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NESTED BETHE ANSATZ FOR Y(gl(n)) OPEN SPIN
CHAINS WITH DIAGONAL BOUNDARY CONDITIONS

S. Belliard a,1, E. Ragoucy b,2

a Istituto Nazionale di Fisica Nucleare, Sezione di Bologna, Italy
b Laboratoire de Physique Th	eorique LAPTH, UMR 5108 du CNRS, associ	ee 
a l'Universit	e de Savoie,

Annecy-le-Vieux Cedex, France

In this proceeding we present the nested Bethe ansatz for open spin chains of XXX-type, with
arbitrary representations (i.e., ®spins¯) on each site of the chain and diagonal boundary matrices
(K+(u), K−(u)). The nested Bethe anstaz applies for a general K−(u), but a particular form of
the K+(u) matrix. We give the eigenvalues, Bethe equations and the form of the Bethe vectors for the
corresponding models. The Bethe vectors are expressed using a trace formula.

PACS: 02.20.-a

INTRODUCTION

Recently we proposed a uniˇed formulation for nested Bethe ansatz for closed and open
spin chains with ®quantum group¯ [3,4, 10,11], or ®re�exion algebra¯ [1,2] related to gl(n)
and gl(n|m) Lie algebras [8,9]. In this proceeding we focus on open anisotropic spin chains,
or of XXX-type, related to the Yangian and with the re�ection algebra. More precisely, we
give Bethe vectors, eigenvalues and Bethe equations for the ®universal¯ transfer matrix, an
operator over the tensor product of L highest weight representations of the Yangian. These
representations are chosen in the set of irreducible ˇnite dimensional representations. This
approach generalizes the fundamental case studies in [6] and needs deeper analysis of the
algebraic structure of the re�ection algebra to be performed. The main points of this work are
the explicit construction of the Bethe vectors as a trace formula, the construction of the Bethe
vectors using embedding between different ranks of re�ection algebras and the proof of the
validity of the Bethe ansatz for arbitrary irreducible ˇnite-dimensional representations (up to
some constraint on the boundary). We give here a proof by increasing recursion contrary to
the decreasing proof of [9].

The plan of the proceeding is the following. First we recall deˇnitions and property of the
Yangian Yn and the re�ection algebra Dn. Then we give the ˇnite-dimensional representations
of Yn and deduce the ones of Dn. Next we recall the Bethe ansatz for n = 2. To perform the
nested Bethe anstaz, we present embedding for the re�ection algebra of different rank (valid
up to some quotient) and the Bethe vectors in two forms, trace formula and recursion formula.
Then we give the proof of the nested Bethe anstaz for open spin chains with K+(u) = I (the
other possibility is brie�y discussed). To ˇnish, we give some open problem from this result.

1E-mail: belliard@bo.infn.it
2E-mail: eric.ragoucy@lapp.in2p3.fr
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1. RTT FORMALISM AND YANGIAN

Periodic anisotropic spin chains is closely related to the Yangian Yn. Among these
realizations [11, 12], the so-called RTT (or FRT) [10] formalism is the more efˇcient to
construct the conserved quantities of the model. These quantities belong to an Abelian
subalgebra of the Yangian and are generated from transfer matrix. The explicit construction
of local Hamiltonian relevant for physics applications from the transfer matrix is not easy to
do in great generality, and we will focus only on its study.

Let us recall the deˇnition of the Yangian in this RTT formalism. Yn is a unital associative
inˇnite-dimensional algebra generated by

{t(p)
ij ; i, j = 1, . . . , n; p ∈ N/{0}}. (1)

We gather the Yn generators for same i, j into a formal series of u−1 and then put it in an
n × n matrix acting in an auxiliary space V = Cn. We obtain the monodromy matrix:

T (u) =
n∑

i,j=1

Eij ⊗ tij(u) ∈ End (V) ⊗ Yn, (2)

tij(u) = δij +
∞∑

n=1

t
(n)
ij u−n, (3)

where Eij are n×n matrices with 1 at the intersection of line i and column j and 0 otherwise.
The commutation between elements of Yn are given by the RTT relations:

R12(u − v) T1(u) T2(v) = T2(v) T1(u) R12(u − v) ∈ End (V) ⊗ End (V) ⊗ Yn, (4)

where indices 1, 2 label the auxiliary spaces where the operators act nontrivially. The matrix
R ∈ End (V) ⊗ End (V) is the rational solution of the YangÄBaxter equation:

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2), (5)

R12(u) = uI ⊗ I − �P12, P12 =
n∑

i,j=1

Eij ⊗ Eji, (6)

written in auxiliary space End (V)⊗ End (V)⊗ End (V). This condition is equivalent to the
associativity for the product of monodromy matrices. The R matrix satisˇes unitarity relation,

R(u)R(−u) = (u − �)(−u − �) I ⊗ I, (7)

crossing unitarity,
Rt(u)Rt(−u + n�) = u(−u + n�) I ⊗ I, (8)

and is GL(n, C) group invariant:

[R(u), M ⊗ M ] = 0, M ∈ GL(n, C). (9)

The transfer matrix is deˇned as the trace over auxiliary space of the monodromy matrix
t(u) = tr (T (u)) and commutes for different values of the formal variable u,

[t(u), t(v)] = 0. (10)
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This is the main object to study for periodic anisotropic spin chains or, more generally, for
two-dimensional quantum integrable models with Yangian symmetry [3Ä5,8, 18].

The Yangian have the following automorphism:
Å shift of the spectral parameter:

σa : T (u) → T (u + a); (11)

Å product by scalar function:

f : T (u) → f(u)T (u); (12)

antimorphisms:
Å matrix inversion:

inv : T (u) → T−1(u) =
n∑

i,j=1

Eij ⊗ t′ij(u); (13)

Å spectral parameter inversion:

inv : T (u) → T (−u), (14)

and a Hopf algebra structure (Δ, S, ε) with the coproduct deˇned as

Δ : Δ(T (u)) = T (u)⊗̇T (u) =
n∑

i,j,k=1

Eij ⊗ tik(u) ⊗ tkj(u). (15)

More generally, one deˇnes recursively for L � 2,

Δ(L+1) = (id⊗(L−1) ⊗ Δ) ◦ Δ(L) : Yn → Yn
⊗(L+1), (16)

with Δ(2) = Δ and Δ(1) = id. The map Δ(L) is an algebra homomorphism.
The Yangian has the universal enveloping algebra U(gl(n)) as a Hopf subalgebra, the

embedding is given by Eji → t
(1)
ij . Where Eij are the generators of U(gl(n)) with commutation

relations:
[Eij , Ekl] = δjkEik − δilEkj . (17)

The evaluation homomorphism ev : Yn → U(gl(n)) is given by

ev : t
(1)
ij → Eji,

ev : t
(p)
ij → 0, p > 1.

(18)

This evaluation homomorphism is the key ingredient to construct ˇnite-dimensional represen-
tation of Yn [12Ä14].

Let us introduce some notation used for R matrices in this paper:
Å the ®normalized¯ R matrices:

R(u) =
R(u)

(u − �)
with R(u)R(−u) = I ⊗ I, (19)
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Å the ®reduced¯ R matrices R(k,p)(u):

R(k,p)(u) =
(

I
(k) ⊗ I

(p)
)

R(u)
(
I
(k) ⊗ I

(p)
)

, with I
(k) =

n∑
i=k

Eii,

R(k)(u) = R(k,k)(u).

(20)

We have R(1)(u) = R(u), and more generally R(k)(u) corresponds to the R matrix of Yn−k.

2. REFLECTION ALGEBRA AND K(u) MATRICES

The Yn algebra is enough to construct a transfer matrix leading to periodic models, but
in the context of open spin chains, one needs another algebra, the re�ection algebra Dn [1],
which turns out to be a subalgebra of Yn. Indeed, physically, one can interpret the RTT
relation as encoding the interaction between the spins of the chain. Hence, it is the only
relation needed to describe a periodic chain. On the other hand, in the case of open chain, the
interaction with the boundaries has to be taken into account. Following the seminal paper [2],
we construct the re�ection algebra and the dual re�ection equation for the boundary scalar
matrices K−(u) and K+(u). We ˇrst deˇne the matrix K−(u) to be the solution of the
re�ection equation in End (V) ⊗ End (V):

R12(u1 − u2)K−
1 (u1)R12(u1 + u2)K−

2 (u2) =

= K−
2 (u2)R12(u1 + u2)K−

1 (u1)R12(u1 − u2). (21)

The scalar solutions to the re�ection equation have been classiˇed using the GL(n, C) invari-
ance of R matrix [16]. The diagonal solutions take the form (up to normalization)

K−(u) = diag (u − c−, . . . , u − c−︸ ︷︷ ︸
a

,−u − c−, . . . ,−u − c−︸ ︷︷ ︸
n−a

) =
n∑

i=1

κ−
i (u)Eii, (22)

where c− is a free complex parameter and a is an integer. From this K−(u) matrix and the
monodromy matrix T (u) of Yn, we can construct the monodromy matrix of Dn ⊂ Yn:

D(u) = T (u)K−(u)T−1(−u) =
n∑

i,j=1

dij(u) ⊗ Eij , (23)

dij(u) =
n∑

a=1

κ−
a (u)tia(u)t′aj(−u). (24)

From (4) and (21), we can prove that D(u) also satisˇes the re�ection equation in End (V)⊗
End (V) ⊗ Dn:

R12(u1−u2)D1(u1)R21(u1−u2)D2(u2) = D2(u2)R12(u1−u2)D1(u1)R21(u1−u2). (25)

The algebra Dn is a left coideal [17] of the algebra Yn with coproduct action:

Δ(D[2](u)) = T[1](u)D[2](u)T−1
[1] (−u) ∈ End (V) ⊗ Yn ⊗ Dn, (26)

where [i] labels different spaces.
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To construct commuting transfer matrices, we introduced a dual equation in End (V) ⊗
End (V):

R12(u2 − u1)(K+
1 (u1))t1R12(−u1 − u2 + n�)(K+

2 (u2))t2 =

= (K+
2 (u2))t2R12(−u1 − u2 + n�)(K+

1 (u1))t1R12(u2 − u1). (27)

From isomorphism of the re�ection equation and dual re�ection equation, we can construct
solutions to the dual re�ection equation from K−(u):

(K+(u))t = K−
(
−u +

n

2
�

)
. (28)

With D(u) and K+(u) we construct the transfer matrix:

d(u) = tr (K+(u)D(u)). (29)

The re�ection equation and its dual form ensure the commutation relation:

[d(u), d(v)] = 0. (30)

Thus, d(u) generates (via an expansion in u−1) a set of commuting conserved quantities and
is related to boundaries anisotropy spin chains models and, more generally, to boundaries
quantum integrable models related to Dn.

3. HIGHEST WEIGHT REPRESENTATIONS

The fundamental point in using the ABA is to know a pseudo-vacuum for the model. In
the mathematical framework it is equivalent to know a highest weight representation for the
algebra which underlies the model. Since the generators of the algebra Dn can be constructed
from the Yn ones, see Eq. (23), we ˇrst describe how to construct highest repesentations for the
inˇnite-dimensional algebras Yn from highest weight representations of the ˇnite-dimensional
Lie algebras gl(n). Next, we show how these representations induce (for diagonal K−(u)
matrix) a representation for Dn with same highest weight vector.

Deˇnition 3.1 . A representation of Yn is called highest weight if there exists a nonzero vector
Ω such that

tii(u)Ω = λi(u)Ω and tij(u)Ω = 0 for i > j, (31)

for some scalars λi(u) ∈ C [[u−1]]. λ(u) = (λ1(u), . . . , λn(u)) is called the highest weight
and Ω the highest weight vector.

It is known that any ˇnite-dimensional irreducible representation of Yn is highest weight
and that it contains a unique (up to scalar multiples) highest weight vector [13,14].

To construct such representations, one uses the evaluation morphism, which relates the
inˇnite-dimensional algebra Yn to its ˇnite-dimensional subalgebra U(gl(n)) and a ˇnite-
dimensional irreducible highest weight representation πμ : U(gl(n)) → End (Vμ) with highest
weight Ω ∈ Vμ:

πμ(Eij)Ω = 0, 1 � i < j � n, πμ(Eii)Ω = μiΩ, 1 � i � n, λi − λi+1 ∈ Z+. (32)
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The evaluation representations of Yn are constructed by the following composition of
maps:

ρμ
a = πμ ◦ ev ◦ σa : Yn

σa−→ Yn
ev−→ U(gl(n))

πμ−→ End (Vλ). (33)

The weight of this evaluation representation is given by λ(u) =
(
λ1(u), . . . , λn(u)

)
, with

λj(u) = u − a − � μj, j = 1, . . . , n, (34)

More generally, one constructs tensor products of evaluation representations using the
coproduct of Yn,(

⊗L
i=1 ρμ〈i〉

ai

)
◦ Δ(L)

(
T (u)

)
= ρμ〈1〉

a1

(
T (u)

)
⊗̇ ρμ〈2〉

a2

(
T (u)

)
⊗̇ · · · ⊗̇ρμ〈L〉

aL

(
T (u)

)
, (35)

where μ〈i〉 = (μ〈i〉
1 , . . . , μ

〈i〉
n ), i = 1, . . . , L, are the weights of the U(gl(n)) representations.

This provides an Yn representation with weight,

λj(u) =
L∏

i=1

λ
〈i〉
j (u), j = 1, . . . , n, (36)

where λ
〈i〉
j (u) have the form (34). Evaluation representations are central in the study of repre-

sentations because all ˇnite-dimensional irreducible representations of Yn can be constructed
from tensor products of evaluation representations (see [8] for references).

To obtain representation of D(u), we also need to give T−1(u) in terms of the T (u)
elements. It could be done using the quantum determinant q det (T (u)) and the comatrix
T̂ (u), see [15].

The quantum determinant q det (T (u)) which generates the center of Yn is deˇned as

q det (T (u)) =
∑

σ∈Sn

sign (σ)
n∏

i=1

tiσ(i)(u + (i − n)�), (37)

where Sn is the permutation group of n elements and σ a permutation with signature sign (σ).
The quantum comatrix T̂ (u) satisˇes

T̂ (u)T (u − (n − 1)�) = q det (T (u)), (38)

this equation allows one to relate T−1(u) to T̂ (u):

T−1(u) =
T̂ (u + (n − 1)�)

q det (T (u + (n − 1)�))
. (39)

From the exact form of T̂ (u) in terms of tij(u) we can ˇnd that Ω is also a highest weight
vector for T−1(u) with weights:

t′ii(u)Ω = λ′
i(u)Ω, λ′

i(u) =

(
i−1∏
k=1

λk(u + k�)
λk(u + (k − 1)�)

)
1

λi(u + (i − 1)�)
. (40)

The representations of the re�ection algebra Dn could be studied from previous re-
sults [17]. For K−(u) diagonal, the ˇnite-dimensional irreducible highest weight representa-
tions follow from the ones of Yn and lead to the following theorem:
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Theorem 3.1 . If Ω is a highest weight vector of Yn, with eigenvalue (λ1(u), . . . , λn(u)), then,
when K(z) is a diagonal matrix with κi(u) diagonal elements, Ω is also a highest weight
vector for Dn,

dij(u)Ω = 0 for i > j, and dii(u)Ω = Λi(u, {κ−(u), λ(u), λ′(−u)})Ω, (41)

with eigenvalues:

Λi(u) = Ki(u)λi(u)λ′
i(−u) −

i−1∑
k=1

�

2u − (k − 1)�
2

Kk(u)λk(u)λ′
k(−u), (42)

Ki(u) = κi(u) +
i−1∑
k=1

κk(u)
�

2u − (i−2)�
2

. (43)

Now we can introduce what we call ®general transfer matrix¯ d(u; L, {a}, {μ}):

d(u; L, {a}, {μ}) =
(
⊗L

i=1 ρμ〈i〉

ai

)
◦ Δ(L)(d(u)). (44)

In the next section we will give the proof of the nested Bethe ansatz for this ®general transfer
matrix¯. To simplify notation, we will use d(u) for d(u; L, {a}, {μ}) in the next sections.

4. ALGEBRAIC BETHE ANSATZ FOR Dn WITH n = 2

In this section, we remind the framework of the Algebraic Bethe Ansatz (ABA) [3]
introduced in order to compute transfer matrix eigenvalues and eigenvectors. The method
follows the same steps as in the closed chain case, up to a preliminary step. We will only
consider the case K+(u) = I which is relevant for the nested Bethe anstaz. In the open case
the transfer matrix has the form

d(u) = tr (Da(u)) = d11(u) + d22(u). (45)

We perform a change of basis and a shift,

d11

(
u +

�

2

)
= d̂11(u), d12

(
u +

�

2

)
= d̂12(u), d21

(
u +

�

2

)
= d̂21(u), (46)

d22

(
u +

�

2

)
= d̂22(u) − �

2u
d̂11(u). (47)

This change of basis leads to symmetric exchange relations:

[d̂12(u) d̂12(v)] = 0, (48)

d̂11(u) d̂12(v) =
(u − v + �)(u + v + �)

(u − v)(u + v)
d̂12(v) d̂11(u)−

− �(2v + �)
2v(u − v)

d̂12(u) d̂11(v) +
�

u + v
d̂12(u) d̂22(v), (49)
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d̂22(u) d̂12(v) =
(u − v − �)(u + v − �)

(u − v)(u + v)
d̂12(v) d̂22(u)+

+
�(2u − �)
2u(u − v)

d̂12(u) d̂22(v) − �(2u − �)(2v + �)
4uv(u + v)

d̂12(u) d̂11(v). (50)

In the new basis, Ω is still a pseudo-vacuum:

d̂11(u)Ω = Λ̂1(u)Ω = K1

(
u +

�

2

)
λ1

(
u +

�

2

)
λ′

1

(
−u − �

2

)
Ω, d̂21(u)Ω = 0, (51)

d̂22(u)Ω = Λ̂2(u)Ω =
(

Λ2

(
u +

�

2

)
+

�

2u
Λ1

(
u +

�

2

))
Ω =

= K2

(
u +

�

2

)
λ2

(
u +

�

2

)
λ′

2

(
−u − �

2

)
Ω, (52)

and we can use the algebraic Bethe ansatz as in the closed chain case. The transfer matrix
rewrites:

d

(
u +

�

2

)
=

2u − �

2u
d̂11(u) + d̂22(u) ≡ d̂(u). (53)

Applying M creation operators d̂12(uj) on the pseudo-vacuum, we generate a Bethe vector:

Φ({u}) = d̂12(u1) · · · d̂12(uM ), Ω. (54)

where {u} = {u1, . . . , uM}. Demanding Φ({u}) to be an eigenvector of d̂(u) leads to a set
of algebraic relations on the parameters {u}, the so-called Bethe equations:

K1(uk + �/2)λ1(uk + �/2)λ′
1(−uk − �/2)

K2(uk + �/2)λ2(uk + �/2)λ′
2(−uk − �/2)

=

=
2uk

2uk + �

l∏
i�=k

(uk − ui − �)(uk + ui − �)
(uk − ui + �)(uk + ui + �)

. (55)

Then, the eigenvalues of the transfer matrix read

d(u)Φ({u}) = Λ(u)Φ({u}), (56)

Λ(u) =
2u − 2h

2u − �
K1(u)λ1(u)λ′

1(−u)
M∏

k=1

(u − uk + �/2)(u + uk + �/2)
(u − uk − �/2)(u + uk − �/2)

+

+ K2(u)λ2(u)λ′
2(−u)

M∏
k=1

(u − uk − 3�/2)(u + uk − 3�/2)
(u − uk − �/2)(u + uk − �/2)

. (57)

Note that Bethe equations correspond to the vanishing of the residue of Λ̂(u; {u}) at u = uj .
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5. NESTED BETHE ANSATZ

In this section we will give the step for a direct recursion for the Bethe equations and
eigenvalues of a ®general open spin chain¯ of rank n + 1. This proof uses the knowledge of
the recursion formula for the Bethe vectors and the embedding Dn → Dn+1. More precisely,
one has to consider the quotient of Dn+1 by I, the left ideal generated by {dij(u), i > j}.
First we give the theorem about this embedding and next we prove the nested Bethe ansatz
for Dn+1 from the Dn one. This formulation gives an alternative proof of the one given
in [9] for a more general case.

5.1. Embeddings of Dn Algebras. The algebraic cornerstone for the nested Bethe ansatz
is a recursion relation on the Dn algebraic structure:

Dn → Dn−1 → · · · → D3 → D2. (58)

In this section we give two important properties of the algebra Dn, described in the following
theorem:

Theorem 5.1 . For k = 1, 2, . . . , n−1, let F (k) be a linear combination of di1j1(u1) · · · diljl
(ul)

with all indices k − 1 < ip � jp, and let I be the left ideal generated by dij(u) for i > j.
Then, we have the following properties:

dij(u)F (k) ≡ 0 mod I for i > j and j < k, (59)

[dii(u), F (k)] ≡ 0 mod I for i < k. (60)

We introduce the generators:

D̂(k)(u) =
n∑

i,j=k

Eij ⊗ d
(k)
ij (u), (61)

d
(k)
ij (u) = dij

(
u +

(k − 1)�
2

)
+ δij

k−1∑
a=1

�

2u
daa

(
u +

(k − 1)�
2

)
. (62)

They satisfy in Dn/I the re�ection equation for Dm−k+1|n:

R
(k)
12 (u1 − u2)D̂

(k)
1 (u1)R

(k)
12 (u1 + u2)D̂

(k)
2 (u2) ≡

≡ D̂
(k)
2 (u2)R

(k)
12 (u1 + u2)D̂

(k)
1 (u1)R

(k)
12 (u1 − u2).

Let us give two useful relations from this theorem for the nested Bethe ansatz:

Å the action of d
(k)
kk (u) on Ω:

d
(k)
kk (u)Ω = Ki

(
u +

(k − 1)�
2

)
λk

(
u +

(k − 1)�
2

)
λ′

k

(
−u − (k − 1)�

2

)
; (63)

Å the embedding τ : Dn/In → Dn+1/In+1 given by

τ(dij(u)) = d
(2)
i+1j+1(u) = di+1j+1

(
u +

�

2

)
+ δi,j

�

2u
d11

(
u +

�

2

)
; (64)
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it follows

τ(d(k)
ij (u)) = d

(k+1)
i+1,j+1(u). (65)

This morphism will be crucial for the computation of the nested Bethe ansatz. We will use it
in the form

τ(D(u)) = D̂(2)(u). (66)

Choosing the form (23) for the operator D, we can compute the action of the coproduct of
Yn on D̂(k)(u).

Theorem 5.2 . In the coset Yn/J ⊗ Dn/I, where J is the left ideal generated by

{tij(u), t′ij(−u), i > j},

the coproduct takes the form

Δ(D̂(k)
[2] (u)) ≡ T

(k)
[1] (u)D̂(k)

[2] (u)(T−1
[1] )(k)(−u) mod J , (67)

T (k)(u) =
n∑

i,j=k

Eij ⊗ t
(k)
ij (u) and (T−1)(k)(−u) =

n∑
i,j=k

Eij ⊗ t
′(k)
ij (−u), (68)

t
(k)
ij (u) = tij

(
u +

(k − 1)�
2

)
and t

′(k)
ij (−u) = t′ij

(
−u − (k − 1)�

2

)
, (69)

where [1] labels the space Dn/I, [2] labels the space Yn/J , and Δ is the coproduct of Yn.

From this result and using the fundamental representation π̄a of Yi, we can obtain the
convenient relation for i < k (see [9]):

π̄(i)
a (T (k)(u)) = R

(i,k)

(
u + a +

(k − i)�
2

)
,

π̄(i)
a ((T−1)(k)(−u)) = R

(i,k)

(
u − a +

(k − i)�
2

)
.

(70)

These formulas will be used to prove the recursion of the nested Bethe ansatz.
5.2. Bethe Vectors. We present here a generalization to open spin chains of the recursion

and trace formulas for Bethe vectors, obtained in [18,19] for closed spin chains.
Let us introduce the following trace formula for the Bethe vectors (or weight function) of

Dn universal ®diagonal¯ open spin chains. We introduce a family of Bethe parameters ukj ,
j = 1, . . . , Mk, the number Mk of these parameters being a free integer. The partial unions
of these families will be noted as

{u�} =
�⋃

i=1

{uij , j = 1, . . . , Mi}, (71)

so that the whole family of Bethe parameters is {u} = {un−1} with cardinal M =
n−1∑
k=1

Mk.
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Theorem 5.3 . We denote by A1; . . . ; An−1 the ordered sequence of auxiliary spaces
a1
1, . . . , a

1
M1

; a2
1, . . . , a

2
M2

; . . . ; an−1
1 , . . . , an−1

Mn−1
. Then

Φn
M ({u})Ω = trA1...An−1

(
n−1∏
i=1

D̂
(i)
Ai

({ui})E⊗Mn−1
n,n−1 ⊗ · · · ⊗ E

�⊗M1
21

)
Ω, (72)

where

D̂
(i)
Ai

({ui}) =
Mi∏
j=1

R(i)

A<i,ai
j
({ui−1}, uij)D̂

(i)

ai
j

(
uij +

�

2

)
R(i)

ai
j ,A<i

({ui−1}, uij), (73)

R(i)

A<i,ai
j
({ui−1}, uij) =

←−∏
b<i

−→∏
c=1...Mb

R
(i,b+1)

ai
jab

c

(
uij + ubc +

(i − b + 1)�
2

)
, (74)

R(i)

ai
j ,A<i

({ui−1}, uij) =
−→∏
b<i

←−∏
c=1...Mb

R
(i,b+1)

ai
jab

c

(
uij − ubc +

(i − b + 1)�
2

)
, (75)

−→∏
i=1,...,n

Xi = X1 . . . Xn,

←−∏
i=1,...,n

Xi = Xn . . . X1. (76)

This formula is invariant under the same permutation of elements of Ai and {ui1, . . . , uiMi}.

The proof of the last assertion does not clearly appear in [9] and will be published elsewhere.
From the trace formula, we can extract a recurrent form for the Bethe vectors,

Φn
M ({u})Ω = B̂

(1)

a1
1

(u11) · · · B̂(1)

a1
M1

(u1M1) Ψ̂(1)
{u1}

(
Φn−1

M−M1
({u}/{u1})

)
Ω, (77)

Ψ̂(1)
{u1} = v(2) ◦ (π̄(2)

u11
⊗ · · · ⊗ π̄(2)

u1M1
⊗ I) ◦ Δ(M1) ◦ τ, (78)

B̂(1)(u) =
n∑

j=1

et
j ⊗ d

(1)
1j (u), (79)

where π̄
(2)
a is the fundamental representation evaluation homomorphism normalized as in (70),

v(2) is the application of the highest weight vector e2 for the space A1:

v(2)(X) = X (e2)⊗Mk−1 . (80)

The proof is given in [9].
5.3. Eigenvalues and Bethe Equations. We state the following commutation relation

between d(u) and Φn
M ({u}) for K+(u) = I:

d(u)Φn
M ({u}) = UWT + Φn

M ({u})
(

n∑
k=1

2u − n�

2u − k�

Mk∏
i=1

f

(
u − k�

2
, ukj

)
×

×
Mk−1∏
i=1

f̃

(
u − (k − 1)�

2
, uk−1j)d

(k)
kk (u − (k − 1)�

2

)⎞⎠ ,
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f(u, v) =
(u − v + �)(u + v + �)

(u − v)(u + v)
, f̃(u, v) =

(u − v − �)(u + v − �)
(u − v)(u + v)

(81)

with the convention M0 = Mn = 0. The UWT contains terms with u in the vector. We will
prove the following theorem:

Theorem 5.4. For K+(u) = I we have

d(u)Φn
M ({u})Ω = Λ(u)Φn

M ({u})Ω. (82)

If the following set of Bethe equations is satisfed:

Kk(ukj + k�/2)λk(ukj + k�/2)λ′
k(−ukj − k�/2)

Kk+1(ukj + k�/2)λk+1(ukj + k�/2)λ′
k+1(−ukj − k�/2)

=
2ukj

2ukj + �
×

×
Mk−1∏
i=1

(ukj − uk−1,i − �/2)(ukj + uk−1,i − �/2)
(ukj − uk−1,i + �/2)(ukj + uk−1,i + �/2)

Mk∏
i�=j

(ukj − uki − �)(ukj + uki − �)
(ukj − uki + �)(ukj + uki + �)

×

×
Mk+1∏
i=1

(ukj − uk+1,i − �/2)(ukj + uk+1,i − �/2)
(ukj − uk+1,i + �/2)(ukj + uk+1,i + �/2)

, (83)

j = 1, . . . , Mk, k = 1, . . . , n − 1,

then the eigenvalues of the transfer matrix have the form

Λ(u) =
n∑

k=1

2u − n�

2u − k�
Kk(u)λk(u)λ′

k(−u)
Mk∏
j=1

(u − ukj− k�/2 + �)(u + ukj− k�/2 + �)
(u − ukj − k�/2)(u + ukj − k�/2)

×

×
Mk−1∏
j=1

(
u − uk−1j −

(k − 1)�
2

− �

) (
u + uk−1j −

(k − 1)�
2

− �

)
(

u − uk−1j −
(k − 1)�

2

) (
u + uk−1j −

(k − 1)�
2

) . (84)

Proof: For n = 2 we ˇnd the result of section 4. We will prove the case n + 1, assuming the
case n is true. We decompose the transfer matrix:

d(u) = d11(u) + d(2)(u), d(2)(u) = tr (D(2)(u)). (85)

We make a transformation of the operator and a shift of the spectral parameter to have
symmetric commutation relations:

d11

(
u +

�

2

)
= d̂11(u), B(1)

a

(
u +

�

2

)
= B̂(1)

a (u),

D(2)
a

(
u +

�

2

)
= D̂(2)

a (u) − �

2u
I
(2)
a ⊗ d̂11(u).

(86)

From this transformation we get a new form for the transfer matrix:

d

(
u +

�

2

)
=

2u − n�

2u
d̂11(u) + tra

(
D̂(2)

a (u)
)

. (87)
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The commutation relations between d̂11(u), D̂(2)(u) and B̂(1)(u) are obtained from the
re�ection equation (25):

B̂(1)
a (u) B̂

(1)
b (v) = B̂

(1)
b (v) B̂(1)

a (u) R
(2)
ab (u − v), (88)

d̂11(u) B̂
(1)
b (v) =

(u − v + �)(u + v + �)
(u − v)(u + v)

B̂b(v)d̂11(u) − �(2v + �)
(u − v)2v

B̂
(1)
b (u)d̂11(v)+

+
�

u + v
B̂

(1)
b (v)D̂(2)

b (v), (89)

D̂(2)
a (u)B̂(1)

b (v) =
(u − v − �)(u + v − �)

(u − v)(u + v)
B̂

(1)
b (v)R(k+1)

ab (u + v)D̂(2)
a (u)R(2)

ab (u − v)−

− �(2v + �)
4uv(u + v)

B̂
(1)
b (u)R(2)

ab (2u)P (2)
ab d̂kk(v)+

+
�

(u − v)2u
B̂

(k)
b (u)R(2)

ab (2u)D̂(2)
a (v)P (2)

ba . (90)

From these commutation relations and using the fact that the Bethe vector is globally
invariant, if we permute B̂ we obtain two types of terms: the wanted and unwanted. Let us
consider ˇrst the wanted terms. For d̂11(u) we have

M1∏
i=1

f(u, u1i)Φn+1
M ({u})d̂11(u)Ω, (91)

where we have used theorem 5.1 to put d̂11(u) in the right. For D̂(2)(u) we have

M1∏
i=1

f̃(u, u1i)B̂
(1)

a1
1

(u11) · · · B̂(1)

a1
M1

(u1M1) Ψ̂(1)
{u1}

(
d(u)Φn

M−M1
({u}/{u1})

)
, (92)

where d(u) is the transfer matrix for Dn. We have used the deˇnition of Ψ̂(1)
{u1} and the

relations (66), (70) to ˇnd

−→∏
i=1...M1

R
(2)

aa1
i
(u + u1i)D̂(2)

a (u)
←−∏

i=1...M1

R
(2)

aa1
i
(u − u1i)Ψ̂

(1)
{u1}(X) = Ψ̂(1)

{u1}(Da(u)X). (93)

Using (81), we can commute d(2)(u). It remains to compute the action of Ψ̂(1)
{u1}. The

formulas (65), (70) and the fact that Ψ̂(1)
{u1} is a morphism (up to ν(2)) allow one to ˇnd

(1 < k � n)

Ψ̂(1)
{u1}(d

(1)
11 (u)) = d

(2)
22 (u),

Ψ̂(1)
{u1}

(
d
(k)
kk

(
u − (k − 1)�

2

))
= d

(k+1)
k+1k+1

(
u − (k − 1)�

2

) M1∏
i=1

f̃−1(u, u1i).
(94)
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Using these formulas and making a reverse shift, the theorem is proved for the wanted term.
Let us now consider the unwanted terms. First we give the reason why it is not possible

to deal with a general diagonal K+(u) matrix. To factorize the unwanted term for d̂11(u), we

must have tr ((K+
a )(2)(u)R(2)

ab (2u)P (2)
ab ) ∝ I(2). The only possibility is (K+

a )(2)(u) ∝ I(2).
Here we will just prove the case K+(u) = I and let the reader consult [9] for the other case:
K+(u) = k(u)E11 + I(2).

Using the commutation relations and looking for the term with d̂11(u11) Å the other
terms are similar using the invariance by permutation of the Bethe vector, see theorem 5.3 Å
we ˇnd

− (2u − n�)(2u11 + �)
2u11(u2 − u2

11)

M1∏
i=2

f(u11, u1i)Φn+1
M ({u}, u11 → u)d̂11(u11).

Looking now for the term D̂(2)(u11), after using the trick tr (R(2)
ab (2u)P (2)

ab ) = (2u − n�)I(2)

to obtain a good form for commuting with Ψ̂(1)
{u1}, we ˇnd

(2u − n�)(2u11 − �)�
(2u11 − n�)(u2 − u2

11)

M1∏
i=2

f̃(u11, u1i)B̂
(1)

a1
1

(u) · · ·

B̂
(1)

a1
M1

(u1M1) Ψ̂(1)
{u1}

(
d(u11)Φn

M−M1
({u}/{u1})

)
.

From (94) we see that only the ˇrst term of the eigenvalue is nonzero. We can obtain the
Bethe equation for u11:

K1(u11 + �/2)λ1(u11 + �/2)λ′
1(u11 + �/2)

K2(u11 + �/2)λ2(u11 + �/2)λ′
2(u11 + �/2)

=

=
2u11

(2u11 + �)

M1∏
i=2

f̃(u11, u1i)
f(u11, u1i)

M2∏
i=1

f−1 (u11 − �/2, u2i) .

Using the invariance by permutation, the Bethe equations for the other uij follow. We must
also modify the other Bethe equations. The only change comes from the relations (94) which

change the eigenvalues of the d
(k)
kk

(
u − (k − 1)�

2

)
. This modiˇcation only affects the ˇrst

familly of Bethe equations, adding a term to the right product. This ends the recursion and
proves the theorem.

CONCLUSION

In this proceeding we give the nested Bethe ansatz for open spin chains of XXX-type
with diagonal boundary conditions. This result could be extended to the case of nondiagonal
boundary conditions but with some constraints between K+(u) and K−(u). To do this, we
use the GL(n, C) invariance of the Yangian [6,16] and take for an arbitrary invertible M :

K̃+(u) = MK+(u)M−1, K̃−(u) = MK−(u)M−1. (95)
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It is equivalent to the assertion that K+(u) and K−(u) are diagonalizable in the same basis,
otherwise the nested Bethe ansatz does not work and the diagonalization of the transfer matrix
remains an open problem.

We also give a trace formula for the Bethe vector of the open chain. This formulation
could be a starting point for the investigation of the quantized KnizhnikÄZamolodchikov
equation following the work [19]. For such a purpose, the coproduct properties of Bethe
vectors for open spin chains remain to be studied. Deˇning a scalar product and computing
the norm of these Bethe vectors is also a point of fundamental interest.
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