ГЛАУБЕРОВСКОЕ МОДЕЛИРОВАНИЕ СТОЛКНОВЕНИЙ АДРОНОВ И ЯДЕР НА ПАРТОННОМ УРОВНЕ

В. Н. Коваленко *

Санкт-Петербургский государственный университет, Санкт-Петербург, Россия

Разработана монте-карловская глауберовская модель множественного рождения при высоких энергиях. Проведено обобщение на случай протон-ядерных и ядро-ядерных столкновений. Показано, что в *pp*-столкновениях удовлетворительно описываются полное, упругое и неупругое сечения, наклон дифракционного конуса в широком диапазоне энергий. Модель применяется к Pb-Pb-столкновениям при энергиях LHC. Обсуждается связь с модифицированной моделью Глаубера и другими альтернативными моделями.

A Monte Carlo Glauber model of multiple production at high energies has been developed. A generalization has been made to the case of proton-nucleus and nucleus-nucleus collisions. It is shown that in pp collisions the total, elastic and inelastic cross sections and the slope of the diffraction cone are satisfactorily described in a wide energy range. The model is applied to Pb–Pb collisions at LHC energies. A relation to modified Glauber model and other approaches is discussed.

PACS: 13.85.-t; 24.10.Ht; 25.75.-q; 25.75.Dw

введение

Глауберовский подход широко используется для описания множественного рождения во взаимодействиях с участием адронов и ядер в широком диапазоне энергий [1–3]. В рамках этого подхода взаимодействие релятивистских ядер является суперпозицией независимых нуклон-нуклонных столкновений. Для более детального описания различных наблюдаемых величин и особенностей ядерного взаимодействия глауберовская модель все чаще используется на партонном уровне [3–8]. При этом обычно систематическому описанию *pp*-взаимодействия уделяется недостаточно внимания. Полноценный подход состоит в том, что, прежде чем применять модель к ядро-ядерным столкновениям, необходимо убедиться, что основные особенности *pp*-взаимодействия описываются адекватно.

В связи с этим в данной работе проводится дальнейшее развитие партонной монте-карловской модели Глаубера [9] и делается обобще-

^{*} E-mail: v.kovalenko@spbu.ru

ние на случай протон-ядерных и ядро-ядерных столкновений. В рамках этой модели в *pp*-столкновениях удовлетворительно описываются полное, упругое и неупругое сечения, наклон дифракционного конуса в диапазоне энергий от SPS до LHC при минимальном количестве свободных параметров. Модель применяется к Pb–Pb-столкновениям при энергии LHC. Обсуждается связь этого подхода с модифицированной моделью Глаубера [10–12] и другими подходами.

МОНТЕ-КАРЛОВСКАЯ МОДЕЛЬ ГЛАУБЕРА НА ПАРТОННОМ УРОВНЕ

В данной работе предполагается, что ядра снаряда и мишени представляют совокупность протонов и нейтронов, которые распределены относительно центра ядра в соответствии с функцией ядерной плотности. В частности, для тяжелых ядер применяется распределение Вудса–Саксона

$$\rho(r) = \frac{\rho_0}{1 + \exp\left[(r - R)/d\right]}$$
(1)

с параметрами R = 6,63 фм, d = 0,545 фм для ядер свинца ²⁰⁸ Pb [13].

Каждый нуклон при достаточно высоких энергиях представляет собой совокупность партонов, распределенных относительно центра нуклона в соответствии с определенной партонной плотностью. В работе [9] рассматривались три варианта партонного распределения — гауссово распределение, экспоненциальное и модель однородного шара с жестким краем, а также было показано, что наилучшее согласие с экспериментальными данными достигается при экспоненциальном распределении

$$\rho_{\exp}(r) = \rho_0 \exp\left(-\frac{2\sqrt{3}}{R_0}r\right),\tag{2}$$

где параметр R_0 является среднеквадратичным радиусом протона. Мы использовали значение $R_0 = 0,831$ фм [14]. Величина сечения партонпартонного рассеяния σ_{parton} , а также среднее число партонов в нуклоне являются параметрами модели. Мы предполагали фиксированное значение $\sigma_{\text{parton}} = 3,3$ мб [15], а рост нуклонных сечений с ростом энергии полностью достигается за счет увеличения числа партонов. Это объясняется тем, что с ростом \sqrt{s} в процесс вовлекаются глюоны с малыми x, для которых глюонные функции распределения увеличиваются. Зависимость среднего числа партонов от энергии \sqrt{s} (ГэВ) имеет степенной вид [9]:

$$\langle n_{\rm parton} \rangle = C(\sqrt{s})^{\kappa},$$
 (3)

где C = 1,74, $\kappa = 0,19$. Нижняя граница энергетической применимости модели равна $\sqrt{s} = 20$ ГэВ, что примерно соответствует $\langle n_{\rm parton} \rangle = 3$. Монте-карловский алгоритм для протон-протонных столкновений со-

Монте-карловский алгоритм для протон-протонных столкновений состоит из следующих шагов: • разыгрывается прицельный параметр *b* и положение нуклонов на поперечной плоскости;

• разыгрывается количество партонов в каждом нуклоне в соответствии с распределением Пуассона, за исключением случая $n_{\rm parton} = 0;$

• определяются партоны-участники, т. е. партоны снаряда и мишени, находящиеся ближе, чем $d_{\min} = \sqrt{\sigma_{\text{parton}}/\pi}$, друг к другу в поперечной плоскости (если имеется одна пара взаимодействующих партонов, считается, что имеет место неупругое событие);

• накапливается статистика вероятности неупругого взаимодействия и затем рассчитывается профильная функция неупругого pp-столкновения $\sigma(b)$, а через нее и другие наблюдаемые величины. Как было показано в работе [9], данная модель позволяет удовлетво-

Как было показано в работе [9], данная модель позволяет удовлетворительно описать одновременно такие характеристики протон-протонного рассеяния, как полное сечение, неупругое и упругое сечения, а также наклон дифракционного конуса в широком диапазоне энергий (от SPS до LHC). Кроме того, она обладает правильной (удовлетворяющей теореме Фруассара) асимптотикой при сверхвысоких энергиях.

Обобщение модели на случай ядро-ядерного взаимодействия проводится непосредственным образом. Ядра располагаются на расстоянии прицельного параметра *b*. Нуклоны в каждом из ядер разыгрываются в соответствии с ядерной плотностью, после чего генерируются партоны для каждого из нуклонов. Вся дальнейшая обработка партонных облаков происходит в соответствии с описанным выше алгоритмом. Нуклоныучастники определяются как нуклоны, у которых есть хотя бы один провзаимодействующий партон. Отдельно подсчитывается число бинарных партонных и нуклонных столкновений.

Важно отметить, что в рассматриваемой модели каждый партон может неупруго столкнуться с партоном из другого ядра только один раз. После взаимодействия он выбывает из дальнейшего рассмотрения. Это предположение является особенно важным в случае столкновений тяжелых ионов и играет ключевую роль с точки зрения учета сохранения энергии и определения множественности в ядро-ядерных столкновениях.

ПРОБЛЕМА СОХРАНЕНИЯ ЭНЕРГИИ В МОДЕЛИ ГЛАУБЕРА И АЛЬТЕРНАТИВНЫХ ПОДХОДАХ

Модель Глаубера [1] широко используется для описания геометрии ядро-ядерных столкновений при высоких энергиях. В современных коллайдерных экспериментах она играет важную роль для описания центральности, ведь непосредственное измерение прицельного параметра или числа нуклонов-участников в эксперименте невозможно.

В модели Глаубера столкновения ядер рассматриваются как совокупность независимых нуклон-нуклонных столкновений. Логично было бы считать, что множественность рожденных частиц в ядро-ядерных взаимодействиях должна быть пропорциональна числу таких бинарных столкновений $N_{\rm coll}$, однако это грубо противоречит экспериментальным данным [10]. В связи с этим для аппроксимации данных по множественности используют дополнительные предположения, например двухкомпонентную параметризацию Харзеева–Нарди [16].

Как было показано в работе [17], в большинстве продвинутых моделей, описывающих широкий спектр экспериментальных данных, заложены эффекты, уменьшающие многократное партонное сечение и, таким образом, уменьшающие среднее число бинарных столкновений. К таким моделям относятся Hijing с механизмом глюонного затенения, модифицированная глауберовская модель [10] с учетом потерь энергии и стоппинга, дипольная монте-карловская модель [18].

Модифицированная модель Глаубера (MGM) для столкновений тяжелых ионов оказывается хорошо применима в широком диапазоне энергий. В ней вводится параметр k такой, что при каждом неупругом нуклоннуклонном столкновении теряется фиксированная часть (1-k) импульса в системе центра масс. Потеря энергии уходит на рождение заряженных и нейтральных частиц. Параметр k определяется путем аппроксимации экспериментальных данных по выходу множественности заряженных частиц в AA-столкновениях.

РЕЗУЛЬТАТЫ ПАРТОННОЙ ГЛАУБЕРОВСКОЙ МОДЕЛИ

На рис. 1 показаны среднее число нуклонов-участников, а также число бинарных нуклонных столкновений в зависимости от центральности в столкновениях ядер свинца (Pb-Pb) при энергии LHC ($\sqrt{s_{NN}} = 2,76$ ТэВ) в сравнении с предсказаниями стандартной модели Глаубера. Видно, что в данной модели число нуклонов-участников меняется незначительно (по сравнению с моделью Глаубера на нуклонном

Рис. 1. Зависимость среднего числа нуклонов-участников $N_{\rm part}$ (*a*) и числа бинарных столкновений $N_{\rm coll}$ (*б*) от прицельного параметра в Pb–Pb-столкновениях при энергии 2,76 ТэВ в партонной модели Глаубера

уровне). Однако число бинарных столкновений более чем в 2 раза ниже, чем в стандартном подходе Глаубера. Эти результаты довольно близки к предсказаниям MGM [10, 12], а также соответствуют более детальным моделям [17], в которых учитываются потери энергии на рождение частиц.

Чтобы глубже понять связь между подходом данной работы и моделью MGM, построены сечения многократного нуклон-нуклонного рассеяния $\sigma(m)$ в данных моделях (рис. 2). В партонной модели $\sigma(m)$ рассчитывается методом Монте-Карло, когда после каждого нуклон-нуклонного рассеяния от партонной конфигурации нуклона остаются только партоны-спектаторы, не провзаимодействовавшие на текущем шаге.

В модели MGM многократные сечения $\sigma(m)$ вычисляются аналитически. Зависимость нуклон-нуклонного сечения от энергии параметризуется как $\sigma = 28,84 + 0,05 \ln^{2,37}$ мб [3]. Первое столкновение происходит при номинальной энергии, а далее на каждом этапе энергия столкновения в системе центра масс вычисляется исходя из потери (1-k) доли импульса нуклона, что соответствует изменению импульса: p' = kp, k = 0,22 [12].

Результаты по последовательным нуклон-нуклонным сечениям в двух моделях представлены на рис. 2. Видно, что, по крайней мере, для первых нескольких столкновений наблюдается хорошее согласие между подходами партонной глауберовской модели и MGM. Таким образом, можно считать, что рассматриваемая в данной работе глауберовская модель на партонном уровне может служить микроскопическим обоснованием MGM.

В заключение рассмотрим возможность описания множественности в монте-карловской модели Глаубера на партонном уровне. Ясно, что множественность (как и сечения) не меняется при переходе в другую систему отсчета, следовательно, она должна зависеть только от лоренц-инвариантных величин. Также в духе модели Глаубера логично

Рис. 2. Сечения многократного нуклон-нуклонного рассеяния в партонной глауберовской модели и MGM в зависимости от кратности взаимодействия *m*

предположить, что она должна быть пропорциональна числу партон-партонных бинарных столкновений $N_{\rm coll\,parton}$ (это соответствует тому, что все партонные соударения являются одинаковыми и не зависят друг от друга). Поскольку мы используем предположение об однократности партонных столкновений, то, как легко заметить, число партонов-участников и число партонных столкновений связаны: $N_{\rm coll\,parton} = N_{\rm part\,parton}/2$. Тогда множественность на единицу псевдобыстроты пропорциональна $N_{\rm part\,parton}$:

$$\left\langle \frac{dN_{\rm ch}}{d\eta} \right\rangle = f(N_{\rm part\,parton}) = n_0 N_{\rm part\,parton} = 2n_0 N_{\rm coll\,parton},$$
 (4)

где коэффициент n_0 дает среднюю множественность заряженных частиц на единицу псевдобыстроты на одного партона-участника.

Можно предположить, что процесс адронизации каждого партонного соударения сопровождается рождением пары кварк-глюонных струн [19–22]. В работах [22–26] показано, что множественность заряженных частиц от одной струны на единицу псевдобыстроты $\mu_0 \simeq 1$. В таком случае $n_0 = \mu_0 \simeq 1$.

На рис. 3 показаны предсказания партонной модели Глаубера для множественности заряженных частиц, нормированной на число нуклоннуклонных пар, в зависимости от центральности для Pb–Pb-столкновений при энергии 2,76 ТэВ в сравнении с данными ALICE [27]. Видно, что результаты партонной модели в рамках даже такого простого предположения (4) достаточно близки к экспериментальным данным. Однако, несмотря на этот достигнутый результат, полноценное описание множественности в широком диапазоне энергий и сортов сталкивающихся ядер является предметом дальнейших исследований. Распределения по числу

Рис. 3. Множественность заряженных частиц на единицу псевдобыстроты, нормированная на число нуклон-нуклонных пар, в зависимости от центральности в Pb–Pb-столкновениях при энергии 2,76 ТэВ в партонной глауберовской модели (линия) в сравнении с экспериментальными данными ALICE [27] (точки)

партонных столкновений могут служить в качестве основы для обобщения модели мультипомеронного обмена [20–22] на *pA*- и *AA*-столкновения.

ЗАКЛЮЧЕНИЕ

Проведено обобщение партонной монте-карловской модели Глаубера [9] на случай ядро-ядерных столкновений. В *pp*-взаимодействии модель удовлетворительно описывает полное, упругое и неупругое сечения, наклон дифракционного конуса в диапазоне энергий от SPS до LHC. Сохранение энергии в начальных состояниях столкновения ядер приводит к значительному уменьшению числа бинарных столкновений по сравнению со стандартной моделью Глаубера, что позволяет описать множественность в Pb–Pb-столкновениях при энергии LHC. Результаты модели близки к предсказаниям модели MGM.

Благодарности. Автор выражает признательность Г. А. Феофилову и С. В. Симак за многочисленные обсуждения затронутых проблем и интерес к данной работе.

Финансирование. Данная работа финансировалась за счет средств бюджета Санкт-Петербургского государственного университета, исследование выполнено в рамках проекта Санкт-Петербургского государственного университета ID: 95413904.

Конфликт интересов. Автор данной работы заявляет, что у него нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Glauber R.J., Matthiae G. High-Energy Scattering of Protons by Nuclei // Nucl. Phys. B. 1970. V.21. P. 135–157.
- Miller M. L., Reygers K., Sanders S. J., Steinberg P. Glauber Modeling in High Energy Nuclear Collisions // Ann. Rev. Nucl. Part. Sci. 2007. V. 57. P. 205–243; arXiv:nucl-ex/0701025.
- Loizides C. Glauber Modeling of High-Energy Nuclear Collisions at the Subnucleon Level // Phys. Rev. C. 2016. V. 94, No. 2. P.024914; arXiv:1603.07375.
- Eremin S., Voloshin S. Nucleon Participants or Quark Participants? // Phys. Rev. C. 2003. V. 67. P. 064905; arXiv:nucl-th/0302071.
- Deliyergiyev M., Rybczyński M. Multiplicity Fluctuations in the Glauber Monte Carlo Approach // Phys. Rev. C. 2020. V. 101, No. 1. P. 014909; arXiv:1909. 00375.
- Deb S., Sarwar G., Thakur D., Subramani P., Sahoo R., Alam J.-e. Glauber Model for a Small System Using the Anisotropic and Inhomogeneous Density Profile of a Proton // Phys. Rev. D. 2020. V.101, No.1. P.014004; arXiv: 1909.13509.
- 7. Амбарян Г.О., Коротких В.Л., Эйюбова Г.Х. Зависимость эмиссии частиц от центральности в ядро-ядерных столкновениях на нуклонном и кварковом уровне // Учен. зап. физ. фак-та Моск. ун-та. 2022. № 2. С. 2220201.

- Ambaryan G. O., Eyyubova G. K., Korotkikh V. L., Zabrodin E. E. Exploring Experimental Heavy-Ion Centrality Dependence of Particle Production in MC Glauber Model // Phys. At. Nucl. 2023. V. 86, No. 6. P. 1514–1520.
- Mikhailovsky V. P., Kovalenko V. N. Glauber Monte-Carlo Model at Partonic Level for pp Collisions in a Wide Energy Range // Phys. Part. Nucl. 2022. V. 53, No. 2. P. 556-562.
- Feofilov G., Ivanov A. Number of Nucleon-Nucleon Collisions vs. Energy in Modified Glauber Calculations // J. Phys.: Conf. Ser. 2005. V. 5. P. 230–237.
- Seryakov A., Feofilov G. Modified Glauber Model and a New Interpretation of Collective Effects in AA and pA at LHC // AIP Conf. Proc. 2016. V. 1701, No. 1. P. 070001.
- Симак С. В., Феофилов Г. А. Учет потерь энергии в рамках модифицированной Монте-Карло модели Глаубера // ЭЧАЯ. 2025. Т. 56, вып. 3. С. 1467–1473.
- De Vries H., De Jager C. W., De Vries C. Nuclear Charge and Magnetization Density Distribution Parameters from Elastic Electron Scattering // At. Data Nucl. Data Tables. 1987. V. 36. P. 495–536.
- 14. *Karr J. P., Marchand D.* Progress on the Proton-Radius Puzzle // Nature. 2019. V. 575, No. 7781. P. 61–62; http://dx.doi.org/10.1038/d41586-019-03364-z.
- Amelin N. S., Armesto N., Pajares C., Sousa D. Monte Carlo Model for Nuclear Collisions from SPS to LHC Energies // Eur. Phys. J. C. 2001. V.22. P. 149-163; arXiv:hep-ph/0103060.
- Kharzeev D., Nardi M. Hadron Production in Nuclear Collisions at RHIC and High Density QCD // Phys. Lett. B. 2001. V.507. P.121–128; arXiv: nucl-th/0012025.
- Drozhzhova T. A., Kovalenko V. N., Seryakov A. Y., Feofilov G. A. Centrality and Multiparticle Production in Ultrarelativistic Nuclear Collisions // Phys. At. Nucl. 2016. V.79, No.5. P.737–748.
- Kovalenko V. N. Dipole-Based Description of the *pp* Interaction // Theor. Math. Phys. 2015. V. 184, No.3. P. 1295–1303.
- 19. Vechernin V., Andronov E., Kovalenko V., Puchkov A. Multiplicity Distributions and Modified Combinants in the Multipomeron Model of *pp* Interaction at High Energies // Universe. 2024. V. 10, No. 2. P. 56.
- 20. Bodnia E., Derkach D., Feofilov G., Kovalenko V., Puchkov A. Multi-Pomeron Exchange Model for pp and pp Collisions at Ultra-High Energy // PoS QFTHEP2013. 2013. P.060; arXiv:1310.1627 [hep-ph].
- Bodnya E. O., Kovalenko V. N., Puchkov A. M., Feofilov G. A. Correlation between Mean Transverse Momentum and Multiplicity of Charged Particles in *pp* and *pp* Collisions: From ISR to LHC // AIP Conf. Proc. 2015. V. 1606, No. 1. P. 273–282; arXiv:1401.7534 [hep-ph].
- Kovalenko V., Feofilov G., Puchkov A., Valiev F. Multipomeron Model with Collective Effects for High-Energy Hadron Collisions // Universe. 2022. V.8, No.4; https://www.mdpi.com/2218-1997/8/4/246.
- Vechernin V. V., Kolevatov R. S. On Multiplicity and Transverse-Momentum Correlations in Collisions of Ultrarelativistic Ions // Phys. At. Nucl. 2007. V. 70. P. 1797–1808.
- 24. Vechernin V. V. Space-Time Picture of the String Fragmentation and the Fusion of Colour Strings // 19th Intern. Baldin Seminar on High Energy Phys.

Problems: Relat. Nucl. Phys. and Quantum Chromodyn. 2008; arXiv:0812.0604 [hep-ph].

- 25. *Kovalenko V.* Monte Carlo Model for *pp*, *pA* and *AA* Collisions at High Energy: Parameters Tuning and Results // PoS QFTHEP2013. 2013. P.052.
- 26. *Kovalenko V*. Determination of the Quark-Gluon String Parameters from the Data on *pp*, *pA* and *AA* Collisions at Wide Energy Range Using Bayesian Gaussian Process Optimization // PoS Confinement2018. 2019. P. 235; arXiv:1902.11082.
- 27. *Aamodt K. et al. (ALICE Collab.).* Centrality Dependence of the Charged-Particle Multiplicity Density at Mid-Rapidity in Pb–Pb Collisions at $\sqrt{s_{NN}} = 2.76$ TeV // Phys. Rev. Lett. 2011. V. 106. P. 032301; arXiv:1012.1657 [nucl-ex].