ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ И ТЯЖЕЛЫХ ЯДЕР ПРИ ЭНЕРГИЯХ 3,7–158*А* ГэВ

Н. П. Андреева, А. Ш. Гайтинов, И. А. Лебедев, В. И. Скоробогатова, Л. Н. Филиппова, Д. Б. Шайхиева

Физико-технический институт МОН РК, Алма-Ата, Казахстан

Представлены характеристики полного разрушения (ПР) (развал только на одно- и двухзарядные фрагменты) легких ядер-снарядов ${}^{12}_{6}$ С, ${}^{16}_{8}$ О, ${}^{20}_{12}$ Ne, ${}^{28}_{14}$ Si с энергией 3,7*A* ГэВ и тяжелых — ${}^{197}_{79}$ Au (10,7*A* ГэВ) и ${}^{208}_{82}$ Pb (158*A* ГэВ) в их взаимодействии с ядрами в фотоэмульсии. Показано, что: а) среднее число фрагментов, реализация каналов распада на фрагменты, степень «дробления» легких ядер-снарядов существенно зависят от заряда остаточного ядра и массы ядра-мишени; б) вероятность ПР остаточных ядер с одинаковым зарядом, множественность фрагментов для одинаковых параметров удара тяжелых ядер-снарядов не зависят от их энергии; в) в интегральном распределении поперечных импульсов двухзарядных фрагментов наблюдается излом (описывается двумя экспонентами).

Characteristics of full destruction (FD) (disintegration only into one and double charge fragments) light nucleus-shells ${}^{12}_{6}$ C, ${}^{16}_{8}$ O, ${}^{22}_{10}$ Ne, ${}^{28}_{14}$ Si with energy 3.7*A* GeV and heavy — ${}^{79}_{79}$ Au (10.7*A* GeV) and ${}^{208}_{82}$ Pb (158*A* GeV) in their interaction with nucleus in photoemulsion are submitted. It is shown that: a) the average number of fragments, realization of channels of disintegration into fragments, a degree of «crushing» of light nucleus-shells essentially depend on a charge of a residual nucleus and weight of a target nucleus; b) probability of FD of residual nucleus with an identical charge, plurality of fragments for identical parameters of impact of heavy nucleus-shells do not depend on their energy; c) in integrated distribution of cross-section transverse momentum double charge fragments the break (it is described by two exponents) is observed.

PACS: 25.10.+s

введение

Процесс полного разрушения ядер (распад на одно- и двухзарядные фрагменты) при высоких энергиях в адрон-ядерных и ядро-ядерных взаимодействиях давно привлекает к себе внимание [1–9]. Интерес к этому экстремальному процессу связан с тем, что он позволяет получить ценную информацию для изучения механизма взаимодействия, связанного со структурой сталкивающихся ядер. Полученные при этом результаты являются критичными для различных модельных представлений.

Большинство работ проводилось с помощью метода ядерных фотоэмульсий, причем изучался распад тяжелых ядер-мишеней (Ag, Br). При этом заряд и энергия фрагментов, на которые распадается ядро, не определялись. Ситуация существенно изменилась, когда появилась возможность изучать распад ядра-снаряда, так как при этом достаточно надежно определяется заряд фрагментов, а энергию, приходящуюся на один нуклон, для фрагмента и налетающего ядра можно считать одинаковой.

110 Андреева Н. П. и др.

Для изучения событий полного разрушения (ПР) мы воспользовались полученными нами в сотрудничестве с участниками из других стран экспериментальными данными [7,10–12] при облучении стопок ядерной фотоэмульсии легкими ядрами на ускорителе ОИЯИ (Дубна), тяжелыми — БНЛ (США) и ЦЕРН (Женева). Ядро-ядерное взаимодействие рассматривается как процесс, состоящий из двух стадий: быстрой, когда взаимодействуют нуклоны ядра-снаряда с нуклонами ядра-мишени, что приводит к образованию новых частиц в перекрытой части объемов сталкивающихся ядер, и медленной, когда оставшаяся часть ядра распадается на фрагменты.

Заряд фрагментов определялся по ионизации (подсчет числа разрывов между блобами зерен в эмульсии) или по числу δ -электронов на пути многозарядных фрагментов. Знание зарядов каждого фрагмента позволяет определить суммарный заряд образовавшихся фрагментов $Q = \sum_{i=1}^{n_f} z_f$, т.е. заряд остаточного ядра. Тогда число провзаимодействовавших

нуклонов можно определить по формуле $\nu = A - (A/n_p)Q$, где A и n_p — соответственно атомный вес и число протонов ядра.

1. ПОЛНОЕ РАЗРУШЕНИЕ ЛЕГКИХ ЯДЕР ПРИ ЭНЕРГИИ 3,7 ГэВ НА НУКЛОН

Рассмотрим теперь последовательно характеристики полного разрушения изучаемых ядер. Вероятность W (доля в %) полного разрушения остаточного ядра с определенным зарядом Q представлена в табл. 1. Из этой таблицы видно, что для данного ядра-снаряда с увеличением значения заряда остаточного ядра Q доля событий ПР, например, для ${}^{12}_{6}$ С при изменении Q = 3-6 падает на 41 %, тогда как для ${}^{28}_{14}$ Si только на 14 %, т. е. в сильной степени зависит от атомного веса исходного ядра. Эту A-зависимость иллюстрирует рис. 1.

Из рисунка видно, что чем больше масса исходного ядра, тем слабее падает доля событий ПР. Эта закономерность, очевидно, связана с тем, что с ростом A увеличивается число провзаимодействовавших нуклонов, т.е. увеличивается передача энергии остаточному ядру с фиксированным зарядом Q.

В табл. 1 представлено также среднее число одно- и двухзарядных фрагментов $\langle n_f \rangle$, образовавшихся в результате распада остаточного ядра для различных первичных ядер. Видно, что для данного ядра с увеличением заряда (массы) остаточного ядра $\langle n_f \rangle$ возрастает, что естественно, причем практически линейно (см. рис. 2). Для фиксированного значения Q эта величина ($\langle n_f \rangle$) увеличивается медленно (наклон прямой на рис. 2) с возрастанием атомного веса рассматриваемых ядер, хотя при этом существенно увеличивается число провзаимодействовавших нуклонов ν . Так, например (см. табл. 1), при Q = 5 для ядра 12 С $\nu = 2$, тогда как для 28 Si $\nu = 18$.

Рассмотрим характеристику остаточного ядра, отражающую степень его разрушения при распаде на фрагменты. Такой величиной может служить отношение среднего числа фрагментов с зарядом два ($z_f = 2$) к числу фрагментов с зарядом один ($z_f = 1$) — $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$. Чем больше «дробление» (чем больше число фрагментов с зарядом z = 1), тем меньше это отношение.

Рассмотрим, как зависит $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ для данного ядра от Q. Из рис. 3 видно, что с увеличением Q значение $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ существенно возрастает. Это указывает

Q	A	${}^{12}_{6}C$	$^{16}_{8}{ m O}$	$^{22}_{10}{ m Ne}$	$^{28}_{14}{ m Si}$
3	$W \\ \langle n_f angle$	$\begin{array}{c} 94 \pm 8 \\ 2,4 \pm 0,3 \end{array}$	$97 \pm 9 \\ 2,5 \pm 0,2$	$97 \pm 6 \\ 2,5 \pm 0,2$	$97 \pm 12 \\ 2,7 \pm 0,4$
4	$W \\ \langle n_f angle$	$84 \pm 8 \\ 2,8 \pm 0,3$	$\begin{array}{c}92\pm9\\3,2\pm0,3\end{array}$	$\begin{array}{c}92\pm 6\\3,0\pm 0,2\end{array}$	$98 \pm 10 \\ 3,4 \pm 0,1$
5	$W \\ \langle n_f angle$	$62 \pm 6 \\ 3,4 \pm 0,4$	$81 \pm 8 \\ 3,7 \pm 0,3$	$\begin{array}{c} 82\pm 6\\ 3,4\pm 0,3\end{array}$	$87 \pm 11 \\ 4,0 \pm 0,5$
6	$W \\ \langle n_f angle$	$53 \pm 6 \\ 3,8 \pm 0,5$	$59 \pm 6 \\ 4,2 \pm 0,4$	$\begin{array}{c} 68 \pm 5 \\ 4{,}3 \pm 0{,}3 \end{array}$	$\begin{array}{c} 83\pm9\\ 4,8\pm0,6\end{array}$
7	$W \\ \langle n_f angle$		$\begin{array}{c} 40\pm 4\\ 4,7\pm 0,4\end{array}$	$\begin{array}{c} 48 \pm 3 \\ 4{,}9 \pm 0{,}4 \end{array}$	$\begin{array}{c} 72 \pm 8 \\ 5{,}3 \pm 0{,}5 \end{array}$
8	$W \\ \langle n_f angle$		$23 \pm 4 \\ 5,0 \pm 0,8$	$26 \pm 3 \\ 5,2 \pm 0,5$	$66 \pm 10 \\ 5,9 \pm 0,8$
9	$W \\ \langle n_f angle$			$ \begin{array}{r} 16 \pm 2 \\ 6,0 \pm 0,7 \end{array} $	$47 \pm 8 \\ 6,6 \pm 1,0$
10	$W \\ \langle n_f angle$			$6 \pm 1 \\ 6,4 \pm 1,0$	37 ± 6 7,2 ± 1,0

Таблица 1. Вероятность полного разрушения (W, %) и среднее число фрагментов ($\langle n_f \rangle$) для различного заряда Q остаточного ядра

Рис. 1. Зависимость вероятности полного разрушения остаточного ядра легких ядер от величины его заряда Q (массы): (× — ${}^{12}_{6}$ C; □ — ${}^{16}_{8}$ O; ○ — ${}^{22}_{10}$ Ne; △ — ${}^{28}_{14}$ Si)

Рис. 2. Зависимость среднего числа фрагментов остаточного ядра $\langle n_f \rangle$ от Q для различных ядер (× — ${}^{12}_{6}$ C; \Box — ${}^{16}_{8}$ O; \bigcirc — ${}^{22}_{10}$ Ne; \triangle — ${}^{28}_{14}$ Si)

Рис. 3. Зависимость отношения $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ от заряда остаточного ядра Q для различных ядер (× — ${}^{12}_{6}$ C; □ — ${}^{16}_{8}$ O; ○ — ${}^{22}_{10}$ Ne; △ — ${}^{28}_{14}$ Si)

на то, что с увеличением Q значение ν уменьшается, т.е. уменьшается передаваемая энергия, идущая на развал остаточного ядра. Для фиксированного значения Q отношение $\langle n_{z=2} \rangle / \langle n_{z=1} \rangle$ существенно уменьшается с увеличением массы исходного ядра, т.е. дробление остаточного ядра возрастает.

Каналы распада	Q	$^{12}_{6}{ m C}$	$^{16}_{8}$ O	$^{22}_{10}{ m Ne}$	$^{28}_{14}{ m Si}$
111 12	3	$\begin{array}{c} 44\pm 6\\ 56\pm 6\end{array}$	$\begin{array}{c} 50\pm6\\ 50\pm6\end{array}$	$\begin{array}{c} 46\pm 4\\ 54\pm 5\end{array}$	$73 \pm 10 \\ 27 \pm 6$
1111 112 22	4	15 ± 3 52 ± 6 33 ± 4	32 ± 4 53 ± 6 15 ± 4	20 ± 3 58 \pm 5 22 \pm 3	51 ± 7 42 ± 6 7 ± 3
11111 1112 122	5	8 ± 2 30 ± 3 62 ± 5	$ \begin{array}{r} 11 \pm 3 \\ 46 \pm 5 \\ 43 \pm 5 \end{array} $	$16 \pm 2 \\ 46 \pm 4 \\ 38 \pm 3$	$36 \pm 6 \\ 46 \pm 7 \\ 18 \pm 5$
111111 11112 1122 222	6	$\begin{array}{c} 2 \pm 0,5 \\ 6 \pm 1 \\ 60 \pm 6 \\ 32 \pm 3 \end{array}$	3 ± 1 24 ± 3 54 ± 4 19 ± 3	7 ± 1 29 ± 3 45 ± 3 19 ± 2	$ \begin{array}{r} 19 \pm 4 \\ 48 \pm 6 \\ 30 \pm 5 \\ 3 \pm 1 \end{array} $

Таблица 2. Вероятность полного разрушения остаточного ядра (в %) по различным типам каналов в зависимости от Q и A (атомный вес исходного ядра)

Рассмотрим более подробно вероятность реализации различных каналов распада на фрагменты остаточного ядра в зависимости от его заряда Q и атомного веса первичного ядра A. Из табл. 2, где представлены полученные данные для событий с Q = 3-6, можно сделать следующие выводы:

— вероятность каналов распада, в которых наблюдаются только однозарядные фрагменты, для данного ядра с увеличением заряда Q падает, что, очевидно, связано с уменьшением числа ν , а следовательно, как уже отмечалось выше, с уменьшением передачи энергии. При фиксированном значении Q с увеличением A вероятность реализации этих каналов, наоборот, возрастает по той же причине (увеличение ν) за исключением случая Ne при Q = 4;

— вероятность распада только на двухзарядные фрагменты уменьшается как с увеличением Q при фиксированном A, так и при фиксированном значении Q с возрастанием A.

В случаях, когда в каналах распада наблюдается сочетание одно- и двухзарядных фрагментов, нет указанных выше более или менее простых закономерностей (распады только на однозарядные или только на двухзарядные фрагменты). По-видимому, зависимости вероятности каналов распада фрагментов от Q и A можно будет получить, исходя из модельных представлений, учитывающих кластерную структуру [10, 11] легких ядер, вероятности образования и распада двухзарядных частиц в остаточных ядрах.

2. ХАРАКТЕРИСТИКИ ПОЛНОГО РАЗРУШЕНИЯ ТЯЖЕЛЫХ ЯДЕР

События полного разрушения нами были выделены во взаимодействиях, близких по массе и заряду, но существенно разных по энергии ядер — ${}^{197}_{79}$ Au (10,6*A* ГэВ) и ${}^{208}_{82}$ Pb (158*A* ГэВ) с различными ядрами атомов, входящих в состав фотоэмульсии: водород ($N_h = 0$; 1), C, N, O ($N_h = 2-7$) и Ag, Br ($N_h \ge 8$).

Ядро-снаряд		Au (ПР) – $N_{\rm B3} = 89$				Pb (Π P) – $N_{\rm B3} = 30$			
N_h	0,1	2–7	$\geqslant 8$	$\geqslant 0$	0,1	2–7	$\geqslant 8$	$\geqslant 0$	
Число событий, %	7	18	75		10	20	70		
$\langle n_f(z=1) \rangle$	15,3	9,8	9,2	$9{,}7\pm0{,}4$	16,7	10,2	9,6	$10{,}4\pm1{,}1$	
$\langle n_f(z=2) \rangle$	7,7	2,9	2,6	$3{,}0\pm0{,}3$	7,7	1,8	3,3	$3{,}5\pm0{,}5$	
$R = \langle n_f(z=1) \rangle / \langle n_f(z=2) \rangle$	2,0	3,4	3,6	3,2	2,2	5,5	2,9	3,0	
$Q = \sum z_f$	31	16	14	16	32	14	16	17	
$\langle n_s \rangle$	107	265	268	257 ± 7	245	822	796	746 ± 45	
$\langle n_g \rangle$	0,5	13	13	$10{,}8\pm0{,}6$	0,3	4,8	11,0	$8,8\pm1,0$	
$\langle n_b \rangle$	0	2,5	2,5	$2{,}0\pm0{,}3$	0,3	1,2	3,4	$2{,}7\pm0{,}4$	

Таблица 3. Характеристики ПР для ядер Аи и Рь

Общее число отобранных неупругих взаимодействий, когда первичным ядром является Au, составило 1104 события, а для Pb — 406. События ПР происходят при малых параметрах удара, когда количество нуклонов ядра на пути снаряда значительно. В этих событиях, например, для Pb, в «горячей зоне» — перекрытой части сталкивающихся ядер — может образоваться более 1000 частиц. В неперекрытую же часть ядра (остаточное ядро) передается достаточно большая энергия, приводящая к взрывному образованию одно- и двухзарядных фрагментов [7]. Полученные данные ПР ядер-снарядов для различных мишеней представлены в табл. 3.

Из этих данных следует:

а) доля событий ПР как для Au, так и для Pb оказалась одного порядка (7-8 %), т.е. она не зависит от энергии первичных ядер, близких по массе;

б) существенная доля ПР приходится на взаимодействия с тяжелыми ядрами-мишенями (Ag, Br) — 70–75 %;

в) выход одно- и двухзарядных фрагментов, а следовательно, и Q не зависят от энергии первичного ядра, это означает, что передаваемая энергия на возбуждение остаточного ядра Au и Pb одинакова;

г) с ростом энергии столкновения от 10,6A до 158A ГэВ (\sim 15 раз) значительно возрастает число генерированных *s*-частиц (\sim 3 раза), тогда как средние множественности частиц мишени $\langle n_g \rangle$ (протоны отдачи) и $\langle n_b \rangle$ (фрагменты мишени) в пределах ошибок остаются одинаковыми.

Представляет интерес получить характеристики событий ПР указанных выше тяжелых ядер в зависимости от параметров удара.

Величиной, характеризующей параметр удара, был взят суммарный заряд фрагментов ядра-снаряда $Q = \sum z_f$, так как эта величина характеризует степень перекрытия сталкивающихся ядер: чем больше Q, тем больше параметр удара, и наоборот. Учитывая статистический материал, весь набор Q разделили на три интервала: 0–15; 16–30; 31–50. Полученные данные представлены в табл. 4 и 5. Из этих данных следует:

 а) доля событий ПР уменьшается с увеличением параметра удара и не зависит от энергии налетающего ядра;

б) отношения среднего числа ливневых частиц $\langle n_s \rangle$ (Pb)/ $\langle n_s \rangle$ (Au) практически не зависят от параметра удара — остаются в пределах значений 3,2–3,5, т. е. определяющим фактором является число провзаимодействовавших нуклонов и первичная энергия;

в) средние множественности *g*-частиц ($\langle n_g \rangle$) и *b*-частиц ($\langle n_b \rangle$) ядра-мишени, а также средние значения фрагментов с зарядом Z = 1 ($\langle n_{z=1} \rangle$) и с зарядом Z = 2 ($\langle n_{z=2} \rangle$) для одинаковых параметров удара не зависят от энергии налетающих ядер.

Q	Число событий, %	$\langle n_s \rangle$	$\langle n_g \rangle$	$\langle n_b \rangle$	$\langle n_h \rangle$	$\langle n_{z=1} \rangle$	$\langle n_{z=2} \rangle$
0-15	$17((52 \pm 15)\%)$	924 ± 235	8,0 ± 2,1	$1{,}4\pm0{,}5$	9,4 ± 2,5	$5,3\pm0,7$	$1,1\pm0,\!4$
16-30	$12((36 \pm 12)\%)$	772 ± 241	$11,3\pm3,9$	$4{,}0\pm1{,}4$	$15{,}3\pm5{,}2$	$12,\!8\pm1,\!2$	$2{,}9\pm0{,}4$
31-50	$4((12 \pm 6)\%)$	376 ± 232	$4{,}5\pm4{,}2$	$2{,}0\pm1{,}6$	$6{,}5\pm{5{,}8}$	$19{,}0\pm3{,}5$	$7{,}8\pm3{,}5$
0–50	33	802 ± 148	$8{,}9\pm1{,}8$	$2{,}4\pm0{,}6$	$11,\!2\pm2,\!3$	$9,8\pm1,1$	$3,1\pm0,5$

Таблица 4. Характеристики событий ПР ядер Рb в зависимости от параметра удара

Таблица 5. Характеристики событий ПР ядер Аи в зависимости от параметра удара

Q	Число событий, %	$\langle n_s \rangle$	$\langle n_g \rangle$	$\langle n_b \rangle$	$\langle n_h \rangle$	$\langle n_{z=1} \rangle$	$\langle n_{z=2} \rangle$
0-15	$52((58\pm10)\%)$	290 ± 41	$11,3\pm1,7$	$1{,}7\pm0{,}4$	$13{,}0\pm2{,}0$	$7{,}6\pm0{,}3$	$1,3\pm0,2$
16-30	$31((35\pm7)\%)$	230 ± 43	$10{,}9\pm2{,}3$	$2{,}3\pm0{,}6$	$13{,}2\pm2{,}8$	$11{,}9\pm0{,}6$	$4{,}4\pm0{,}4$
31-50	$6((7 \pm 3)\%)$	108 ± 50	$5{,}7\pm3{,}9$	$2{,}5~\pm~2{,}3$	$8,2\pm5,9$	$16{,}7\pm1{,}7$	$10{,}3\pm1{,}2$
0–50	89	257 ± 28	$10,8\pm1,3$	$2{,}0\pm0{,}3$	$12,8\pm1,\!6$	$9{,}7\pm0{,}4$	$3{,}0\pm0{,}3$

Далее рассмотрим поперечные импульсы двухзарядных фрагментов в событиях ПР и периферических взаимодействиях тяжелых ядер в зависимости от угла вылета θ (или поперечного импульса $P_{\perp} = 2ZP_0 \sin \theta$).

Ранее [12] нами были исследованы поперечные импульсы (P_{\perp}) двухзарядных фрагментов (Z = 2) во взаимодействиях легких ядер $\binom{22}{10}$ Ne) с ядрами фотоэмульсии при импульсе 4,1 ГэВ на нуклон. Было показано, что интегральные угловые и, соответственно, распределения по поперечным импульсам P_{\perp} релятивистских фрагментов с Z = 2 могут быть описаны двумя экспонентами $N = D \exp\left(-\frac{\theta}{\theta_0}\right)$ (или $N = C \exp\left(-\frac{P_{\perp}}{P_{\perp 0}}\right)$ для взаимодействий этого ядра как с легкими, так и тяжелыми ядрами-мишенями). На графике в логарифмическом масштабе (lg $N = f(P_{\perp})$) этим экспонентам соответствуют прямые с разными наклонами (наблюдается излом).

Одна экспонента (до излома) соответствует малым значениям поперечных импульсов двухзарядных частиц, образованных в результате фрагментации возбужденного остаточного ядра-снаряда. Что касается другой экспоненты (после излома), она соответствует группе частиц со значительно большими P_{\perp} . О возможной причине образования таких частиц будет сказано ниже.

Анализ экспериментальных данных взаимодействия ядер $^{197}_{79}$ Au (10,6A ГэB) и $^{208}_{82}$ Pb (158A ГэB) с ядрами фотоэмульсии показал, что интегральные угловые распределения и, соответственно, P_{\perp} -распределения как для событий ПР, так и для периферических взаимодействий (как это видно из рис. 4) также описываются двумя экспонентами.

Для сравнения на рис. 5 представлены экспериментальные данные также событий ПР и периферических взаимодействий ядер $^{22}_{10}$ Ne с ядрами фотоэмульсии. Из рисунка видно, что и здесь наблюдаются изломы, т. е. θ - и P_{\perp} -распределения описываются двумя экспонентами. Следует отметить, что точке излома соответствует $\theta \approx 3^{\circ}$ ($P_{\perp} = 0.85 \ \Gamma$ эB/c), что

Рис. 4. Интегральные угловые и P_{\perp} -распределения двухзарядных частиц в центральных (\bullet) и периферических (\times) взаимодействиях: *a*) для $^{197}_{79}$ Au; *b*) для $^{208}_{82}$ Pb

совпадает для данных, полученных в вышеуказанной работе [12] (ядро $^{22}_{10}$ Ne взаимодействует с легкими и тяжелыми ядрами-мишенями). Значения величин, характеризующих экспоненциальные зависимости, представлены в табл. 6.

Из данных таблицы следует, что в широком диапазоне атомных весов ядер-снарядов (A = 22-208) и их энергии $E_K = (3,3-158)A$ ГэВ в ПР и периферических взаимодействиях выделяются две группы двухзарядных частиц: с малыми углами вылета (θ) и большими, которым соответствуют малые и большие P_{\perp} . Отметим также особенности, которые при этом наблюдаются:

- а) во всех случаях значения $\langle \theta \rangle$ и $\langle P_{\perp} \rangle$ в событиях ПР выше, чем в периферических;
- б) чем больше масса и энергия ядра-снаряда, тем меньше $\langle \theta \rangle$ и больше $\langle P_{\perp} \rangle$.

Рис. 5. Интегральные угловые и P_{\perp} -распределения двухзарядных частиц в событиях ПР (\bullet) и периферических (\times) взаимодействиях для $^{22}_{10}$ Ne

Ядро-	Р.	Тип взаимо-	N_{cof}	Na	$\langle \theta angle$	$^{0}_{\alpha}$, град	$\langle P_{\perp} \rangle$, ГэВ/ c		
снаряд	A Гэ́ \mathbf{B}/c	действий	200	u	До излома	После излома	До излома	После излома	
²² ₁₀ Ne	4,12	ПР Перифер.	2236 1760	2361 937	0,93 0,79	6,48 5,43	0,27 0,23	1,85 1,55	
¹⁹⁷ ₇₉ Au	11,6	ПР Перифер.	89 1035	265 4590	0,68 0,56	3,46 2,95	0,55 0,45	2,80 2,39	
$^{208}_{82}{\rm Pb}$	158	ПР Перифер.	32 368	101 900	0,06 0,05	0,67 0,66	0,66 0,55	7,44 7,26	

Таблица 6. Характеристики экспоненциальной зависимости $N = f(\theta, P_{\perp})$

Группа однозарядных частиц с малыми значениями $\langle P_{\perp} \rangle$, как уже отмечалось ранее, образована в результате фрагментации ядра-снаряда, т.е. получен тривиальный результат. Другое дело, группа частиц с большими значениями $\langle P_{\perp} \rangle$. Представляет большой интерес, откуда они взялись (?!). Их появление, возможно, связано с возникновением в процессе взаимодействия ядер короткоживущих двухзарядных кластерных структур и их рассеянием на нуклонах или кластерах ядра-мишени.

ЗАКЛЮЧЕНИЕ

Экспериментальное изучение полного разрушения ядер при высоких энергиях выявило, что:

— характеристики полного разрушения остаточного ядра (развал только на одно- и двухзарядные фрагменты) легких ядер-снарядов (${}^{12}_{6}$ C, ${}^{16}_{8}$ O, ${}^{22}_{10}$ Ne, ${}^{28}_{14}$ Si): среднее число

118 Андреева Н. П. и др.

фрагментов, отношение среднего числа двухзарядных фрагментов к однозарядным (степень «дробления»), вероятность реализации каналов распада на фрагменты существенно зависят от заряда остаточного ядра (массы) и атомного веса ядра-мишени, т.е. от числа провзаимодействовавших нуклонов $\nu = A - (A/n_p)Q$, что, в свою очередь, определяет энергию возбуждения остаточного ядра;

— в событиях полного разрушения тяжелых ядер ($^{197}_{79}$ Au, $^{208}_{82}$ Pb): а) средние множественности частиц ядра-мишени и фрагментов ядра-снаряда с зарядами 1 и 2 для одинаковых параметров удара не зависят от энергии налетающих ядер; б) распределения поперечных импульсов (P_{\perp}) двухзарядных фрагментов описываются двумя экспонентами, одна из которых соответствует малым значениям $\langle P_{\perp} \rangle$ двухзарядных фрагментов, образованных в результате фрагментации остаточного ядра-снаряда, другая — возможно, связана с возникновением в процессе взаимодействия ядер короткоживущих двухзарядных кластерных структур и их рассеянием на нуклонах или кластерах ядра-мишени;

— вероятность полного разрушения остаточных ядер с одинаковым зарядом Q, средние значения числа фрагментов $\langle n_{z=1} \rangle$, $\langle n_{z=2} \rangle$, протонов отдачи $\langle n_g \rangle$, фрагментов ядрамишени $\langle n_b \rangle$ не зависят от энергии близких по массе налетающих ядер ¹⁹⁷₇₉Au (10,7*A* ГэВ) и ²⁰⁸₈₂Pb (158*A* ГэВ), тогда как число генерированных частиц существенно возрастает (~3 раза) с увеличением энергии.

СПИСОК ЛИТЕРАТУРЫ

- 1. Tolstov K. D. // Z. Phys. A. 1981. V. 301. P. 339.
- 2. Богданов В. Г. и др. // ЯФ. 1983. Т. 38. С. 1493.
- 3. Марин А. и др. // ЯФ. 1979. Т. 29. С. 105.
- 4. Антончик В.А. и др. // ЯФ. 1980. Т. 32. С. 319.
- 5. Андреева Н. П. и др. // ЯФ. 1981. Т. 34. С. 790.
- 6. Андреева Н.П. и др. (ЕМИОІ) // ЯФ. 1992. Т. 55, вып. 4. С. 1010–1020.
- 7. Андреева Н. П. и др. (ЕМИОІ) // ЯФ. 1995. Т. 58, вып. 6. С. 1024–1031.
- 8. Андреева Н. П. и др. // Тр. междунар. научно-практ. конф. молодых ученых. 2004. С. 19-20.
- 9. Бондаренко А. И. и др. // ЯФ. 1999. Т. 62. С. 1612.
- 10. Bradnova V. et al. // Acta Physica Slovaca. 2004. V. 54, No. 4. P. 351-365.
- 11. Андреева Н. П. и др. // ЯФ. 2005. Т. 68, № 3. С. 484-494.
- 12. Андреева Н. П. и др. // Письма в ЖЭТФ. 1988. Т. 47, вып. 1. С. 20-24.

Получено 8 декабря 2005 г.