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QUANTUM CORRECTIONS IN N = 1

SUPERSYMMETRIC THEORIES WITH CUBIC
SUPERPOTENTIAL, REGULARIZED BY HIGHER
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Using the higher covariant derivative regularization we calculate a two-loop β-function for the
N = 1 supersymmetric YangÄMills theory with the matter superˇelds, containing the cubic superpoten-
tial. It is found that all integrals, deˇning this function, are integrals of total derivatives.
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INTRODUCTION

Most calculations of quantum corrections in supersymmetric theories were made by the
dimensional reduction [1]. Some of them are listed in [2]. (There are a lot of such calculations,
and this list is certainly incomplete.) However, it is well known that the dimensional reduction
is not self-consistent [3]. Ways, allowing to avoid this problem, are discussed in literature [4].
Nevertheless, other regularizations are also sometimes applied for calculations. For example,
two-loop β-function of the N = 1 supersymmetric YangÄMills theory was calculated in [5]
with the differential renormalization [6].

A self-consistent regularization, which does not break the supersymmetry, is the higher
covariant derivative regularization [7], which was generalized to the supersymmetric case
in [8]. However, using of this regularization is rather technically complicated. Application
of the higher covariant derivative regularization to calculation of quantum corrections in the
N = 1 supersymmetric electrodynamics in two and three loops [9, 10] reveals an interesting
feature of quantum corrections: all integrals, deˇning the Gell-MannÄLow function appear to
be integrals of total derivatives and can be easily calculated. This leads the NSVZ β-function,
which relates the β-function in nth loop with the β-function and the anomalous dimensions in
the previous loops. Due to this, application of the higher covariant derivative regularization
is very convenient in the supersymmetric case. The fact that the integrals, appearing with the
higher covariant derivative regularization, in the limit of zero external momentum become
integrals of total derivatives, seems to be a general feature of supersymmetric theories. That
is why calculations with the higher derivative regularization seem to be interesting. In
this paper we calculate a two-loop β-function for a N = 1 supersymmetric theory with a
cubic superpotential. The presence of the cubic superpotential requires adding of the higher
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derivative terms not only for the gauge ˇeld, but also for the matter superˇelds. So, it is
interesting to ˇnd out, whether the factorization of integrands into total derivatives takes place
in this case.

The paper is organized as follows:
In Sec. 1 we introduce the notation and recall basic information about the higher covariant

derivative regularization. The β-function for the considered theory is calculated in Sec. 2.
The result is brie	y discussed in Conclusion.

1. N = 1 SUPERSYMMETRIC YANGÄMILLS THEORY
AND THE HIGHER COVARIANT DERIVATIVE REGULARIZATION

We consider a general renormalizable N = 1 supersymmetric YangÄMills theory, which
(in the massless case) is described by the action

S =
1

2e2
Re tr

∫
d4xd2θ WaCabWb +

1
4

∫
d4xd4θ (φ∗)i(e2V )i

jφj+

+

(
1
6

∫
d4xd2θ λijkφiφjφk + h.c.

)
, (1)

where φi are chiral matter superˇelds and V is a real scalar gauge superˇeld. The superˇeld
Wa is deˇned by

Wa =
1
8
D̄2(e−2V Da e2V ). (2)

Da and D̄a denote the right and left supersymmetric covariant derivatives, respectively,
V = e V AT A. The generators of the fundamental representation are normalized by the
condition

tr(tAtB) =
1
2
δAB. (3)

Also we use the following notation:

tr (T AT B) ≡ T (R) δAB, (T A)i
k(T A)k

j ≡ C(R)i
j ,

(4)
fACDfBCD ≡ C2δ

AB , r ≡ δAA.

For calculation of quantum corrections it is convenient to use the background ˇeld
method [11]: We make the substitution

e2V → e2V ′
≡ eΩ

+
e2V eΩ (5)

in action (1), where Ω is a background superˇeld. Then the theory is invariant under the
background gauge transformations

φ → eiΛφ, V → eiK V e−iK , eΩ → eiK eΩ e−iΛ, eΩ
+ → eiΛ+

eΩ
+

e−iK , (6)

where K is an arbitrary real superˇeld, and Λ is a background-chiral superˇeld. This
invariance allows one to set Ω = Ω+ = V.
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It is convenient to choose a regularization and gauge ˇxing without breaking invariance (6).
First, we ˇx a gauge by adding

Sgf = − 1
32e2

tr
∫

d4xd4θ(V D2D̄2V + V D̄2D2V ) (7)

to the action. The corresponding FaddeevÄPopov and NielsenÄKallosh ghost Lagrangians
are constructed by the standard way. One of the possible choices of the higher derivative
regularization is adding the terms

SΛ =
1

2e2
tr Re

∫
d4xd4θV

(D2
μ)n+1

Λ2n
V +

+
1
8

∫
d4xd4θ

(
(φ∗)i

[
eΩ

+
e2V (D2

α)m

Λ2m
eΩ

]
i
jφj + (φ∗)i

[
eΩ

+ (D2
α)m

Λ2m
e2V eΩ

]
i
jφj

)
(8)

to the action (1). (Here Dα denotes the background covariant derivative and we assume
that m < n.) (Because the considered theory contains a nontrivial superpotential, it is also
necessary to introduce the higher covariant derivative term for the matter superˇelds.)

The higher covariant derivative term does not remove divergences in the one-loop ap-
proximation [12]. In order to cancel them, it is necessary to introduce into the generating
functional the PauliÄVillars determinants

∏
I

(∫
Dφ∗

IDφI eiSI

)−cI

,
∑

I

cI = 1,
∑

I

cIM
2
I = 0, (9)

where

SI =
1
8

∫
d4xd4θ

(
(Φ∗)i

[
eΩ

+
e2V

(
1 +

(D2
α)m

Λ2m

)
eΩ

]
i
jΦj+

+(Φ∗)i

[
eΩ

+
(

1 +
(D2

α)m

Λ2m

)
e2V eΩ

]
i
jΦj

)
+

(
1
32

∫
d4xd4θM ij

I (eΩΦ)i ×

×D2 1
D2

α

(
1 +

(D2
α)m

Λ2m

)
(eΩΦ)j + h.c.

)
(10)

is the action for the PauliÄVillars ˇelds. Their masses are proportional to the parameter Λ:

M ij
I = aij

I Λ, (11)

so that Λ is the only dimensionful parameter of the theory. Also we will choose the masses
so that

M ij
I (M∗

I )jk = M2
I δi

k. (12)

The generating functional for connected Green functions and the effective action are
deˇned by the standard way.

In order to calculate the β-function we consider

d

d ln Λ
(
d−1(α0, λ0, Λ/p)− α−1

0

) ∣∣∣
p=0

= − dα−1
0

d ln Λ
=

β(α0)
α2

0

, (13)
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where the function d is deˇned by

Γ(2)
V = − 1

8π
tr

∫
d4p

(2π)4
d4θ V(−p) ∂2Π1/2V(p) d−1(α, μ/p). (14)

Similarly

γi
j(α0(α, Λ/μ)) = − ∂

∂ ln Λ
(ln Z(α, Λ/μ))j

i , (15)

if in the massless limit:

Γ(2)
φ =

1
4

∫
d4p

(2π)4
d4θ (φ∗)i(−p, θ)φj(p, θ) (ZG)i

j(α, μ/p). (16)

2. TWO-LOOP β-FUNCTION

After calculation of the supergraphs, we have obtained the following result for the two-loop
β-function:

β2(α) = −3α2

2π
C2 + α2T (R)I0 + α3C2

2I1 +
α3

r
C(R)i

jC(R)j
iI2+

+ α3T (R)C2I3 + α2C(R)i
j
λ∗

jklλ
ikl

4πr
I4, (17)

where
Ii = Ii(0) −

∑
I

cIIi(MI) for I = 0, 2, 3, (18)

and the integrals I0(M), I1, I2(M), I3(M), and I4 are given by

I0(M) = 8π

∫
d4q

(2π)4
d

d ln Λ
1
q2

d

dq2

{
1
2
ln(q2 + M2) − q2

2(q2 + M2)
+

+ ln(1 + q2m/Λ2m) − mq2m/Λ2m

(1 + q2m/Λ2m)

}
; (19)

I1 = 96π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ
1
k2

d

dk2

{
1

q2(q + k)2(1 + q2n/Λ2n)
×

× 1
(1 + (q + k)2n/Λ2n)

(
n + 1

(1 + k2n/Λ2n)
− n

(1 + k2n/Λ2n)2

)}
; (20)

I2(M) = −16π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ
1
q2

d

dq2

{
q2

k2(1 + k2n/Λ2n)(q2 + M2)
×

× 1
((q + k)2 + M2)

[
q2(2 + (q + k)2m/Λ2m + q2m/Λ2m)2

(q2 + M2)(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)
+

+
mq2m

Λ2m

(
− 1

(1 + (q + k)2m/Λ2m)
+

(1 + (q + k)2m/Λ2m)
(1 + q2m/Λ2m)2

)]}
; (21)
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I3(M) = 16π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ

{
∂

∂qα

[
kα

4k2(k2 + M2)(q2 + M2)(k + q)2
×

× 1
(1 + (q + k)2n/Λ2n)

(
− k2(2 + k2m/Λ2m + q2m/Λ2m)2

(k2 + M2)(1 + k2m/Λ2m)(1 + q2m/Λ2m)
+

+
mk2m/Λ2m

(1 + q2m/Λ2m)
− mk2m/Λ2m(1 + q2m/Λ2m)

(1 + k2m/Λ2m)2

)]
−

− 1
k2

d

dk2

[
(2 + (q + k)2m/Λ2m + q2m/Λ2m)2

2(q2 + M2)((q + k)2 + M2)(1 + q2m/Λ2m)(1 + (q + k)2m/Λ2m)
×

×
(

1
(1 + k2n/Λ2n)

+
nk2n/Λ2n

(1 + k2n/Λ2n)2

)]}
; (22)

I4 = 64π2

∫
d4q

(2π)4
d4k

(2π)4
d

d ln Λ
1
q2

d

dq2

[
1

k2(q + k)2(1 + k2m/Λ2m)
×

× 1
(1 + (q + k)2m/Λ2m)

(
1

(1 + q2m/Λ2m)
+

mq2m/Λ2m

(1 + q2m/Λ2m)2

)]
. (23)

It is easy to see that all these integrals are integrals of total derivatives, due to the identity

∫
d4q

(2π)4
1
q2

d

dq2
f(q2) =

1
16π2

(
f(q2 = ∞) − f(q2 = 0)

)
, (24)

which can be easily proved in the four-dimensional spherical coordinates. The result is

β(α) = −α2

2π

(
3C2 − T (R)

)
+

α3

(2π)2
(
− 3C2

2 + T (R)C2 +
2
r
C(R)i

jC(R)j
i
)
−

−
α2C(R)i

jλ∗
jklλ

ikl

8π3r
+ . . . (25)

Comparing this with the one-loop anomalous dimension

γi
j(α) = −αC(R)i

j

π
+

λ∗
iklλ

jkl

4π2
+ . . . , (26)

we see agreement with the exact NSVZ β-function [13]

β(α) = −
α2[3C2 − T (R) + C(R)j

iγ
i
j(α/r)]

2π(1 − C2α/2π)
. (27)

Up to notation, this result is in agreement with the results of calculations made with the
dimensional reduction, see, e.g., [2].
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CONCLUSION

We see that the two-loop β-function in N = 1 supersymmetric theories can be easily
calculated with the higher covariant derivative regularization. The most interesting feature
of this calculation is the factorization of rather complicated integrals into integrals of total
derivatives. Also it is possible to consider different forms of the regularizing terms and the
PauliÄVillars action. For example, our choice is different from the one, proposed in [8].
The regularization, described here, is rather simple, but breaks the BRST-invariance of the
action. That is why it is necessary to use a special subtraction scheme, which restores
the SlavnovÄTaylor identities in each order of the perturbation theory [14]. However, the
factorization of integrals into total derivatives does not seem to depend on a particular choice.
For example, another form of the regularizing terms will be considered in [15]. Possibly,
this feature appears due to using of the background ˇeld method [16]. One can also try
to explain this substituting solutions of SlavnovÄTaylor identities into the SchwingerÄDyson
equations. However, a complete proof of this fact by this method has not yet been done.
Possibly, factorization of integrands into total derivatives is related with the existence of the
Novikov, Shifman, Vainshtein, and Zakharov β-function, which relates n-loop contribution
to the β-function with the β-function and the anomalous dimension in previous loops. In this
paper we see, how this occurs at the two-loop level.
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