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FINE STRUCTURE OF THE MUONIC 4He ION
E. N. Elekina, A. A. Krutov, A. P. Martynenko

Samara State University, Samara, Russia

On the basis of quasi-potential approach to the bound state problem in QED we calculate the
vacuum polarization, recoil and structure corrections of orders α5 and α6 to the ˇne splitting interval
ΔEfs = E(2P3/2) − E(2P1/2) in muonic 4

2He ion. The resulting value ΔEfs = 146180.68 μeV
provides reliable guideline in performing a comparison with the relevant experimental data.
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INTRODUCTION

Simple atoms play an important role in the check of quantum electrodynamics (QED),
the bound state theory and precise determination of fundamental physical constants (the ˇne
structure constant, the lepton and proton masses, the Rydberg constant, the proton charge
radius, etc.) [1Ä3]. Light muonic atoms (muonic hydrogen (μp), muonic deuterium, ions of
muonic helium, etc.) are distinguished among simple atoms by the strong in	uence of the
vacuum polarization (VP) effects, recoil effects, nuclear structure and polarizability effects
on the structure of the energy levels. The comparison of the theoretical value of the ˇne
and hyperˇne splittings in muonic helium ions with the future experimental data will lead
to a more precise values of the helion and α-particle charge radii. The energy levels of
muonic helium ions were theoretically studied many years ago in [4Ä6] both on the basis of
the relativistic Dirac equation and nonrelativistic approach, accounting different corrections
by the perturbation theory (PT). In these papers the basic contributions to the energies for the
(2P−2S) transitions in muonic helium (μ4

2He)+ were evaluated with the accuracy 0.1 meV.
For more than forty years, a measurement of the muonic hydrogen Lamb shift has been
considered one of the fundamental experiments in atomic spectroscopy. Recently, the progress
in muon beams and laser technology made such an experiment feasible. The ˇrst successful
measurement of the μp Lamb shift 49881.88 (76) GHz in [7] leads to new value of the proton
charge radius rp = 0.84184(36)(56) fm, where the ˇrst and second uncertainties originate
respectively from the experimental uncertainty 0.76 GHz and the uncertainty 0.0049 meV
in the Lamb shift value which is dominated by the proton polarizability term. The new
value of proton radius rp improves the CODATA value [3] by an order of the magnitude.
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Another important project which exists now at PSI (Paul Scherrer Institute) in the CREMA
(Charge Radius Experiment with Muonic Atoms) collaboration proposes to measure several
transition frequencies between 2S and 2P states in muonic helium ions (μ4

2He)+, (μ3
2He)+

with 50 ppm precision. As a result, new values of the charge radii of the helion and α particle
with the accuracy 0.0005 fm will be determined. This program suggests that the theoretical
calculations of the (2S−2P ) transition frequencies will be performed with high accuracy.

In this work we continue the investigation [8] of the energy spectrum of (μ4
2He)+ in the

P -wave part. The aim of the present study is to calculate such contributions of orders α5

and α6 to the ˇne structure of the 2P -state, which are connected with the electron vacuum
polarization, the recoil and structure effects, the muon anomalous magnetic moment and the
relativistic corrections. The role of all these effects is crucial in obtaining high theoretical
accuracy. Our purpose also consists in the reˇnement of the earlier performed calculations
in [4, 6] and in the derivation of the reliable numerical estimate for the energy intervals
(2P3/2 − 2S1/2), (2P1/2 − 2S1/2) in the ion (μ4

2He)+, which can be used for the comparison
with experimental data. Modern numerical values of fundamental physical constants are
taken from [3]: the electron mass me = 0.510998910(13) · 10−3 GeV, the muon mass mμ =
0.1056583668(38) GeV, the ˇne structure constant α−1 = 137.035999679(94), the proton
mass mp = 0.938272013(23) GeV, the mass of α particle mα = 3.727379109(93) GeV, the
muon anomalous magnetic moment aμ = 1.16592069(60) · 10−3.

1. FINE STRUCTURE OF P -WAVE ENERGY LEVELS

Our approach to the investigation of the energy spectrum of muonic helium ion (μ4
2He)+

is based on the use of quasi-potential method in quantum electrodynamics [9Ä11], where the
two-particle bound state is described by the Schréodinger equation. The basic contribution to
the muon and α-particle interaction operator is determined by the Breit Hamiltonian [12,13]:

H =
p2

2μ
− Zα

r
− p4

8m3
1

− p4

8m3
2

+
πZα

2

(
1
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1

+
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)
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where m1, m2 are the masses of the muon and α particle; μ = m1m2/(m1 + m2) is the
reduced mass; ΔV fs is the muon spin-orbit interaction:

ΔV fs(r) =
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4m2
1r

3

[
1 +
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(
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The leading order (Zα)4 contribution to the ˇne structure is determined by the operator ΔV fs.
As it follows from Eq. (2), the potential ΔV fs includes also the recoil effects (the BarkerÄ
Glover correction [14]) and the muon anomalous magnetic moment aμ correction. The ˇne
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structure interval (2P3/2−2P1/2) for the ion (μ4
2He)+ can be written in the form

ΔEfs = E(2P3/2) − E(2P1/2) =
μ3(Zα)4
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[
1 +
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+ 2aμ

(
1 +

m1

m2

)]
+

+
5m1(Zα)6
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+

α(Zα)6μ3

32πm2
1

[
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+

1
5

]
+

+ α(Zα)4AVP + α2(Zα)4BVP + Astr(Zα)6μ2r2
α. (3)

This expression includes a relativistic correction of order (Zα)6, which can be calculated
with the aid of the Dirac equation [1, 15], the correction of order α(Zα)6 enhanced by the
factor ln (Zα) [16,17], a number of terms of ˇfth and sixth order in α which are determined
by the effects of the vacuum polarization and the nuclear structure. The relativistic recoil
effects of order m1(Zα)6/m2 in the energy spectra of hydrogenic atoms were investigated
in [1,15,18Ä20]. In the ˇne splitting (3) they were calculated in [15,20]. Additional corrections
of the same order were obtained in [21]. They do not depend on the muon total momentum
j and give the contribution only to the Lamb shift. The contributions to the coefˇcients AVP

and BVP arise in the ˇrst and second orders of perturbation theory. Numerical values of the
terms in expression (3), which are presented in the analytical form, are quoted in the table
for the deˇniteness with the accuracy 0.01 μeV. The ˇne structure interval (3) in the energy
spectrum of electronic hydrogen is considered for a long time as a basic test of quantum
electrodynamics [15,22,23].

The leading-order vacuum polarization potential which gives the contribution to the coefˇ-
cient AVP, is presented by the Feynman diagrams in Fig. 1. The one-loop vacuum polarization
effects lead to the modiˇcation of both the Coulomb interaction and the muon spin-orbit in-
teraction in expressions (1), (2) [12,13]:
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VP(r) =

α

3π
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(5)

where the spectral function ρ(s) =
√

s2 − 1(2s2 +1)/s4, me is the electron mass. Averaging
the potential (2) over the wave functions of the 2P -state

ψ2P (r) =
1

2
√

6
W 5/2r exp

(
−Wr

2

)
Y1m(θ, φ), W = μZα, (6)

we obtain the following contribution to the interval (3) (see Fig. 1,a):
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Fine structure of P -wave energy levels in muonic 4
2He ion

Contribution to the ˇne Numerical value, Reference,
splitting ΔEfs μeV equation

Contribution of order (Zα)4

μ3(Zα)4

32m2
1

(
1 +

2m1

m2

)
145563.82 [4, 13], (3)

Muon AMM contribution
μ3(Zα)4

16m2
1

aμ

(
1 +

m1

m2

)
330.32 [4, 13], (3)

Contribution of order (Zα)6 19.94 [15, 20], (3)

Contribution of order (Zα)6m1/m2 Ä0.45 [15, 20], (3)

Contribution of order α(Zα)4

in the ˇrst-order PT 〈ΔV fs
VP〉 131.67 [4, 13], (7)

Contribution of one-loop muon VP
in the ˇrst-order PT 〈ΔV fs

MVP〉 0.01 [4, 13], (7)

Contribution of order α(Zα)4

in the second-order PT
〈ΔV C

VP · G̃ · ΔV fs〉 143.96 (10)

Contribution of order α(Zα)6

α(Zα)6μ3

32πm2
1

[
ln

μ(Zα)2

m1
+

1

5

]
Ä0.56 [1, 16, 17]

VP contribution in the second-
order PT of order α2(Zα)4

〈ΔV C
VP · G̃ · ΔV fs

VP〉 0.21 (20)

VP contribution from 1γ interaction
of order α2(Zα)4 〈ΔV fs

VP−VP〉 0.18 (13)

VP contribution from 1γ interaction
of order α2(Zα)4 〈ΔV fs

2-loop,VP〉 0.79 (17)

VP contribution in the second-
order PT of order α2(Zα)4

〈ΔV C
VP−VP · G̃ · ΔV fs〉 0.02 (18)

VP Contribution in the second-
order PT of order α2(Zα)4

〈ΔV C
2-loop,VP · G̃ · ΔV fs〉 2.08 (19)

Nuclear structure correction
in 1γ interaction Ä11.76 (22)

Nuclear structure correction
in the second-order PT 0.45 (24), (25)

Summary contribution 146180.68
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Fig. 1. One-loop vacuum polarization contributions to the ˇne and hyperˇne structure. The dashed line
corresponds to the Coulomb interaction. The wave line corresponds to the ˇne or hyperˇne interaction.

G̃ is the reduced Coulomb Green's function

Although the integral in Eq. (7) can be calculated analytically, we present here for simplicity
only its numerical value.

Higher order corrections α2(Zα)4 entering in the aμ are taken into account in this ex-
pression as well as the recoil effects. The same order contribution α(Zα)4 can be obtained
in the second-order perturbation theory (see Fig. 1, b). In this case the energy spectrum is
determined by the reduced Coulomb Green's function [13,24]:

G2P (r, r′) = −μ2(Zα)
36z2z′2

(
3
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2

)
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> [−2C + Ei(z< − ln z< − ln z>] ,

(9)

where z< = min (z, z′), z> = max (z, z′), C = 0.577216 . . . is the Euler constant, z = Wr.
Using Eqs. (8) and (9), we transform the correction of order α(Zα)4 to the ˇne structure in
the second-order perturbation theory as follows:

ΔEfs
2 = − α(Zα)4μ3

3456πm1m2

[
1 + 2aμ + (1 + aμ)

2m1

m2

]
×

×
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W

)] ∞∫
0
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g(x, x′) = 143.96 μeV. (10)

Note that the coordinate integration in (10) can be done analytically. Let us consider the
two-loop vacuum polarization contributions in the one-photon interaction shown in Fig. 2.
They give the corrections to the ˇne splitting of P -levels of order α2(Zα)4.

In order to obtain the particle-interaction operator for the amplitude, corresponding to the
diagram in Fig. 2, a, it is necessary to make the substitution

1
k2

→ α

3π

∞∫
1

ds

√
s2 − 1(2s2 + 1)

s4(k2 + 4m2
es

2)
(11)
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Fig. 2. Effects of two-loop electron vacuum polarization in the one-photon interaction

two times in the photon propagator. In the coordinate representation, the interaction operator
has the form [25Ä27]

ΔV fs
VP−VP(r) =

Zα
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Averaging (12) over the wave functions (6), we obtain the following correction to the inter-
val (3):
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The two-loop vacuum polarization operator is needed to ˇnd the 1γ-interaction operator shown
in Fig. 2, b, c. The modiˇcation of the photon propagator in this case has the form [1]
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The two-loop vacuum polarization potential and the correction to the ˇne structure (2P3/2−2P1/2)
are the following:

ΔV fs
2-loop,VP(r) =

2Zα3

3π2r3
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Two-loop vacuum polarization contributions in the second-order perturbation theory shown
in Fig. 3 have the same order α2(Zα)4. For their calculation it is necessary to employ
relations (2), (4), (5), and (8), and the modiˇed Coulomb potential by the two-loop vacuum
polarization [9,11]:
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)2
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Fig. 3. Effects of two-loop electron vacuum polarization in the second-order perturbation theory. The
dashed line corresponds to the Coulomb interaction. The wave line corresponds to the ˇne or hyperˇne

interaction. G̃ is the reduced Coulomb Green's function
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The amplitude in Fig. 3, a gives the following correction of order α2(Zα)4 to the ˇne splitting:

ΔEfs
5 =

μ3α2(Zα)4

1296π2

[
1 + aμ

2m1m2
+

1 + 2aμ

4m2
1

] ∞∫
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W
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×

× exp
[
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(
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W

)]
g(x, x′) = 0.28 μeV. (20)

We integrate (20) analytically over coordinates x, x′ and numerically over parameters ξ, η.
Two other contributions from the amplitudes in Fig. 3, b, c have a similar integral structure.
Their numerical values are included in the table.

There exists the correction to the ˇne splitting due to the nuclear structure. In 1γ
interaction it is related with the charge form factor of the α particle. The ˇne structure
potential (2) is obtained in the point nuclear approximation. To generalize (2) to the case of
the nucleus of the ˇnite size, we can use the following potential in momentum representation:

ΔV fs
str(k) = −πZα

m2
1

i[k× p]σ1

k2
F1(k2)

[
1 +

2m1

m2
+ 2aμ

(
1 +

m1

m2

)]
. (21)

Using in (21) the dipole parameterization for the Dirac form factor F1(k2) with the parameter
Λα =

√
12/rα, we can express the contribution of the nuclear structure to the ˇne splitting

in the form

ΔEfs
str =

μ5(Zα)6

32m2
1Λ2

α

[
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m2
+ 2aμ

(
1 +

m1

m2

)] (
−6 + 20

W

Λα

)
= −11.76 μeV. (22)

Numerical value of (22) is obtained using the charge radius of α particle rα = 1.681(4) fm [28].
One part of the nuclear structure correction in the second-order PT 2〈ΔV fs · G̃ · ΔV C

str〉 is
determined by the potential (2) and

ΔV C
str(r) =

Zα

2r
(Λαr + 2) e−Λαr, (23)

which also is obtained by means of the dipole parameterization for the charge form factor of
the α particle in the Coulomb part of the potential. As a result, we ˇnd the ˇne structure
contribution in the form

ΔEfs
1,str =

5μ6(Zα)7

16m2
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29
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W
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)
= −0.07 μeV.

(24)
Second part of the nuclear structure correction in second-order PT 2〈ΔV fs ·G̃·ΔV fs

str〉 is related
with the potentials (2) and (21). Performing analytical integration over particle coordinates,
we arrive at the following result:

ΔEfs
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64m4
1Λα
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= 0.52 μeV.

(25)
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The sum of the results (24) and (25) is presented in the table. The total result for the ˇne
splitting ΔEfs in (μ4

2He)+ is presented here as well. It takes into consideration the numerous
earlier performed calculations discussed in the review article [1] and new corrections obtained
in this work.

2. SUMMARY AND CONCLUSION

In the present study we have calculated QED effects in the ˇne structure of the P -wave
energy levels in muonic helium ion (μ4

2He)+. We have considered the electron vacuum
polarization contributions of orders α5, α6, recoil corrections, relativistic effects of order
α6 and the nuclear structure corrections. The total numerical value of the ˇne splitting is
presented in the table. In this table we give the references to other papers also devoted to the
investigation of the ˇne structure of P -wave levels in the hydrogenic atoms.

Let us summarize the basic points of the calculation performed above.
1. Special attention in our investigation has been concentrated on the vacuum polarization

effects. For this purpose we obtain the terms of the interaction operator in muonic helium
ion which contain the one-loop and two-loop vacuum polarization corrections.

2. In each order in α we have taken into account recoil effects in the terms proportional
to the ratio m1/m2.

3. The calculation of the nuclear structure corrections to the ˇne structure interval is
performed on the basis of the dipole parameterization for the α-particle charge form factor.

The theoretical error of the obtained results is determined by the contributions of higher
order and amounts up to 10−6. Previously, the ˇne splitting in the ion of muonic helium
was studied in [4]. Considering the numerical results obtained in [4] for different transitions
(2S−2P ), we ˇnd that the ˇne splitting interval is equal to ΔEfs = (146.2 ± 0.6) meV.
Extracting the leading-order nuclear structure correction proportional to r2

α, we can present
the result of our work ΔEfs = 146.193− 4.2124 · r2

α = (146.181± 0.001) meV which agrees
with and reˇnes the previous calculation performed in [4] via taking into account higher
order effects. It can be considered as a reliable estimate of the ˇne structure interval for
the P -wave levels in muonic helium ion (μ4

2He)+. In order to present here the transition
frequencies between 2P - and 2S-states, we need the value of the Lamb shift obtained in [25].
Our calculation of the WichmannÄKroll correction in [25] contains the error as noted in [29].
New value of the WichmannÄKroll correction is equal to ΔEWK(2P−2S) = −0.0199 meV.
Then corresponding energy intervals in the ˇne structure of muonic helium ion (μ4

2He)+ are
ΔE(2P1/2−2S1/2) = 1381.561 meV and ΔE(2P3/2−2S1/2) = 1527.742 meV. A measure-
ment of (2P−2S) transition frequencies with the 50 ppm precision combined with the present
theoretical prediction and the result of [25] will lead to the determination of the 4

2He radius
to a relative accuracy 3 · 10−4.
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