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MOVING SYSTEM WITH SPEEDED-UP EVOLUTION
M. I. Shirokov1

Joint Institute for Nuclear Research, Dubna

In the classical (nonquantum) relativity theory the course of the moving clock is dilated as compared
to the course of the clock at rest (the Einstein dilation). Any unstable system may be regarded as a
clock. The time evolution (e.g., the decay) of a uniformly moving physical system is considered using
the relativistic quantum theory. The example of a moving system is given, whose evolution turns out
to be speeded-up instead of being dilated. A discussion of this paradoxical result is presented.
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INTRODUCTION

The classical (nonquantum) relativistic theory states that the course of the moving clock
is dilated as compared to the course of the clock at rest (the Einstein dilation (ED)), e.g.,
see [1]. Any nonstationary physical system (e.g., an excited hydrogen atom) may be regarded
as a clock [1]. Here the time evolution of a moving physical system is considered using the
relativistic quantum theory.

The decay of the moving unstable particle was examined in papers [2Ä5]. The moving
system was described by a state with a sharp nonzero momentum. Its evolution was found
to be consistent with ED up to high precision. In [6] I pointed out an example of the
nonstationary state whose evolution is speeded-up instead of being dilated. This curious
result is the exact consequence of the relativistic quantum theory. By deˇnition this theory
must contain operators H and P of total energy and momentum (the Lee group generators of
time and space translations), total angular momenta, and generators of the Lorentz boosts N.
These generators must satisfy commutation relations of the Poincar	e group. Usual Dirac's
®instant form¯ of the theory is implied in which time evolution is described by the operator
exp (−iHt). Note that in this form interaction terms are contained in N along with H

H = H0 + Hint, N = N0 + Nint. (1)
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Indeed, the commutation relation [Ni, Pj ] = iδijH of the Poincar	e group means that if P
does not contain interaction terms, then N must contain them along with H .

A simple example of a theory like that may be the Lee model of the decay of an unstable
particle a into stable particles b and c: a → b+c. The interaction terms are of the three-linear
kind: âb̂†ĉ† + h.c. (momentum indices of destruction-creation operators are omitted).

The moving unstable particle state is described in [3Ä5] by the vector a†
pΩ0, a†

p being the

creation operator of the particle a with momentum p. When p = 0 the vector a†
0Ω0 describes

the state ®one unstable particle at rest, no decay products¯.
In [6], the moving particle was described by the vector Φv = Lva

†
0Ω0, Lv being the

Lorentz transformation (see Eq. (6) below) from the frame where the particle velocity is zero
to the frame where the particle velocity is equal to v. The state Φv differs from a†

pΩ0. Indeed,

Lv contains interaction. Therefore, Φv = Lva
†
0Ω0 has an admixture of decay particles (if

v �= 0) in analogy with the state exp (−iHt)a†
0Ω0. So, Φv is not a pure ®one-unstable-

particle-state¯, it contains decay products.
The system state Φv along with a†

pΩ0 is nonstationary and the system may be considered
as a quantum clock.

The evolution of the state Φv was compared in [6] with the evolution of the system at rest.
It turns out that the former is speeded-up as compared to the latter, not dilated. G. Hegerfeldt
in [7] pointed out a simple way of the derivation of this curious fact. I suppose that the
detailed presentation of this way is justiˇed. It is set forth in Sec. 1 and Appendix. I use
a modiˇed initial state Φv as compared to [6] and [7], and characterize its evolution by a
different amplitude. These modiˇcations allow us to meet the Hegerfeldt critical remarks,
see [7, p. 208]. The result is discussed in Conclusion.

1. MOVING SYSTEM WITH SPEEDED-UP EVOLUTION

Consider the scalar product

V (v, t) = 〈Lvϕ0, exp (−iHt)LvΦ0〉. (2)

Here ϕ0 is a non-normalizable eigenvector of the total system momentum having zero eigen-
value: Pϕ0 = 0. The vector Φ0 describes a normalized packet having zero average momentum

〈Φ0, Φ0〉 = 1, 〈Φ0,PΦ0〉 = 0.

In [6] and [7] the akin scalar product

〈Lvϕ0, exp (−iHt)Lvϕ0〉 (3)

was considered. Being a survival amplitude it has the following deˇciency: it is a scalar
product of two non-normalized vectors and has no physical meaning. In particular, at t = 0
Eq. (2) turns into 〈ϕ0, ϕ0〉 = ∞, which is inadmissible for the amplitude of probability (the
latter cannot exceed the unit). Meanwhile, V (v, t) is the scalar product of non-normalizable
and normalizable vectors. It is not a survival amplitude: Lvϕ0 differs from the initial state
LvΦ0. However, V (v, t) may be endowed with the meaning of a probability amplitude of
ˇnding (detecting) the state Lvϕ0 in the state exp (−iHt)LvΦ0, see [8, v. I, ch.V, sec. 10].
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Note that amplitude (3) makes sense if the momentum would have a discrete spectrum
so that 〈ϕ0, ϕ0〉 = 1. This would be the case if the system is implied to be in a large but
ˇnite space volume and usual periodicity conditions are imposed (or the volume opposite
boundaries are identiˇed). However, a discrete momentum spectrum is not consistent with
the Lorentz transformation law which will be essentially used below, see Eqs. (5) and (11).

Using the formula L−1f(H)L = f(L−1HL) (where f is an exponential) one can repre-
sent (2) as

V (v, t) = 〈ϕ0, L
†
v exp (−iHt)LvΦ0〉 = 〈ϕ0, exp (−itL†

vHLv)Φ0〉. (4)

Here L†
vHLv is the Lorentzian-transformed Hamiltonian. If H and P were c-numbers, then

the transformed energy would have the known expression in terms of initial energy and
momentum:

H ′ = Hγ − Pvγ, γ = (1 − v2)−1/2.

Intuitively one may expect that a similar equation holds for operators Ĥ , P̂:

L†
vĤLv = Ĥγ − P̂vγ. (5)

This conjuncture may be conˇrmed by an algebraic calculation with

Lv = exp iβN, tanh |β| = |v|, β‖v (6)

(see [9]). This calculation is carried out in Appendix.
In what follows let us assume v = (0, 0, v), β = (0, 0, β) and that N , P̂ denote,

respectively, N3, P̂3. Now we may continue Eq. (4):

V (v, t) = 〈ϕ0, exp [−it(Ĥγ − P̂ vγ)]Φ0〉 = 〈ϕ0, exp (itP̂ vγ) exp (−itĤγ)Φ0〉 =

= 〈ϕ0, exp (−itĤγ)Φ0〉. (7)

Here the equation exp (A + B) = exp B exp A has been used which is valid for commuting
operators A = −itĤγ and B = itP̂ vγ. As ϕ0 is the P̂ eigenvector corresponding to zero
eigenvalue, we have exp (−itP̂ vγ)ϕ0 = ϕ0. So, we obtain

V (v, t) ≡ 〈Lvϕ0, exp (−itH)Φv〉 = 〈ϕ0, exp (−itHγ)Φ0〉. (8)

Compare the result with the amplitude V (v, t) at v = 0 (when Lv = 1). One obtains

V (v, t) = V (0, tγ). (9)

This equation is an exact expression of V (v, t) in terms of V (0, t). I do not intend and need
to calculate V (0, t) (for this calculation see [2]). As γ = (1 − v2)−1/2 � 1, relation (9)
shows that a moving system evolves faster than the system at rest: the amplitude V (v, t) at
the moment t assumes the value that V (0, t) assumes at a later moment γt.

For the corresponding probabilities one obtains from Eq. (9) the equation

|V (v, t)|2 = |V (0, tγ)|2. (10)

It is of interest to consider such properties of the state Lvϕ0 as its momentum and energy.
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One may show that Lvϕ0 is not an eigenvector of the total momentum P̂ . For this purpose
the equation

e−iβN P̂ eiβN = γP̂ − γvĤ, tanh β = v (11)

may be used. It is the Lorentz transformation of the momentum operator, cf. (5).
Using Eq. (11) one may calculate average momentum 〈P 〉v of the state Lvϕ0. One obtains

〈P 〉v ≡ 〈Lvϕ0, P̂Lvϕ0〉 = γv〈ϕ0, Ĥϕ0〉. (12)

Here 〈ϕ0, Ĥϕ0〉 is the average energy of the state ϕ0. Note that ϕ0 is not Ĥ eigenvector: ϕ0

describes an unstable particle and is a nonstationary state.
Using Eq. (5) one may calculate the average energy 〈E〉v of the state Lvϕ0

〈E〉v ≡ 〈Lvϕ0, ĤLvϕ0〉 = γ〈ϕ0, Ĥϕ0〉. (13)

It follows from Eqs. (12) and (13) that 〈P 〉v and 〈E〉v satisfy the relativistic relation
〈P 〉v = v〈E〉v .

2. TIME EVOLUTION OF A MOVING UNSTABLE PARTICLE
WITH EXACT MOMENTUM

In [3Ä5], the state of a moving unstable particle was described by the eigenvector ψp of the

momentum P̂ : P̂ψp = pψp (if ψp describes one unstable particle, then the total momentum
coincides with particle momentum). I assume that the momentum spectrum is discrete (see
Sec. 1) and consider the survival amplitudes

Ap(t) = 〈ψp, exp (−itH)ψp〉, (14)

A0(t) = 〈ψ0, exp (−itH)ψ0〉. (15)

Now the amplitude Ap(t) is not connected with A0(t) by such a simple relation as V (v, t)
and V (0, t) do. To compare Ap(t) with A0(t), one has to calculate them separately. Let us
write out from [5] approximates expressions for Ap(t) and A0(t) which are valid for time
not too short and not too long (when the decay laws are exponential)

A0(t) ∼= exp (−imt − Γt/2), (16)

Ap(t) ∼= exp (−imtγm − Γt/2γm), γm =
√

p2 + m2/m. (17)

Here m is the average (or most probable) mass 〈ψ0, Hψ0〉 of the unstable particle. It follows
from Eqs. (16) and (17) that

|Ap(t)|2 ∼= |A0(t/γm)|2. (18)

Note that γm coincides with (1−v2)−1/2 at v = P/
√

P 2 + m2. Equation (18) means that the
Einstein dilation holds. This must be juxtaposed to the speeding-up expressed by Eq. (10).
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CONCLUSION

When deriving the Einstein dilation (ED) in the classical (nonquantum) relativity theory,
one uses the notion of a clock which may simultaneously have the exact (e.g., zero) velocity
and be in a deˇnite position (e.g., in the coordinate origin). This is impossible for a quantum
clock.

Any nonstationary (unstable) quantum system may be regarded as a quantum clock. The
time evolution of the moving system is here considered by using the relativistic quantum
theory, see Introduction. The Lorentzian transformation of coordinates and time is not used.
Instead, the transformation of momenta and energy is exploited, see Eqs. (11) and (5).

It was earlier shown in [3Ä5] that ED holds approximately when the moving quantum
system has deˇnite momentum, see Eq. (18). Here I present another description of the
moving system. Its time evolution turns out to be speeded-up instead of being dilated.

Note that the basic relation (9) is true for any choice of the vector Φ0 which describes
the state of the system at rest. The relation does not depend on the speciˇc choice of Φ0. Φ0

may describe not only an unstable particle but also any nonstationary system, e.g., oscillating
one (K0-meson, oscillating neutrino [6]). We need not also to know the speciˇc interaction
Hamiltonian and to calculate the time evolution of the system at rest. Equation (9) under
discussion describes a relation between evolution laws of the moving system and the system
at rest but not the laws separately.

The obtained relation, Eq. (9), between the laws of evolution of the moving system and
the system at rest is the exact corollary of the used quantum postulates and of the assumed
description of the moving system. Equation (9) does not depend on a concrete interaction
guiding the evolution.

Quantum postulates do not forbid the existence of the state Φv which gives speeding-
up. However, experiments agree with ED. The used quantum theory may explain this fact
assuming that the state of the measured unstable system is of the kind ψp, see Sec. 2.

It is more natural to suppose that the initial state prepared in a real experiment is not the
state ®unstable particle, no decay products¯ but rather the state ®unstable particle together
with decay products (the background)¯. The latter may be assumed to be a superposition of
states ψp and Φv . When the γ-factor is sufˇciently large, the short-lived component Φv dies
out as time grows. Only the long-lived component ψp survives. In other words, experiments
tend to detect the long-lived component. So, the measured lifetime of such a moving system
may depend on a measuring device.

Acknowledgements. I am grateful to Prof. G. C.Hegerfeldt for his comment on my
paper [6]. I thank also Profs. B.M.Barbashov, O.V. Teryaev and Dr. V.A.Naumov for
valuable discussions.

APPENDIX

The derivation of the main result (10) is based on the equation

exp (iβN)H exp (−iβN) = Hγ − Pvγ. (A.1)

The equation will be proved by using the method of ®parameter differentiation¯, e.g., see [10,
sec. 6, p. 969].
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Suppose that the vector v = (v1, v2, v3) is directed along the z-axis so that v1 = v2 = 0.
Note that β is parallel to v. Then exp (iβN) = exp (iβ3N3). In what follows v, β, N , P
denote, respectively, v3, β3, N3, P3. Three operators N , H , P form the subalgebra of the
Poincar	e generators:

[N, H ] = iP, [N, P ] = iH, [H, P ] = 0. (A.2)

Any element of this subalgebra may be expanded over N , H , P . So does, in particular, the
element Hβ = exp (iβN)H exp (−iβN):

Hβ = h(β)H + p(β)P + n(β)N. (A.3)

Here h(β), p(β), and n(β) are c-number functions of β. Using the well-known expansion

eAB e−A = B + [A, B] +
1
2!

[A, [A, B]] + . . .

one may verify that n(β) in Eq. (A.3) is zero. We have

dHβ

dβ
=

Hdh(β)
dβ

+
Pdp(β)

dβ
. (A.4)

On the other hand,

dHβ

dβ
=

d
(
eiβNH e−iβN

)

dβ
= iN eiβNH e−iβN − i eiβNH e−iβNN =

= i[N, Hβ] = i[N, hH + pP ] = −hP − pH (A.5)

(the commutator relations (A.2) were used). Equating the r.h.s. of (A.4) and (A.5) we obtain

Hdh(β)
dβ

+
Pdp(β)

dβ
= −Ph(β) − Hp(β). (A.6)

Since H and P are independent operators, we must have

dh(β)
dβ

+ p = 0,
dp(β)
dβ

+ h(β) = 0. (A.7)

This is the system of ordinary differential equations. Its solution may be found in the book [11,
ch.VIII, sec. 8.3]:

h(β) = cosh β, p(β) = − sinh β. (A.8)

So, we get from Eqs. (A.3) and (A.8)

eiβNH e−iβN = H cosh β − P sinh β. (A.9)

As tanhβ = v, we have

cosh β = (1 − tanh2 β)−1/2 = (1 − v2)−1/2 = γ, sinh β = vγ. (A.10)

So, Eq. (A.9) may be rewritten as Eq. (5).
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