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We present results of quasi-phase matching (QPM) interactions in one-dimensional multilayered
media consisting of layers with different χ(2) nonlinearities which are interchanged by linear dispersive
layers. We exploit the idea of manipulating overall group delay mismatches between the various ˇelds
in each layer by appropriate choosing of the dispersive parameters and consider both multiple optical
QPM interactions and preparation of pure photon states in application to quantum gates.
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INTRODUCTION

Quantum communication and optical quantum computation rely on the controlled prepara-
tion and manipulation of speciˇc photonic states. Such states are usually prepared in multiple
optical QPM interactions realized in χ(2) nonlinear media [1, 2]. Particularly, preparation of
pure multiphotonic states is an important starting point for implementation of many schemes
of quantum information processing including efˇcient scalable quantum computing with
single photons, linear optical elements, and projective measurement [3]. Two-qubit uni-
tary gates such as controlled-NOT (CNOT) gate, or controlled phase gates have also been
built in this way.

In this paper, we discuss the problem of realizing the strong QPM interactions between
photons in multilayered structures on the one hand and analyze production of multiphoton
pure states in type-II collinear down-conversion in these structures on the other hand. We
focus on the structures consisting of layers with different susceptibilities of nonlinearity and
consider detailed description of elementary interactions in each layer, including dispersions
of interacting waves.
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Traditionally, the technique of QPM between interacting waves is realized in periodically
poled nonlinear crystals (PPNC) or in photonic crystals. In the papers [4, 5] the spectral
properties of joint states of photon pairs produced by pulsed parametric down-conversion in a
multilayered structures of second-order nonlinear and linear materials have been investigated
in application to production of both two-photon states with an arbitrary degree of entangle-
ment as well as pure photonic wave packets. The idea is the manipulation of overall group
delay mismatches between the various ˇelds in structured materials. The standard method of
production of pure multiphotonic states is the method of conditional measurements in a spon-
taneous parametric down-conversion (SPDC) generating correlated photon pairs. According
to the method of conditional preparation, counting n photons in one of the correlated mode
projects the other mode in an n-photon Fock state.

1. MULTIPLE INTERACTIONS IN DYSON SERIES REPRESENTATION

In this section we consider multiple three-wave interaction in χ(2) medium that is the
multilayered structure and write interaction Hamiltonian as

H(t) = H(−)(t) + H(+)(t), (1)

H(−)(t) =

L∫
0

dzχ(2)(z)Ep(z, t)E(−)
1 (z, t)E(−)

2 (z, t) =

=
∑

n

zn+1∫
zn

dzχ(2)EpnE
(−)
1n (z, t)E(−)

2n (z, t), (2)

where L is the length of the medium and

E
(−)
1n (z, t) =

∫
e−i(ωt−k1n(ω)z)a+(ω) dω, E

(−)
2n (z, t) =

∫
e−i(ωt−k2n(ω)z)b+(ω) dω (3)

describe electromagnetic ˇelds of two modes (1) and (2) in each of the layers, and

Epn(z, t) =
∫

fp(ω) e−i(ω−kpn(ω)z) dω (4)

is the corresponding pump ˇeld, while a+ and b+ are creation operators for two ˇelds.
We specify our three-photon interaction as leading to type-II parametric down-conversion

and investigate the state vector in all order of the perturbation theory as

|ψ(t)〉 = T exp

⎧⎨
⎩−

(
i

�

) t∫
−∞

dτ(H(−)(τ) + H(+)(τ))|0〉1|0〉2

⎫⎬
⎭ . (5)

Particularly, in the second order of the perturbation theory we get

|ψ(t)〉 = (1 + γ)|0〉1|0〉2 − |ψ(1)(t)〉 − 1
2
|ψ(1)(t)〉2, (6)
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where

|ψ(1)(t)〉 =
∫

dω1 dω2 Φ(ω1, ω2)a+(ω1)b+(ω2)|0〉1|0〉2, (7)

γ is the correction to vacuum state and Φ(ω1, ω2) is the spectral two-photon amplitude, that
is the product of pump ˇeld and the effective nonlinear coefˇcient G(Δk):

Φ(ω1, ω2) = fL(ω1 + ω2)G(Δk). (8)

2. PREPARATION OF PURE PHOTON STATES IN PPNC

In this section, we investigate the process of type-II down-conversion in periodically poled
nonlinear crystals (PPNC) with dispersive elements. This structure consists of N/2 segments
of length l1 with positive χ and negative −χ susceptibilities and N/2 linear optical spacers
of length l2. This approach helps us associate our results with real length, number of slights,
coefˇcients of dispersions, and other parameters relating to real structures. The calculations
lead to the following result for the effective nonlinear coefˇcient [6]:

G(Δk, Δκ) = l1χ e−iφ sin c

(
l1
2

Δk

) sin
(

N(l1 + l2)ΔK

4

)

sin
(

(l1 + l2)ΔK

4

) . (9)

Here we assume two mismatch functions Δk and Δκ corresponding to nonlinear n =

1, 3, 5, . . . and n = 2, 4, . . . segments, ΔK = l̄1Δk + l̄2Δκ − qm, Δk = kp(ω0) − k1(ω1)−
k2(ω2), Δκ = κp(ω0) − κ1(ω1) − κ2(ω2), |kp| = (ω/c)np, |ki| = (ωi/c)ni (i = 1, 2), φ =

(1/2)l1Δk+(1/2)ΔK(l1+ l2)(N/2+1). L = N/2(l1+ l2) is the total length of the medium,

l̄i = li/(l1 + l2) (i = 1, 2), l̄1 + l̄2 = 1 and qm = 2πm/d is the harmonic grating wave vector,
m is an arbitrary odd number, which is speciˇed for a concrete process, d = 2(l1 + l2). Thus,
the total effective interaction coefˇcient is presented as the product of two separate functions.
One describes each individual nonlinear crystal segment and the other function describes the
modiˇcations of the QPM function in the superlattice.

Now we will ˇnd conditions for preparation of pure photon states, rewriting two-photon

amplitude in the Gaussian form and assuming that pump ˇeld has the form fp(ω) ≈
(

τ2
p

2
(ω−

ω0)2
)

, choosing the phase-matching conditions as Δk(0) = 0 and l̄2Δκ(0) = qm. We look

the case of large number of segments N � 1 and expand phase-matching functions Δk
and Δκ into Taylor series up to the second order. In this case, it is not difˇcult to get the
Gaussian-like form from Eqs. (8) and (9). Note that the two-photon amplitude in the Gaussian
form can be factorized as

Φ(ω1, ω2) = ϕ(ω1)φ(ω2), (10)
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where

ϕ(ω1) = exp
[(

− i

2
(α1 + β1)

)
ν2
1

]
×

× exp
[(

− 1
20

N2(t1 + T1)2 −
1
2
τ2
p − 1

6
N(α1 + β1)

)
ν2
1

]
,

φ(ω2) = exp
[(

− i

2
(α2 + β2)

)
ν2
2

]
×

× exp
[(

− 1
20

N2(t2 + T2)2 −
1
2
τ2
p − 1

6
N(α2 + β2)

)
ν2
2

]
, (11)

under the conditions

− 1
10

N2(t1 + T1)(t2 + T2) − τ2
p = 0, (αp + βp) = 0. (12)

Here

Tμ =
l1
2

(
dk0(ω)

dω

∣∣∣∣
ω=ω0

− dkμ(ω)
dω

∣∣∣∣
ω=

ω0
2

)
,

tμ =
l2
2

(
dκ0(ω)

dω

∣∣∣∣
ω=ω0

− dκμ(ω)
dω

∣∣∣∣
ω=

ω0
2

)
,

βμ =
l1
2

(
d2k0(ω)

dω2

∣∣∣∣
ω=

ω0
2

− d2kμ(ω)
dω2

∣∣∣∣
ω=

ω0
2

)
, (13)

αμ =
l2
2

(
d2κ0(ω)

dω2

∣∣∣∣
ω=

ω0
2

− d2κμ(ω)
dω2

∣∣∣∣
ω=

ω0
2

)
,

βp =
l1
2

d2k0(ω)
dω2

∣∣∣∣
ω=ω0

, αp =
l2
2

d2κ0(ω)
dω2

∣∣∣∣
ω=ω0

,

μ = 1, 2 and νμ = ωμ − ω0/2.
These conditions guarantee that all correlations between the signal and idler photons be

eliminated and hence mean the preparation of pure photon wave packets. The conditions
have been considered in [5], but for the case of nonlinear materials without linear dispersive
elements. As we can see, the condition (12) involves dispersive coefˇcients of both nonlinear
and linear segments. For the system we investigate we have additional parameter: group
velocity matching function of the dispersive linear element, beside τp, which helps us to
implement (realize) the condition. The ˇrst condition of Eq. (12) could be achieved easily, as
the group velocity matching function of the dispersive linear element could have the opposite
sign to the group velocity matching function of nonlinear segments, and we always could
manage the thickness of the segments. Generally, the terms in the second condition are very
small and could be neglected. But if there are materials where these terms are not vanishing,
we could satisfy this condition managing the thicknesses of the segments.
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In this case, the two-mode state (5) becomes

|ψ〉 =
∑
neven

λn/2(A+B+)n/2

(n/2)
|0〉1|0〉2, (14)

where A+ and B+ are new discreet creation operators, in which the spectral degree of freedom
no longer plays a role once integrated out

A+ =
∫

ϕ(ω1)a+(ω1) dω1, B+ =
∫

φ(ω1)b+(ω2) dω2. (15)

They satisfy the commutator relations [A, A+] = [B, B+] = 1. Thus, the two-mode state
is expressed in terms of a single Schmidt mode pair. In this case, counting n photons in one
of the correlated mode projects the other mode in an n-photon Fock state

|ϕ〉 =
(A+)n

√
n!

|0〉1, or |φ〉 =
(B+)n

√
n!

|0〉2. (16)
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