ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ИЗМЕРЕНИЕ ТЕНЗОРНОЙ ПОЛЯРИЗАЦИИ ПРОХОДЯЩЕГО ЧЕРЕЗ ВЕЩЕСТВО ПУЧКА ДЕЙТРОНОВ

Л. С. Ажгирей^a, Т. А. Васильев^a, Ю. В. Гурчин^a, В. Н. Жмыров^a, Л. С. Золин^a, А. Ю. Исупов^a, А. К. Курилкин^a, П. К. Курилкин^a, В. П. Ладыгин^a, А. Г. Литвиненко^a, В. Ф. Переседов^a, С. М. Пиядин^a, С. Г. Резников^a, А. А. Ровба^б, П. А. Рукояткин^a, А. В. Тарасов^a, А. Н. Хренов^a, М. Янек^a

^а Объединенный институт ядерных исследований, Дубна

⁶ Научно-исследовательское учреждение «Институт ядерных проблем Белорусского государственного университета», Минск

Описаны результаты измерений и процедура обработки данных о тензорной поляризации пучка дейтронов, возникающей при его прохождении через вещество, полученных в сеансе работы на нуклотроне в июне 2008 г. на выведенном пучке неполяризованных дейтронов с импульсом 5 ГэВ/с. Наблюдавшийся эффект сравнивается с вычислениями, выполненными в рамках теории многократного рассеяния Глаубера.

The results of measurements and handling procedure of data on the tensor polarization of the deuteron beam arising as the beam passes through matter obtained at the Nuclotron during June 2008 run using an extracted unpolarized 5 GeV/c deuteron beam are described. The effect observed is compared with calculations made in the framework of the Glauber multiple scattering theory.

PACS: 24.70.+s; 25.45.-z; 29.27.Hj

введение

В последние годы становится все более очевидным, что многие современные проблемы ядерной физики и физики элементарных частиц нельзя решить без углубленного исследования поляризационных эффектов, которое сопряжено с поиском новых методических подходов. Например, эффект фильтрации по спину, возникающий при взаимодействиях сильновзаимодействующих частиц (протонов), предлагается использовать для создания поляризованных пучков протонов и антипротонов в накопительных кольцах [1] для решения проблемы изучения распределения кварков в нуклонах с целью преодоления так называемого спинового кризиса.

Явление фильтрации по спину может иметь место и во взаимодействиях других адронов, в частности, дейтронов. В случае дейтрона причиной этого эффекта является наличие у дейтрона квадрупольного момента, т.е. то обстоятельство, что дейтрон несферичен в конфигурационном пространстве.

50 Ажгирей Л.С. и др.

Впервые, пожалуй, на возможность получения выстроенных по спину дейтронов, рассеянных на мишени, было обращено внимание в работах [2, 3]. Здесь в рамках теории многократного рассеяния Глаубера [4] было показано, что в процессе упругого рассеяния пучка неполяризованных дейтронов на неполяризованной водородной мишени рассеянные дейтроны должны быть выстроены по спину (т.е. в конечном состоянии проекция спина, поперечная к оси квантования, должна преобладать). Действительно, в эксперименте по двойному dp-рассеянию, выполненном на принстон-пенсильванском ускорителе, обеспечивавшем выведенный пучок дейтронов с импульсом 3,6 ГэВ/с и интенсивностью 10^{12} с⁻¹, наблюдалась выстроенность дейтронов по спину и их векторная поляризация в интервале передач 4-импульса от 0,13 до 0,54 (ГэВ/с)² [5].

Заметная тензорная анализирующая способность наблюдалась в инклюзивной реакции неупругого рассеяния дейтронов A(d, d')X в области вблизи передач 4-импульса |t| = 0,3 (ГэВ/c)² в неупругом рассеянии поляризованных дейтронов с начальными импульсами 4,5 и 5,5 ГэВ/c на ядрах водорода и углерода под углом 0° [6].

В. Г. Барышевский показал [7], что прохождение высокоэнергичных частиц со спином ≥ 1 через вещество сопровождается новыми эффектами: осцилляциями спина и спиновым дихроизмом (в оптике дихроизмом называется различное поглощение веществом света в зависимости от его поляризации). Эти эффекты могут приводить к поляризации пучка, проходящего через мишень. Первое наблюдение возникновения тензорной поляризации у первоначально неполяризованного пучка после его прохождения через неполяризованную мишень было осуществлено для дейтронов с энергией до 20 МэВ, пролетающих через углеродные фольги [8].

Первые измерения тензорной поляризации пучка, возникающей после прохождения углеродной мишени, были выполнены в Дубне с помощью неполяризованного пучка дейтронов с импульсом 5 ГэВ/с, выведенного из нуклотрона [9]. В настоящем сообщении описываются результаты недавних опытов на нуклотроне, выполненных с целью подтверждения наблюдавшегося ранее эффекта.

ЭКСПЕРИМЕНТ

Схема эксперимента показана на рис. 1. С помощью магнитных элементов выведенный из нуклотрона пучок дейтронов интенсивностью $5 \cdot 10^8 - 3 \cdot 10^9$ частиц/сброс направлялся на мишени T1 толщиной 54, 83 и 137 г/см², поочередно устанавливавшиеся внутри

Рис. 1. Схема эксперимента

бетонной защиты вблизи фокуса F3 магнитооптического канала. Поляризация прошедших через мишени T1 дейтронов анализировалась с помощью мишени-анализатора T2, установленной вблизи фокуса F5. Магнитные линзы и диполи схематически обозначены как L1, L2, L3 и M1, M2, M3. Часть магнитооптического канала от мишени T1 до фокуса F5 настраивалась на импульс ~ 5 ГэВ/*c*, а часть позади F5 — на импульс 3,3 ГэВ/*c*.

Импульс дейтронов, выведенных из ускорителя, настраивался таким образом, чтобы с учетом ионизационных потерь в мишени T1 на выходе из нее он равнялся 5,0 ГэВ/с.

Периодически производились также измерения без мишени Т1. Интенсивность пучка контролировалась ионизационными камерами, помещенными вблизи фокусов F3, F4 и F5. Интенсивность вторичного пучка между фокусами F4 и F5 составляла $5 \cdot 10^6 - 3 \cdot 10^7$ частиц за сброс интенсивности. Отношение интенсивностей пучка в фокусах F5 и F3 в зависимости от толщины ΔC мишени T1 показано на рис. 2.

Перед июньским сеансом работы нуклотрона 2008 г. схема эксперимента была модернизирована в следующих отношениях: 1) за мишенью T1 была установлена дополнительная пятиэлектродная ионизационная камера для контроля положения и интенсивности пучка на входе в дублет линз L1; 2) интенсивность падающего на мишень T2 пучка мониторировалась двумя телескопами сцинтилляционных счетчиков, расположенных в задней полусфере относительно мишени T2 под углами 150° (М1) и 210° (М2).

Рис. 2. Отношения интенсивностей в фокусах F5 и F3 для мишеней T1 разной толщины, зарегистрированные ионизационными камерами

Тензорная поляризация пучка дейтронов, прошедших через мишень T1 под углом 0°, определялась путем выделения реакции стриппинга дейтронов на бериллиевой мишени T2 толщиной 8 см, помещенной вблизи фокуса F5 [11]. При этом использовался тот факт, что реакция

$$l + A \to p + X \tag{1}$$

с испусканием протонов под нулевым углом с импульсом $p_p \sim 2/3p_d$ имеет известную тензорную анализирующую способность $T_{20} = -0.82 \pm 0.04$, не зависящую от атомного номера ядра-мишени (при A > 4) и от импульса падающих дейтронов в области между 2,5 и 9,0 ГэВ/с [12]. Если обозначить дифференциальные сечения реакции (1) в случае неполяризованных и поляризованных пучков дейтронов соответственно через σ_0 и σ' , то для тензорной поляризации P_{ZZ} имеет место соотношение [9,10]

$$P_{ZZ} = \frac{\sqrt{2}}{T_{20}} \Big(\frac{\sigma'}{\sigma_0} - 1 \Big), \tag{2}$$

причем ось квантования совпадает с направлением вылетающих вперед протонов.

Вторичные частицы, испущенные из мишени T2 под углом 0°, с помощью отклоняющих магнитов и магнитных линз направлялись к фокусу F6. Аксептансы по импульсу и полярному углу, определенные методом Монте-Карло, составляли $\Delta p/p \sim \pm 2\%$ и ± 8 мрад соответственно.

52 Ажгирей Л.С. и др.

В качестве тригтера использовались совпадения сигналов от сцинтилляционных счетчиков, расположенных вблизи фокуса F6. Вместе с вторичными протонами аппаратура регистрировала дейтроны, испытавшие неупругое рассеяние. Зарегистрированные частицы идентифицировались в процессе обработки накопленных данных на основе информации об их времени пролета на расстоянии ~ 28 м между стартовым и тремя стоповыми счетчиками. Достигнутое разрешение по времени пролета $\sim 0,2$ нс позволяло полностью разделять вторичные протоны и дейтроны. Качество разделения видно из рис. 3.

Рис. 3. Спектр времени пролета для одного из каналов регистрации

Рис. 4. Отношения чисел протонов к показаниям монитора (M1b + M2b) в фокусе F5 для мишеней T1 разной толщины: черные кружки — 137 г/см²; звездочки — 83 г/см²; крестики — 54 г/см²; светлые кружки — 0 г/см²

Как уже упоминалось, в этом сеансе в качестве мониторных показаний использовалась сумма отсчетов, зарегистрированных телескопами М1 и М2. Числа протонов, нормированные на показания монитора, зарегистрированные в фокусе F6 в экспозициях с углеродными мишенями разной толщины, показаны на рис. 4. Здесь темные кружки, звездочки и крестики соответствуют углеродным мишеням толщиной 137, 83 и 54 г/см², а светлые кружки относятся к измерениям без мишени Т1. Значения этих отношений, усредненные по всем экспозициям, показаны штриховыми линиями. Видно, что точки, соответствующие разным мишеням, сгруппированы в разных областях графика. Разброс точек превышает статистические ошибки, которые меньше, чем размеры точек. Основными причинами этого разброса, по-видимому, являются 1) нестабильности токов в магнитных элементах магнитооптического канала; 2) неравномерное распределение интенсивности выведенного пучка дейтронов в пределах сброса интенсивности, что увеличивает погрешности, связанные с разбросом «мертвого» времени регистрирующей аппаратуры.

Рис. 5. Отношения выходов протонов N(p) к показаниям монитора M2b в фокусе F5 для мишеней T1 разной толщины в зависимости от номера экспозиции (темные точки). Светлыми точками показаны также отношения блокированных и неблокированных показаний ионизационной камеры M5

На рис. 5 приведены значения выходов протонов, нормированные на блокированные отсчеты монитора M2b для отдельных экспозиций, вместе с отношениями блокированных и неблокированных показаний ионизационной камеры M5 для тех же экспозиций, характеризующими долю «живого» времени измерений. Видно, что выдержать близкие значения M5b/M5 при повторных измерениях с мишенями разной толщины не удается из-за нестабильности режима вывода пучка из ускорителя (особенно после технологических и аварийных прекращений ускорения).

Известно, что дифференциальное сечение испускания протонов под малыми углами в реакции стриппинга дейтронов является быстроспадающей функцией по мере увеличения угла и импульса вторичных протонов от значения $p_p = p_d/2$ [13, 14]. На рис. 6 показано инвариантное дифференциальное сечение процесса ${}^{1}\text{H}(d, p)X$, вычисленное в рамках динамики све-

Рис. 6. Инвариантное дифференциальное сечение $f(p, \theta) = (E/p^2)d^2\sigma/d\Omega dp$ испускания протонов в реакции стриппинга дейтронов с импульсом 5 ГэВ/с в зависимости от импульса p и угла вылета θ протона в лабораторной системе

тового фронта [15] с использованием волновой функции дейтрона для парижского потенциала. Расчеты показывают, что в интервале углов 0–8 мрад и при увеличении импульса протонов от 3,3 ГэВ/с на 2% дифференциальное сечение падает примерно на 25%. Дифференциальное сечение реакции A(d, d')X ведет себя значительно более плавно, в интересующей нас области вблизи $2p_d/3$ оно почти постоянно [16]. Резкая зависимость отношения выхода числа протонов к числу дейтронов N(p)/N(d) при небольшом изменении импульса частиц вблизи установленного значения $p_p = p'_d = 0,66p_d$ была наблюдена в отдельном методическом сеансе по измерению импульсной зависимости реакции стриппинга.

Таким образом, вариации отношения числа протонов к числу дейтронов могут указывать на изменения токов в магнитных элементах канала, приводящие к изменению импульса регистрируемых частиц. Отношение числа протонов к числу дейтронов N(p)/N(d), усредненное по каналам регистрации, в зависимости от номера экспозиции (т. е. в хронологическом порядке) приведено на рис. 7. Сплошной линией показана линейная аппроксимация этих данных в зависимости от номера экспозиции. Помимо разбросов точек в начале и конце сеанса заметен также временной тренд данных. Выпадающие из плавной зависимости точки в районе экспозиций 70–80 (впоследствии относящиеся к этим экспозициям данные были исключены из обработки) связаны с ошибочной коммутацией токов в магнитных элементах.

Рис. 7. Отношения N(p)/N(d) выходов протонов и дейтронов, усредненные по каналам регистрации, в зависимости от номера экспозиции

Рис. 8. Корреляция между отношением R = N(p)/N(d) (для 4-го канала регистрации) и разностью времен прибытия сигналов от протонов и дейтронов Δt

С другой стороны, поскольку разность $\Delta t = t_d - t_p$ в прибытии сигналов, вызванных дейтронами и протонами, однозначно связана с импульсом этих частиц,

$$\Delta t = \frac{L}{c} \left(\sqrt{\mu_d^2 + 1} - \sqrt{\mu_p^2 + 1} \right), \tag{3}$$

где L — длина времяпролетного пути; $\mu_p = m_p/p$, $\mu_d = m_d/p$, p — импульс, то разброс в этой величине отражает разброс в импульсах регистрируемых частиц.

Для схемы эксперимента, реализованной в нашем случае, dp/dt = -0.172 (ГэВ/с)/нс. Корреляция между отношением N(p)/N(d) и полученной в эксперименте разностью Δt для одного из каналов регистрации показана на рис. 8. Аналогичные

зависимости имеют место и для остальных каналов. Эти корреляции описываются уравнениями

$$R = \frac{N(p)}{N(d)} = A + B\Delta t.$$
⁽⁴⁾

Напомним, что магнитооптический канал за фокусом F5 был настроен на импульс 3,3 ГэВ/с. В предположении, что середина распределения (4) соответствует этому импульсу, найденные для всех каналов регистрации зависимости (4) дают возможность для каждой i-й экспозиции ввести поправочные коэффициенты C[i] к числу протонов, связанные с плаванием токов в магнитных элементах:

$$C[i] = \frac{R(3,3)}{A + B\Delta t[i]}.$$

Возможная систематическая ошибка измеряемой асимметрии, вызванная плаванием токов в элементах канала, оценивается равной ± 20 %.

Неравномерное распределение интенсивности в пределах сброса является еще одним фактором, приводящим к некорректному функционированию регистрирующей аппаратуры и получению искаженных данных. Оценить влияние этого фактора позволяют измерения показаний счетчиков, выполненные без блокировки (N) и с блокировкой (N_b) электронной аппаратуры. При невысоких скоростях счета импульсов от частиц справедливо соотношение

$$\kappa = \frac{\tau}{T} = \frac{1}{N_b} - \frac{1}{N},\tag{5}$$

где T — длительность сброса, а au — разрешающее («мертвое») время системы.

В ходе сеанса регистрировались как блокированные, так и неблокированные показания одного из стартовых сцинтилляционных счетчиков. Анализ найденной из этих показаний зависимости отношения $r = N_b/N$ от интенсивности N в сбросе (для разных экспозиций) показал, что при малой интенсивности вычисленная величина τ/T соответствует времени блокировки системы, равному ~ 200 мкс, а при увеличении интенсивности эта величина возрастает на порядок из-за модуляции интенсивности в растяжке пучка. Основанное на соотношении (5) выражение

$$\frac{1}{M1_b} = \frac{1}{N_b} - \frac{1}{N} + \frac{1}{M1}$$
(6)

использовалось для вычисления блокированного счета мониторного телескопа M1 из его неблокированных показаний. Экспозиции, для которых значения $r = N_b/N$ выпадали из плавных аппроксимирующих зависимостей r(N), были исключены из дальнейшей обработки. Отметим, что отбраковка экспозиций по этому критерию в основном коррелирует с отбраковкой их по критерию плавности отношения N(p)/N(d) (см. рис. 7). Это свидетельствует о согласованности обоих критериев отбора.

О наличии значительной модуляции в растяжке пучка можно судить также по приведенной на рис. 9 зависимости отношения блокированных и неблокированных показаний монитора M5 в фокусе F5 от интенсивности пучка частиц в районе мишени T2. Пунктиром показана зависимость, вычисленная с учетом блокировки аппаратуры на время считывания данных о событии ~ 200 мкс в предположении отсутствия модуляции интенсивности в растяжке пучка. Видно, что реальная величина «мертвого» времени значительно выше.

Рис. 9. Зависимость отношения числа блокированных отсчетов монитора M5 к числу неблокированных от интенсивности пучка в сбросе в фокусе F5. Штриховой линией показана расчетная зависимость в случае блокировки аппаратуры на время считывания данных при отсутствии модуляции растяжки

Рис. 10. Отношения чисел протонов к показаниям монитора, усредненные по всем экспозициям, для мишеней Т1 разной толщины: черные кружки — 137 г/см²; звездочки — 83 г/см²; крестики — 54 г/см²; светлые кружки — 0 г/см²

Рис. 11. Тензорная поляризация дейтронов в зависимости от толщины углеродной мишени Т1. Светлые точки — результаты работы [9]; черные точки — результаты настоящей работы. Пунктирные линии ограничивают коридор ошибок. Сплошная кривая — результат вычисления P_{ZZ} в рамках модели многократного рассеяния [17]

Отношения чисел протонов к показаниям монитора (M1*b*+M2*b*) для разных мишеней, усредненные по всем экспозициям, показаны на рис. 10.

Значения тензорной поляризации P_{ZZ} прошедших через мишень T1 дейтронов были вычислены согласно выражению (2) отдельно для каждого канала регистрации, и затем они были усреднены по каналам; в качестве σ_0 при этом был использован счет без мишени. Найденные в описываемом сеансе значения тензорной поляризации в зависимости от толщины мишени T1 показаны черными точками на рис.11. Отметим, что приведенные значения найдены путем усреднения результатов двух независимых процедур обработки данных. Светлыми точками показаны результаты предыдущего ceanca [9]. Коридор ошибок, соответствующий обеим сериям измерений, показан штриховыми линиями. Расчеты выстроенности по спину пучка дейтронов после прохождения через вещество в рамках модели многократного рассеяния Глаубера были сделаны в работе [17]. Результаты расчетов для углеродной мишени показаны на рис. 11 сплошной кривой.

ЗАКЛЮЧЕНИЕ

Выполненные в июне 2008 г. измерения в основном подтверждают результаты экспериментального наблюдения фильтрации дейтронов по спину при прохождении пучка через слой вещества, полученные в марте 2007 г. Несмотря на определенные различия в измеренных в этих двух опытах зависимостях тензорной поляризации дейтронов p_{ZZ} от толщины углеродного фильтра ΔC , факт увеличения выстроенности дейтронов по спину по мере роста ΔC подтверждается. Отмеченные расхождения объясняются значительной систематической погрешностью, обусловленной несовершенством системы контроля магнитной оптики канала медленного вывода частиц из ускорителя. Согласно требованиям описываемого эксперимента допустимый уровень отклонений значений токов в магнитных элементах не должен превышать 1 %. В настоящее время на нуклотроне проводятся мероприятия по совершенствованию систем питания и компьютеризации контроля.

Полученная по двум сериям измерений зависимость тензорной поляризации пучка дейтронов от толщины углеродного фильтра имеет вид

$$p_{ZZ} = (1,226 \pm 0,209)\Delta C \ (\kappa r/cm^2)$$

и в пределах коридора ошибок согласуется с результатами расчетов [17] в интервале ΔC до 0,15 кг/см².

Авторы признательны проф. В. Г. Барышевскому за полезные обсуждения. Работа частично поддержана грантом БРФФИ-ОИЯИ-2008.

СПИСОК ЛИТЕРАТУРЫ

- 1. Rathmann F. et al. // Phys. Rev. Lett. 1993. V.71. P. 1379.
- 2. Franco F., Glauber R. J. // Phys. Rev. Lett. 1969. V. 22. P. 370.
- 3. Harrington D. // Phys. Lett. B. 1969. V. 29. P. 188.
- 4. Glauber R.J. Lectures in Theoretical Physics / Ed. by W.E. Brittin et al. V.1. N.Y., 1959. P.315.
- 5. Bunce G. et al. // Phys. Rev. Lett. 1972. V. 28. P. 120.
- 6. Azhgirey L.S. et al. // Phys. Lett. B. 1995. V. 361. P. 21.
- 7. Baryshevsky V. G. // J. Phys. G: Nucl. Part. Phys. 1993. V. 19. P. 273.
- 8. Baryshevsky V. et al. hep-ex/0501045. 2005. V.2.
- 9. Azhgirey L. S. et al. // Part. Nucl., Lett. 2008. V. 5, No. 5(147). P. 728-735.
- 10. Haeberli W. // Ann. Rev. Nucl. Sci. 1967. V. 17. P. 373.
- 11. Zolin L. S. et al. // JINR Rapid Commun. 1998. No. 2[88]. P. 27.

- 58 Ажгирей Л.С. и др.
- Perdrisat C. F. et al. // Phys. Rev. Lett. 1987. V. 59. P. 2840; *Punjabi V. et al.* // Phys. Rev. C. 1989. V. 39. P. 608; *Ableev V. G. et al.* // Pis'ma Zh. Eksp. Teor. Fiz. 1988. V. 47. P. 558; JINR Rapid Commun. 1990. No. 4[43]. P. 5; *Aono T. et al.* // Phys. Rev. Lett. 1995. V. 74. P. 4997.
- Ableev V. G. et al. // Nucl. Phys. A. 1983. V. 393. P. 491; Zaporozhets S. A. et al. // Proc. of the VIII Intern. Seminar on High Energy Physics Problems, Dubna, 1986. V. 1. P. 341.
- 14. Azhgirey L. S., Ignatenko M. A., Yudin N. P. // Z. Phys. A. 1992. V. 343. P. 35.
- 15. Ажгирей Л. С., Юдин Н. П. // ЯФ. 2005. Т. 68. С. 163.
- 16. Ажгирей Л. С. и др. // ЯФ. 1978. Т. 27. С. 1027.
- 17. Azhgirey L. S., Tarasov A. V. // Part. Nucl., Lett. 2008. V. 5, No. 5(147). P. 714-719.

Получено 17 апреля 2009 г.