Для реконструкции D-мезонов отбирались события с $M_{\rm bc}$ в районе массы D. Вторая переменная, которая использовалась для выделения событий распада D, — это разность энергий D-мезона и пучка:

$$\Delta E = \sum_{i} \sqrt{(m_i^2 + p_i^2)} - E_{\text{beam}}.$$
(3)

Еще одной переменной, которая использовалась для отделения событий эффекта от фона при анализе массы D^0 -мезона, является $\triangle |p|$ — разность абсолютных значений импульсов двух треков, характеризующая угол разлета продуктов распада D^0 -мезона относительно направления его движения.

Для событий распада D-мезонов должно быть $\Delta E \simeq 0$. В анализе отбираются события в достаточно широкой области $1700 < M_{
m bc} < 1900$ МэВ и $|\Delta E| < 300$ МэВ. Подгонка данных производится с помощью метода максимального правдоподобия без разбиения. Функция правдоподобия имеет следующий вид:

$$-2\log \mathcal{L}(\alpha) = -2\sum_{i=0}^{N} \log p(v_i|\alpha) + 2N\log \int p(v|\alpha) \, dv, \tag{4}$$

где N — число событий; $v = (M_{\rm bc}, \Delta E, \Delta |p|)$ — переменная, характеризующая одно событие; $p(v|\alpha)$ — плотность распределения событий (PDF), зависящая от параметров подгонки $\alpha = (M_D, \langle \Delta E \rangle, b_{uds}, b_{DD})$:

$$p(v|\alpha) = p_{\text{sig}}(v|M_D, \langle \Delta E \rangle) + b_{uds} p_{uds}(v) + b_{DD} p_{DD}(v).$$
(5)

Здесь $p_{\rm sig}$ — функция распределения сигнальных событий, зависящая от параметров M_D (интересующая нас масса D) и $\langle \Delta E \rangle$ (центральное значение ΔE), p_{uds} и p_{DD} — функции распределения фоновых событий из процессов $e^+e^- \rightarrow q\overline{q}~(q=u,d,s)$ и $e^+e^- \rightarrow D\overline{D}$ соответственно, b_{uds} и b_{DD} — их относительные величины. Формы распределений $p_{\rm sig}, p_{uds}$ и p_{DD} извлекаются из моделирования. Сигнальное распределений по $M_{\rm bc}$ и ΔE с корреляцией, а в случае реконструкции D^0 -мезона с квадратичной зависимостью разрешения $M_{\rm bc}$ от $\Delta |p|$. Распределение ядра является асимметричным в $M_{\rm bc}$.

3. УСЛОВИЯ ОТБОРА СОБЫТИЙ

На первой стадии анализа отбирались многоадронные события, содержащие по крайней мере три трека, близких к точке взаимодействия и формирующих общую вершину в пределах |z| < 12 см и r < 0,5 см. Для процесса $D^0 \to K^- \pi^+$ перебирались пары противоположно заряженных треков, а для процесса $D^+ \to K^- \pi^+ \pi^+$ рассматривались комбинации из трех треков, у которых заряд одного из треков противоположен зарядам двух других треков. Далее отбирались треки с поперечным импульсом в диапазоне от 100 до 2000 МэВ/с и с числом измерений в трековой системе (хитов) $N_{\rm hits} \ge 24$. Для подавления фоновых e^+e^- -событий требовалось, чтобы выделившаяся в калориметре энергия привязанного к треку кластера была менее 1000 МэВ. Космический фон подавлялся требованием, чтобы суммарное количество хитов во втором и третьем слоях мюонных камер было не более одного. Для улучшения разрешения по $M_{\rm bc}$ выполняется кинематическая подгонка с условием $\Delta E = 0$, для чего минимизируется функция

$$\chi^2 = \sum_i \frac{(p'_i - p_i)^2}{\sigma_{p_i}^2},$$
(6)

где p_i и σ_{p_i} — измеренные импульсы и их ошибки, полученные из подгонки треков; p'_i — поправленные импульсы.

Для правильного вычисления величины $\Delta E = E_{\pi} + E_K - E_{\text{beam}}$ нужна π/K -идентификация. Для распада $D^+ \to K^- \pi^+ \pi^+$ проблема, связанная с вычислением ΔE , менее существенна, так как знак заряда каона противоположен знакам зарядов пионов и энергии всех частиц для сигнальных событий восстанавливаются однозначно.

Для треков с импульсами меньше 600 МэВ/c применяется идентификация с помощью времяпролетной системы (TOF) и ионизационных потерь dE/dx в дрейфовой камере, а для треков с импульсами больше 450 МэВ/c — идентификация с помощью аэрогелевых черенковских счетчиков (АЧС). Средний импульс треков для распада $D^0 \rightarrow K^- \pi^+$ составляет 800 МэВ/c, и в этом случае используется система АЧС для

Параметр	2004 г.	2016-2017 гг.
<i>М</i> _{<i>D</i>} , МэВ	$1865,\!305\pm0,\!300$	$1864{,}910 \pm 0{,}294$
$\langle \Delta E \rangle$, M ₃ B	$-1,8 \pm 7,5$	$1,0\pm5,8$
Количество событий эффекта	$92,\!43\pm9,\!83$	$154,39 \pm 12,22$
Количество событий континуума	$24,\!27\pm2,\!58$	$23{,}20\pm1{,}84$
Количество событий фона $D\overline{D}$	$6{,}09\pm0{,}65$	$9{,}62\pm0{,}76$

Таблица 1. Результаты подгонки для распада $D^0 \to K^- \pi^+$

Таблица 2. Результаты подгонки для распада $D^+ \to K^- \pi^+ \pi^+$

Параметр	2004 г.	2016-2017 гг.
<i>М</i> _D , МэВ	$1869{,}472 \pm 0{,}488$	$1869{,}60 \pm 0{,}357$
$\langle \Delta E \rangle$, MəB	$0,4\pm5,4$	$-0,3\pm4,5$
Количество событий эффекта	$117,\!08 \pm 12,\!90$	$203,\!48 \pm 16,\!88$
Количество событий континуума	$64{,}08 \pm 7{,}06$	$113,\!84\pm9,\!45$
Количество событий фона $D\overline{D}$	$13{,}50\pm1{,}488$	$30,\!32\pm2,\!52$

идентификации. Средний импульс треков для распада $D^+ \to K^- \pi^+ \pi^+$ составляет 500 МэВ/*c*, и в этом случае для идентификации используются все три метода.

При отборе событий по системе ТОГ используется следующее требование ко времени пролета кандидата в каоны: $\Delta T_{\text{TOF}} = T_{\text{TOF}} - T_K(p_K) > -0,8$ нс, где $T_K(p_K)$ — ожидаемое время пролета каона с импульсом p_K , а T_{TOF} — измеренное время пролета. При отборе событий по dE/dx требуется, чтобы вероятность для трека-кандидата в каоны была больше 0,5. Для отбора событий по АЧС система рассматривается в режиме «Толстый счетчик» с порогом в 0,5 фотоэлектронов [15].

В 2004 г. система АЧС работала не на уровне своих проектных параметров, поэтому при переобработке соответствующих данных в качестве энергии *D*-мезона берется комбинация $E_D = (E_{K^-\pi^+} + E_{K^+\pi^-})/2$.

Экспериментальные данные с подгонкой представлены на рис. 1 и 2. Результаты подгонки приведены в табл. 1 и 2.

4. СИСТЕМАТИЧЕСКИЕ ОШИБКИ

Систематические ошибки в измерении масс D^0 - и D^+ -мезонов приведены в табл. 3 и 4 для двух обработанных наборов данных (2004 г. и 2016–2017 гг.) соответственно.

Абсолютная калибровка шкалы импульсов осуществлялась по тому же набору событий, который использовался в анализе, с заданием требования зануления среднего значения ΔE . Точность поправки определяется статистической ошибкой. Для оценки систематики использовался альтернативный способ калибровки импульса, основанный на реконструкции распада $K_s^0 \to \pi^+\pi^-$ и сравнении массы K_s^0 с значением в таблицах PDG.

Источник систематической ошибки	δM_{D^0} , МэВ	
	2004 г.	2016-2017 гг.
Абсолютная калибровка импульса	0,005	0,005
Описание энергетических потерь в веществе	0,010	0,005
Импульсное разрешение	0,022	0,010
Учет излучения в начальном состоянии	0,020	0,011
Форма распределения сигнала	0,018	0,025
Форма распределения фона континуума	0,030	0,033
Φ орма распределения фона $D\overline{D}$	0,018	0,023
Идентификация	_	0,004
Калибровка энергии пучков	0,007	0,005
Квадратичная сумма	0,051	0,051

Таблица 3. Систематические ошибки в измерении массы D⁰-мезона

Таблица 4. Систематические ошибки в измерении массы D^+ -мезона

Источник систематической ошибки	$\delta M_{D^+}, { m M}$ эВ	
	2004 г.	2016-2017 гг.
Абсолютная калибровка импульса	0,005	0,014
Описание энергетических потерь в веществе	0,032	0,028
Импульсное разрешение	0,079	0,031
Учет излучения в начальном состоянии	0,018	0,023
Форма распределения сигнала	0,059	0,066
Форма распределения фона континуума	0,075	0,065
Φ орма распределения фона $D\overline{D}$	0,041	0,040
Идентификация	0,009	0,009
Калибровка энергии пучков	0,005	0,003
Квадратичная сумма	0,136	0,113

Отличие реконструированного импульса от истинного из-за потерь энергии в веществе может достигать нескольких МэВ, поэтому вводится поправка к импульсу, учитывающая этот факт. Неопределенность моделирования ионизационных потерь в материале детектора оценивается изменением соответствующего поправочного коэффициента к импульсу. Параметры функции для поправки импульса варьировались случайным образом в соответствии с гауссовым распределением со среднеквадратичным отклонением, равным погрешности параметра функции.

Систематическая неопределенность, связанная с разрешением по импульсу, оценивается с помощью сравнения результатов двух методов его настройки в моделировании для согласования с экспериментом. Импульсное разрешение настраивалось по космическим событиям. В первом методе систематическая ошибка определения x(t) в аксиальных и стереослоях дрейфовой камеры умножается на калибровочные коэффициенты. Во втором методе пространственное разрешение, полученное процедурой определения x(t) в аксиальных и стереослоях, умножается на калибровочные коэффициенты.

При моделировании радиационных поправок в начальном состоянии для правильного учета положения на склоне сечения распределение энергии по экспериментальным заходам разбивалось на 10 бинов и для каждой точки по энергии производилось моделирование с вкладом, пропорциональным интегральной светимости. Для оценки систематики, связанной с излучением в начальном состоянии, значение сечения в измеренных точках по энергии варьируется случайным образом в соответствии с гауссовым распределением со среднеквадратичным отклонением, равным статистической ошибке измеренного сечения. Также при оценке систематики принималось во внимание различие энергетических шкал ускорителей ВЭПП-4М и ВЕРС-II [9].

Систематическая неопределенность, связанная с формами распределения сигнала и фона $e^+e^- \to D\overline{D}$, оценивается путем исключения дополнительных гауссовских пиков в параметризации форм. Для оценки зависимости систематики от формы распределения фона континуума $e^+e^- \to q\overline{q}$ (q = u, d, s) используется альтернативный генератор системы пионов с переменной множественностью [16].

Систематическая неопределенность, связанная с идентификацией, определяется с помощью вариации дискриминирующих переменных.

Калибровка энергии пучка с ошибкой не более 60 кэВ достигается путем интерполяции значений, измеряемых методом резонансной деполяризации периодически в течение эксперимента. Систематическая неопределенность определялась как $\sigma_{E_b} = \Delta_{E_b}/\sqrt{N_{\mathrm{sig}}-1}$, где $\Delta_{E_b} -$ ошибка калибровки энергии пучка, N_{sig} — число отобранных сигнальных событий.

ЗАКЛЮЧЕНИЕ

Средневзвешенные значения масс составили:

$$M_{D^0} = (1865,100 \pm 0,210(\text{стат.}) \pm 0,039(\text{сист.}))$$
 МэВ,
 $M_{D^+} = (1869,560 \pm 0,288(\text{стат.}) \pm 0,090(\text{сист.}))$ МэВ.

Взвешивание массы с учетом частичной корреляции систематических ошибок проводилось по следующим правилам:

$$\langle M \rangle = \sum w_i M_i,$$

$$\sigma_{\text{stat}}^2 = \sum w_i^2 \sigma_{\text{stat},i}^2,$$

$$\sigma_{\text{syst}}^2 = \sum w_i^2 (\sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2) + \sigma_{\text{syst},0}^2,$$

$$W_i = \frac{1}{\sigma_{\text{stat},i}^2 + \sigma_{\text{syst},i}^2 - \sigma_{\text{syst},0}^2}, \quad w_i = \frac{W_i}{\sum W_i}.$$

$$(7)$$

Здесь $\sigma_{\text{stat},i}^2$ и $\sigma_{\text{syst},i}^2$ — статистическая и систематические ошибки в измерении *i*, $\sigma_{\text{syst},0}^2$ — коррелированная часть. Систематическая ошибка, связанная с учетом излучения в начальном состоянии, рассматривается как коррелированная часть.

Полученные значения масс сравниваются с результатами предыдущих измерений на рис. 3, где KEDR, 2010 — ранее опубликованный коллаборацией КЕДР результат по данным 2004 г., KEDR, 2024 — средневзвешенный результат по набранным данным 2004 г. и 2016–2017 гг. Наш результат для массы заряженного *D*-мезона является наиболее точным измерением в настоящее время. Набранная экспериментальная

Рис. 3. Сравнение результатов измерений детектора КЕДР с данными экспериментов из таблицы PDG. Вертикальные линии показывают среднемировые значения, вертикальные полосы — их ошибку

статистика не позволила эксперименту КЕДР конкурировать с СLEO, ВаВаг и LHCb по точности измерения массы D^0 , но полученное значение массы D^0 в эксперименте КЕДР важно для дополнительной проверки, так как измерение было выполнено другим методом.

Благодарности. Мы выражаем благодарность сотрудникам ускорительного комплекса ВЭПП-4М за обеспечение его хорошей работы в ходе длительных экспериментов. Благодарим Сибирский суперкомпьютерный центр ИВМиМГ СО РАН за предоставление оборудования для обработки и анализа экспериментальных данных.

СПИСОК ЛИТЕРАТУРЫ

- Kalashnikova Yu. S., Nefediev A. V. X(3872) in the Molecular Model // Phys. Usp. 2019. V.62, No.6. P.568–595.
- 2. Workman R.L. et al. (Particle Data Group). The Review of Particle Physics (2023) // Prog. Theor. Exp. Phys. 2022. 083C01; 2023 update.
- 3. Tomaradze A., Dobbs S., Xiao T., Seth Kamal K., Bonvicini G. High Precision Measurement of the Masses of the D^0 and K_S Mesons // Phys. Rev. D. 2014. V. 89. 031501.
- 4. Lees J. P. et al. (BaBar Collab.). Measurement of the Mass of the D^0 Meson // Phys. Rev. D. 2013. V. 88. 071104(R).
- Aaij R. et al. (LHCb Collab.). Precision Measurement of D Meson Mass Differences // J. High Energy Phys. 2013. V. 6. P. 65.
- 6. *Cawlfield C. et al. (CLEO Collab.).* Precision Determination of the *D*⁰ Mass // Phys. Rev. Lett. 2007. V. 98. 092002.
- 7. Anashin V. V. et al. (KEDR Collab.). Measurement of D^0 and D^+ Meson Masses with the KEDR Detector // Phys. Lett. B. 2010. V. 686. P. 84–90.
- 8. Анашин В.В. и др. (коллаб. КЕДР). Детектор КЕДР // ЭЧАЯ. 2013. Т. 44, вып. 4. С. 1263–1345.
- 9. Julin A.J. Measurement of $D\overline{D}$ Decays from the $\psi(3770)$ Resonance. https://inspirehep.net/literature/1794583. 2017.
- 10. Ablikim M. et al. Measurement of $e^+e^- \rightarrow D\overline{D}$ Cross Sections at the $\psi(3770)$ Resonance // Chin. Phys. C. 2018. V. 42. 083001.
- 11. Sjostrand T., Bengtsson M. The Lund Monte Carlo for Jet Fragmentation and e^+e^- Physics. Jetset Version 6.3: An Update // Comput. Phys. Commun. 1987. V. 43. P. 367.
- 12. *Аввакумов С.Е. и др.* Препринт ИЯФ им. Г. И. Будкера СО РАН 2006-038. Новосибирск, 2006.
- 13. Kuraev E. A., Fadin V. S. // Sov. J. Nucl. Phys. 1985. V. 41. P. 466.
- 14. Barberio E., Was Z. Photos: A Universal Monte Carlo for QED Radiative Corrections. Version 2.0 // Comput. Phys. Commun. 1994. V. 79. P. 291.
- 15. Barnyakov A. Yu. et al. Particle Detection Efficiency of the KEDR Detector ASHIPH System // Nucl. Instr. Meth. A. 2020. V. 952. 162278.
- Таюрский В. А., Эйдельман С. И. Монте-карловские генераторы многочастичных событий. Препринт ИЯФ им. Г. И. Будкера СО РАН 2000-78. Новосибирск, 2000.