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RELATIVISTIC ASPECTS OF THE MOTION
OF TWO-PARTICLE MODEL MOLECULE

OSCILLATING PERPENDICULARLY
TO THE DIRECTION OF ITS TRANSLATION

A. Czachor1

Institute of Atomic Energy POLATOM, 	Swierk, Poland

On solving exactly relativistic equations of motion for the model molecule of two particles coupled
elastically, it has been shown that in the framework of relativistic mechanics this system, and in general
any closed system of interacting particles, is not inertial. In particular, the translational velocity of the
mass center of such a system has, as a consequence of the nonlinearity of the equations, oscillatory
components re
ecting its internal transverse oscillations Å it is a pulsed motion. This effect can in
principle be seen in the time-of-
ight experiments. The force constant of elastic coupling in the system,
as seen by the observer at rest, is shown to decline with increase of the total momentum of the system.
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Let us remind the basic identity for a free particle within the Special Relativity Theory
(SRT). For the particle of the rest mass μ, energy E, and momentum P, the following
equation holds (in the units such that the velocity of light c = 1), see references [1Ä4]:

E2 − P2 = μ2. (1)

One should ask what happens, if the particle is a sort of ®molecule¯ Å it is composed
of subparticles held together with some interparticle forces? From the point of view of an
observer at rest, the following fundamental questions should be asked:

1. Do the internal motions of the component particles of the molecule have any impact on
the movement of its center of mass?
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2. Can we treat such a molecule as a free particle of ˇxed mass?
3. Does the observed coupling between the component particles depend on the average

velocity of the molecule?
In classical mechanics the answers are known Å no, yes, and no, respectively [1]. But

when the particles move fast, the case enters the SRT range and the equations of motion
are nonlinear [2Ä4]. The answer is then neither obvious nor simple and there is a room for
surprise. Even the very formulation of the equations of motion for many interacting particles
in the framework of the SRT meets conceptual problems, because the energy-momentum
4-vectors are in general not additive [2, 3].

The questions are of fundamental character, so it makes sense to clear the situation using
a simplest, but fully soluble model. Let us consider the movement of a cluster of two
mutually coupled identical particles Å we shall call it a molecule. It can be not only a typical
chemical molecule like H2 or O2, but also a nucleus, like deuterium. We assume that no
external forces act on the molecule. The particles have the mass M and are coupled with
an elastic spring characterized by the force constant (Hooke modulus) k. We shall consider
the ®transverse¯ (T) conˇguration of motion of this ®M2 molecule¯: its mass center moves
along the x axis while the coupling acts along the y direction perpendicular to the x, and this
is the direction of mutual oscillation of the particles (see Fig. 1, b). Due to symmetry of this
T-conˇguration, it is natural to assume that the molecule exhibits the (1, Ä1) oscillation even
at relativistic velocities of both particles.

Before taking on the relativistic problem of moving molecule, let us ˇrst refer to the
old SRT problem of the oscillation period of a classic linear oscillator. Such a model Å
a particle coupled to a heavy wall with a spring, see Fig. 1, a, Å has ˇrst been treated by
Penˇeld and Zdesis (PZ), starting form the energy conservation law [5]. The solution for the
oscillation amplitude vs. time is given in terms of elliptic integrals. At low velocity of the
particle the movement is harmonic (sin (ωt)-like amplitude of oscillation vs. time). Moreau,
Easther and Neutze [6] meticulously reconsidered the problem starting from the relativistic
Lagrangian of Synge [7]. They emphasize the anharmonic oscillation aspects of the motion
of relativistic oscillator and show that if the velocity of the particle tends to the velocity of
light, the motion approaches a triangular (saw-like) pattern, with the particle velocities close
to ±c, alternatively. Young-Sea Huang [8] has derived the related equations of motion as a

Fig. 1. Oscillating systems referred to: a) single
particle coupled with elastic spring to immobile

walls; b) the molecule M2 of two particles cou-
pled with elastic spring, executing the symmetric

(1, Ä1) oscillation along the direction y (vertical),

while moving as a whole horizontally (x direc-
tion) Å the transverse mode T; c) the M2 mole-

cule oriented, oscillating and executing translation

as a whole along the x direction Å the longitudi-
nal mode L
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simple application of the Lorentz-covariant proper-time Lagrangian formulation of relativistic
mechanics.

In the unpublished paper we have considered the relativistic problem of motion of two
particles coupled elastically, starting form the postulate that the energy conservation law and
the momentum conservation law are separately valid, see [9]. As shown in Fig. 1, b, the
inner oscillation in the T-conˇguration has symmetry (1, Ä1) and the problem reduces here
mathematically (however, with parameters depending on the total momentum of the molecule)
to the PenˇeldÄZdetsis problem of the single-particle relativistic oscillation. The solution for
the conˇguration L (see Fig. 1, c) has also been found, but it is mathematically more complex.
A solution for arbitrary angle between the oscillation and the translation direction has not
been found yet.

It is not a priori obvious that both conservation laws can be applied separately for this
relativistic system. Therefore, in this paper we analyze the problem of motion of two coupled
particles moving in the conˇguration T, starting from the beginning Å from the full SRT
formulation of the Newton equations of motion [1Ä4]. The reason for such a choice is that
for such symmetric transverse motion of this two-body system the SRT equations of motion
can be solved exactly and the solution is transparent. It is perhaps the simplest many-body
system one can so conveniently solve within the SRT. We show below that for the T-mode
the validity of two independent conservation laws is not a wishful postulate, but a direct
consequence of the SRT equations of motion. It allows us to give doubtless answers to the
questions set above.

In true physical molecule like H2 or N2 the coupling (bond) between the two nuclei is a
consequence of electromagnetic forces between the nuclei and electrons, which are known to
obey the FL transformation. It suggests solving the problem of fast-moving molecules from
ˇrst principles. However, full ab initio quantum many-body theory of the coupling in such
a molecule does not exist yet, although hopefully it will emerge in future. At present, in
order to describe the mutual oscillation of the two nuclei, we introduce a spring-like coupling
between them, characterized by the force constant k. Such a step should be sufˇcient at least
for small oscillations Å in the harmonic region of oscillations. One can expect that in the
ab initio microscopic theory this quantity will be in future expressed in terms of its physical
components Å electron and nucleus masses and charges, Planck constant, light velocity. Here
it is a phenomenological parameter, which possibly depends on the velocity vx of translation
of the molecule with respect to the observer. The approximate form of this dependence is
derived below.

With the particles of the mass M , labeled 1 and 2, the SRT equations of the T-motion
can be written in the textbook form d/dt(γv) = F, see [1Ä4], where F is the Newtonian
force (in general the 3D part of Minkowski's force 4-vector), v is the 3D particle velocity,
and γ is the FitzgeraldÄLorentz (FL) time-delay factor. Here the movement of the molecule
is assumed to occur in the x−y plane and the equations look as follows:

M
d

dt
(γv1y) = −k(y1 − y2), (2a)

M
d

dt
(γv2y) = −k(y2 − y1), (2b)

M
d

dt
(γvx) = 0, (2c)
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where v1y = dy1/dt, v2y = dy2/dt, vx = v1x = v2x, k is the force constant (Hooke's
modulus) of the spring coupling of the particles and the FL factor is

γ = (1 − v2)−1/2, (3)

where v is the velocity of the point-mass M seen by the observer at rest. Note that due to
mirror symmetry of the molecule oscillation in the T-conˇguration we have for the oscillation
amplitudes y1 = −y2 = y and for the velocities v1y = −v2y = vy , so one can write
v2
1y = v2

2y = v2
y, and v2 = v2

x + v2
y . Therefore, the dilatation factor for both particles is

just single one. By this (1, Ä1) symmetry of the molecule oscillation in the T-conˇguration
the two particles are equivalent. Effectively each particle moves in the gutter-pipe like ˇeld
of potential V (x, y) = ky2. The two-body problem formally turns here into the one-body
problem. It follows that for this speciˇc system the coupling retardation problems, due to
a ˇnite velocity of the position signal between interacting particles, do not appear. The
equations (2a), (2b) for the oscillation amplitudes can be substituted by just one for the y(t):

M
d

dt
(γvy) = −2ky. (4)

Even without integration one can see that due to the occurrence of both components of the
velocity in the γ factor, the x and y components of the particle movement cannot be separated.
On integrating ˇrst Eq. (2c) we obtain the momentum conservation law

Mvx√
1 − v2

x − v2
y

= const =
P

2
. (5)

Immediately we get from it a relation between the velocity of inner oscillatory motion vy and
the velocity vx of translational motion of the molecule as a whole

v2
x =

P 2

4M2 + P 2
(1 − v2

y). (6)

It says that the spring-induced transverse oscillation of the molecule imposes an oscillatory
component onto the translational motion velocity vx of the center of mass of the molecule,
see Fig. 1, b. In other words Å as the equations of motion are nonlinear, the center of mass
of oscillating molecule does not move uniformly, and its velocity shows a pulsation, although
the molecule momentum P is constant in time. This is a purely relativistic effect, due to
transfer of energy between both forms of motion. It should be possibly observed with 
ying
nuclei rather than with chemical molecules, because only in nuclei one can expect the inner
subparticle velocities to be sufˇciently high. The effect is illustrated in Fig. 2.

One can argue that the spring coupling k of both particles of the molecule is a physical
object and thus it is not quite safe to treat the force constant k as independent of the molecule
velocity. It is true, but we can see that luckily this parameter does not appear at all in the
momentum conservation law (5). It suggests that the impact of the inner oscillation on the
translational motion of the molecule given by Eq. (6) is a real effect. The answer to the ˇrst
question is therefore YES. We shall return to the velocity dependence of the k, as seen by
the observer at rest, later on.
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Fig. 2. Relativistic ®pulsed¯ motion of the two-particle molecule M2 in the mode T of Fig. 1, b. Picture
shows the interrelation given by Eq. (6) between the molecule velocities vs. time. M = M0 = 1 is

the particle mass. Here v stays for the transverse oscillation velocity vy , v0 = vy=0, while vx is the
translational velocity of the center of mass of the molecule. The molecule momentum given by Eq. (4)

is assumed to be P = 3 (in the units c = 1)

Using Eq. (6), one can eliminate vx from the dilatation factor and obtain such a factor for
the y-motion alone:

γ=

√
1 + P 2/(4M2)√

1 − v2
y

≡ γy. (7)

On inserting it into Eq. (4) we have

d

dt
(γyvy) = −2k

M
y. (4′)

Note that for γy → 1 (low velocity vy) it is the classic Newton equation for the harmonic
oscillator with the frequency ω2 = 2k/M . On multiplying both sides with the vy = dy/dt
we can do the integration and obtain

M

(
1 +

P 2

4M2

)1/2

(1 − v2
y)−1/2 + ky2 = const =

E

2
. (8)

In this way we have arrived at the energy conservation law for the T-motion. Mathematically
it is the PenˇeldÄZdetsis equation [5], with the particle mass M multiplied by the factor
(1+P 2/(4M2))1/2. In the preliminary paper [9] we have derived this equation directly from
the postulates of energy and momentum conservation. The oscillation amplitude y vs. time
t plots for several initial velocities of oscillation and translation momentum P values have
been evaluated and shown there. Here let us only address the matter of the ®rest mass¯ of
such a complex particle as the ®molecule M2¯.

At the center of oscillatory motion there is y = 0 and the inner velocity vy is the highest.
We shall call it the ®initial¯ velocity v0. Equation (8) allows us to connect the energy E, the
momentum P and the v0:

E = 2M

(
1 +

P 2

4M2

)1/2

(1 − v2
0)

−1/2. (9)
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On inserting it into Eq. (1) we get for the ®rest mass¯ of the molecule M2 executing its
T-motion

μ2 =
4M2 + v2

0P 2

1 − v2
0

= (2M)2 +
4M2v2

0

1 − v2
0

+
v2
0P

2

1 − v2
0

. (10)

We can see that if there is an inner oscillation characterized by the initial velocity v0, the μ
differs from the sum of rest masses, which is equal to 2M , not only by the ®mass defect¯
(second term in the RHS), which depends only on the inner dynamics of the molecule and
thus can be incorporated into a mass of free particle. There is also the third term in the RHS,
which depends on the total momentum P of the molecule combined with the inner velocity
v0. Therefore, the μ2 is not a constant mass independent of the translational motion of this
system. This sets the answer to the second question asked at the beginning of this paper Å in
spite of the fact that the force here is only an inner force, the molecule M2 cannot be treated
as the free particle. This statement should be immediately generalized Å no complex particle
having inner dynamics is a free particle in the sense of Eq. (1). It means that in principle no
real complex system, including atoms and nuclei, is the inertial system. Practically, it often
does, because the corrections are only of the order v2

yP 2.
Only if the molecule does not move, P = 0, we can assign to it a well-deˇned mass

μ2
0 ≡ E2

P=0 =
4M2

1 − v2
0

= (2M)2 +
4M2v2

0

1 − v2
0

. (11)

One can see that this mass (energy) is larger than 2M not only by the well-known kinetic-
energy-like contribution due to the inner motion Å it is additionally enhanced via the rel-
ativistic denominator involving the ®initial¯ velocity v0 ≡ vy at y = 0. It follows that the
binding energy B in this model is

B

2M
=

1
2

v2
0

1 − v2
0

. (12)

Equation (8) allows us to determine the dependence of the force constant k on the average
translational velocity vx of the molecule, at least for low inner velocity v0 � 1. Let us
evaluate the oscillation period appearing within the present model. First, we ask for the
velocity v0 at y = 0. Equation (8) gives, with A = 2M(1 + P 2/4/M2)1/2,

v0 =

(
1 −

(
A

E

)2
)1/2

. (13)

Then let us introduce the notion of maximum oscillation amplitude ym as such that vy = 0.
Equation (8) gives

ym =

√
E − A

2k
. (14)

At v0 � 1 the oscillation is harmonic, y(t) = ym sin (2πt/T ) and v0 = y′(0), thus

T = 2π
ym

v0
= 2π

√
E

2k(1 + A/E)
. (15)
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At v0 → 0 we have E ∼= A and within the present model the oscillation period is

T = 2π

√
M

2k

(
1 +

P 2

4M2

)1/4

. (16)

We are now in a position to look at the problem of oscillation period of the moving molecule
straight from the point of view of the FL time dilatation. To do it, we ˇrst introduce the force
constant k0 of the molecule at rest executing small oscillations. Equations of motion are such
as Eqs. (2a)Ä(2c) with γ = 1 and k0 instead of k. The corresponding period of oscillation is
T0 = 2π

√
M/2k0 (see, e.g., [10]). We know a priori that the period of a physical system

running with the constant velocity vx with respect to the observer at rest is given by the FL
time-dilatation formula

T = T0(1 − v2
x)−1/2. (17)

The difference between Eqs. (16) and (17) should be attributed to the fact that so far we have
treated the spring constant as the quantity independent of the motion of molecule with respect
to the observer. In fact, the interparticle coupling is always realized by physical particles
and ˇelds, so their transformation properties should be accounted for. The present derivation
helps one to establish the approximate form of such a transformation for the force constant k.

To avoid, at this point, conceptual problems related to the oscillatory component of
the translational velocity, discussed above, we assume that the vx is here the ®average¯
translational velocity of the M2 molecule following from Eq. (5) with vy → 0. To reconcile
Eqs. (16) and (17), we have to assume the following relation between k and k0:

k = (1 − v2
x)

(
1 +

P 2

4M2

)1/2

k0. (18)

It is the phenomenological derivation of the transformation of the spring elastic ˇeld char-
acterized by the force constant k, valid for the moving molecule at low transversal velocity
vy → 0. Using again this condition in Eq. (5), we can rewrite Eq. (18) in even simpler form

k ∼=
(

1 +
P 2

4M2

)−1/2

k0. (19)

The physical content of these equations is that for the observer at rest the elastic coupling
k between the two particles oscillating within the running molecule is weaker than the same
coupling in this molecule at rest. This is the answer to the third question set in this paper.
The equations give the transformation law for the force constant k, valid at least for relatively
low momentum P or translational velocity vx of the molecule.

In principle, one could try to write down such a transformation law for arbitrary initial
velocity, starting from the exact solution for the oscillation period T given in [9]. It is a
rather complex task and far from being transparent, due to its formulation in terms of elliptic
integrals.

One can expect observing the pulsed motion of fast-running molecules either produced in
accelerators (molecular ions) or in the spectra of molecules accelerated by gravitation in cosmic
space. As the case for experimental veriˇcation we can take deuterium D. The masses of both
component nucleons are almost equal and we have 2M = Mp +Mn = 1877.852 MeV, while
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the binding energy B = 2.225 MeV, see [10]. Thus, one obtains by Eq. (12), as the highest
velocity of relative oscillation of proton against neutron in deuterium, the approximate value
v0 = 0.0486 (in the units c). The amplitude of oscillatory component v2

y in the translational
velocity, Eq. (5), is of the order 0.002 Å small but reasonable. However, if we take two
deuterium radii 2R = 8.6 fm as the amplitude ym of relative protonÄneutron oscillation, the
inner velocity v0 as above, and the oscillation period given by the LHS of Eq. (15), then we
obtain as a reasonable estimate for the period of inner oscillation in deuterium a very small
number T = 3.7 · 10−21 s, rather difˇcult to experimentally deal with.

For chemical molecules like N2 or O2, the oscillation period is of the order 10−12 s,
see, e.g., [11], but the relative atomÄatom velocity is only of the order 1 km/s, so the
component v2

y in Eq. (6) is as small as 10−10. It follows that the experimental determina-
tion of the relativistic pulsation of the velocity of complex bodies, predicted here, needs a
special care.

SUMMARY

We have shown that inner motions of subparticles in a moving physical system manifest
themselves in making the system's center-of-mass translational movement nonuniform Å
such a multiparticle system is never fully inertial. This is a pulsed motion and in principle
can be observed in time-of-
ight experiments. The observed coupling between oscillating
subparticles in such a running molecule is weaker than in the molecule at rest.
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