ВВЕДЕНИЕ В ФИЗИКУ НЕЙТРИНО

Д. В. Наумов

Объединенный институт ядерных исследований, Дубна

Это конспект лекции, прочитанный автором на Байкальской летней школе по физике элементарных частиц и астрофизике в 2010 г. Лекции предназначены в первую очередь студентам, аспирантам и молодым ученным как введение в предмет физики нейтрино.

This is a manuscript of lectures presented by the author at the Baikal Summer School on Physics of Elementary Particles and Astrophysics 2010. The lectures are intended mainly for students and young researchers as an introductory course of neutrino physics.

PACS: 11.80.-m; 13.15.+g

1. ВВЕДЕНИЕ. ЗАЧЕМ ИЗУЧАТЬ НЕЙТРИНО?

1.1. Краткая история нейтрино. Нейтрино — легкая, слабо взаимодействующая нейтральная частица со спином 1/2. Нейтрино окружают нас со всех сторон. Мы живем в потоке реликтовых нейтрино, оставшихся после Большого взрыва — пожалуй, самых старых частиц во Вселенной. Их энергия ничтожна — порядка 10^{-4} эВ, однако их поток один из самых интенсивных на Земле $\sim 10^{13} - 10^{14}$ см$^{-2}$ · с$^{-1}$. Число антинейтрино, вылетающих из ядерного реактора, порядка $10^{20} \bar{\nu}_e$ за 1 с при мощности реактора в 1 ГВт. Таким образом, на расстоянии в 10 м от центра реактора поток антинейтрино составляет $\sim 10^{13}$ см$^{-2}$ · с$^{-1}$. Характерные энергии ν_e от реактора — это сотни кэВ — несколько МэВ. Нейтрино также летят к нам и от Солнца, роющаяся там в ходе ядерных реакций в солнечной плазме с энергиями от кэВ до полутора десятков МэВ и с потоком до 10^{10} см$^{-2}$ · с$^{-1}$. Недра земли в ходе слабых распадов ядер излучают антинейтрино с энергиями от кэВ до десятка МэВ и с потоками порядка 10^6 см$^{-2}$ · с$^{-1}$ на поверхности земли. Космические лучи (в основном протоны и легкие ядра), бомбардируя атмосферу Земли, рождаются нейтрино и антинейтрино с энергиями 100 МэВ и выше и потоком порядка 10^6 см$^{-2}$ · с$^{-1}$. Аналогичные по порядку величины потоки (анти)нейтрино, но с энергиями выше ТэВ, ожидаются от активных галактических ядер. Наконец, рассеяние космических лучей ультравысоких энергий на микроволновом фоне в цепочке слабых распадов дает диффузные космические нейтрино с энергиями выше 10^8 ТэВ и ничтожными потоками порядка 10^{-12} см$^{-2}$ · с$^{-1}$.

1E-mail: dnaumov@jinr.ru

2 Мы используем систему единиц, принятую в физике высоких энергий, $\hbar = c = 1$.

ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ТЕОРИЯ
На рис. 1 приведены характерные потоки нейтрино и антинейтрино от различных естественных источников.

Как было открыто нейтрино? Началось все, как это обычно бывает, с экспериментальной загадки. В начале прошлого века, после открытия атомной структуры вещества, начались активные экспериментальные исследования различных атомов и ядер, и вскоре было обнаружено, что некоторые ядра нестабильны — они излучают α-, β-, γ-лучи. Эти лучи, получившие названия от первых трех букв грецкого алфавита, отличались друг от друга электрическим зарядом (положительно и отрицательно заряженные α- и β-лучи соответственно и нейтральные γ-лучи) и разной проникающей способностью. У α- и γ-лучей была одна общая черта — монохроматичность линий в спектрах энергий. Линии в спектрах определяются разностью энергий начального и конечного ядер, что, безусловно, находится в согласии с законом сохранения энергии. На этом фоне наблюдаемый непрерывный спектр электронов в β-распадах ядер выглядит противоречащим законам сохранения энергии-импульса и момента количества движения.

Первым, кто дал правильное объяснение наблюдаемым фактам, был В. Паули, написавший в своем знаменитом письме «radioaktivnym damam i gospodam» от 4 декабря 1930 г. среди прочего следующее: «Непрерывность бета-спектра станет понятной, если предположить, что при бета-распаде с каждым электроном испускается нейтрон, причем сумма энергии нейтрона и электрона постоянна . . .». Предложенный В. Паули «нейтрон» должен был обладать очень малой массой и слабо взаимодействовать с веществом, чтобы покинуть экспериментальную установку незамеченным. Поэтому, когда спустя короткое время Чевиков был обнаружен нейтрон — нейтральная, но сильно взаимодействующая, и, главное, тяжелая частица, Э. Ферми предложил называть гипотетический «нейтрон» Паули «маленьким нейтроном», или, по-итальянски, нейтрино. Только через 26 лет после гипотезы Паули Райнес (Reines) и Коуэн (Cowan) экспериментально обнаружили
электронное антинейтрино $\bar{\nu}_e$ в последовательности реакций

$$\bar{\nu}_e + p \rightarrow e^+ + n \leftrightarrow e^+ e^- \rightarrow \gamma \gamma \rightarrow n + Cd \rightarrow \gamma + \ldots,$$

за что в 1995 г. Райнес получил Нобелевскую премию\(^1\). В 1962 г. Ледерман (Lederman), Шварц (Schwartz) и Штейнбергер (Steinberger) обнаружили мононое нейтрино, рождавшееся в паре с мононом в распадах пионов $\pi^+ \rightarrow \mu^+ \nu$. Детектор нейтрино был отключен от области рождения мононов и нейтрино защитой из стали толщиной в 13,5 м, через которую мононы проникнуть не могли, в отличие от нейтрино. Взаимодействия процежих нейтрино в детекторе в большинстве случаев сопровождались рождением мононов, а не электронов, что свидетельствует о том, что ν_e и ν_μ — это две разные частицы. В 1988 г. Ледерман, Шварц и Штейнбергер за свое открытие мононых нейтрино получили Нобелевскую премию. Наконец, только в 2000 г. в эксперименте коллаборации DONUT было доказано существование третьего типа нейтрино ν_τ в последовательности реакций

$$p + \text{мишень} \rightarrow D_s X \leftrightarrow D_s \rightarrow \tau \bar{\nu}_\tau \leftrightarrow \tau \rightarrow \nu_\tau X \leftrightarrow \nu_\tau + \text{фотозмульния} \rightarrow \tau X.$$

Таким образом, целых 44 года понадобилось для того, чтобы открыть три поколения нейтрино, и 70 лет прошло со дня знаменитого письма Паули до открытия третьего типа нейтрино.

1.2. Нейтрино и стандартная модель (СМ). Пожалуй, не будет большим преувеличением сказать, что нейтрино сыграло значительную роль в построении СМ, ведь именно слабое взаимодействие с участием нейтрино максимальным образом нарушает P-чтетность, что подсказывало теоретикам правильную группу симметрии СМ. Нарушение P-чтетности дало ключ к построению СМ, в которой все фермионы и кварки объединены в левоциральные\(^2\) дублеты вида

$$L = \begin{pmatrix} \nu^f_L \\ \ell^L_f \end{pmatrix},$$

для лептонов, где $f = e, \mu, \tau$, и аналогично для кварков

$$Q = \begin{pmatrix} U_L \\ D_L \end{pmatrix},$$

где $U = (u, c, t)$, $D = (d, s, b)$. СМ подробно обсуждается в лекциях М.И. Высоцкого в этом сборнике [1], поэтому в нашей лекции мы лишь кратко обсудим основные принципы построения модели. Можно выделить три наиболее важных момента: калибровочная инвариантность, спонтанное нарушение калибровочной инвариантности и возникновение массы фермионов за счет взаимодействия Юкавы.

\(^1\) Коул, увы, не дожил до этих дней.
\(^2\) Лево(право)циральное поле определяется согласно $\psi_{2,R} = 1/2(1 \mp \gamma_5)\psi$.
1.2.1. Калибровочная инвариантность. СМ — это калибровочно-инвариантная теория, в которой требуется, чтобы лагранжиан модели не изменялся при преобразованиях \(\psi(x) \rightarrow e^{-i\alpha(x)}\psi(x) \), где \(\alpha(x) \) — это производный параметр, зависящий от пространственно-временной точки \(x \). Чтобы удовлетворить этому требованию, необходимо введение в лагранжиан калибровочных бозонов \((\gamma, W^\pm, Z, g)\), компенсирующих дополнительные члены в кинетическом члене лагранжиана, возникающие вследствие дифференцирования \(\partial_\mu e^{-i\alpha(x)}\psi(x) \). Приходится постулировать, однако, безмассовость полей в лагранжиане СМ, чтобы СМ была перенормируемой теорией1. Группа калибровочных преобразований СМ — группа \(SU_C(3) \times SU_L(2) \times U_Y(1) \), где \(C \) — цвет, \(L \) обозначает левые кварк-поле, и \(Y \) — гиперквадретр поля \(\psi \). Добавленные калибровочные поля размещаются в кинетическом члене лагранжиана \(\mathcal{L}_{\text{kin}} \):

\[
\mathcal{L}_{\text{kin}} = \sum_\psi \bar{\psi} i \gamma^\mu D_\mu \psi - \sum_{A=B,W,g} \frac{1}{4} F_{\mu\nu}^A(A) F^{\mu\nu}_A(A),
\]

где \(g, g, g' \) — константы взаимодействия с калибровочными полями глюонов \((g_\mu^A, A \in (1,8)), W_\alpha\)-бозонов \((W_\mu^a, a \in (1,3))\) и полем \(B_\mu \). \(f_{abc} \) — структурные константы соответствующей группы с коммутатором генераторов группы \([T_\alpha, T_k] = i f_{abc} T_c\). Суммирование \(\sum_\psi \) производится по полям лептонов и кварков. При этом каждое поле может нести на себе до трех индексов по группе \(SU_C(3) \times SU_L(2) \times U_Y(1) \). Например, все левые компоненты полей размещаются в дублетах вида (1), (2), a правые — синглеты. Кроме того, кварки располагаются в цветовых триплетах, а лептоны — синглеты по этой группе. На конец, каждое поле — синглет по группе «гиперчастица». \(T_A, T_a, Y \) — генераторы калибровочных преобразований: \(T_A = \lambda_A / 2 \), где \(\lambda_A = 3 \times 3 \) матрицы Гёль-Манна, \(T_a = \tau_a / 2 \), где \(\tau_a = 2 \times 2 \) матрицы Паули, \(Y \) — это число (или матрицы размерности 1). Размещение по мультипликации СМ по группе \(SU_L(2) \) связано с экспериментальным фактом — максимальным нарушением \(P \)-четности в слабых взаимодействиях. Таким образом, с \(W \)-бозоном взаимодействуют только левоквадратные дублеты полей \(L \) и \(Q \) (см. формулы (1) и (2)). Нетрудно видеть также, что направу невозможны переходы из одного дублета в другой, т. е. не существует вершин взаимодействия полей \(\nu_f, \ell_f, W \) для \(f \neq f' \).

1.2.2. Спонтанное нарушение калибровочной инвариантности. В лагранжиан СМ добавляется лагранжиан \(\mathcal{L}_{\text{Higgs}} \) со скалярным (хитсовским) полем \(H = \begin{pmatrix} \phi^+ \\ \phi \end{pmatrix} \):

\[
\mathcal{L}_{\text{Higgs}} = |D_\mu H|^2 - \frac{\lambda^2}{4} (|H|^2 - v^2)^2.
\]

Добавленный лагранжиан обладает минимумом потенциала самодействия при ненулевом вакуумном среднем поле \(v = \langle 0 | \phi^0 | 0 \rangle \), что приводит к интересному эффекту — сам лагранжиан и уравнения движения обладают калибровочной симметрией, а решения этих

1Легко видеть, что массовый член вида \(m_\nu \bar{\psi}_L \psi_R \) не инвариантен при калибровочных преобразованиях, поскольку \(\psi_R \) преобразуется по группе \(U(1) \), а \(\psi_L \) по группе \(SU(2) \).
уравнений, в общем случае, могут не обладать такой симметрией. Причина этого в том, что система «спонтанно» сваливается в один из локальных минимумов. При спонтанном нарушении калибровочной симметрии L_{Higgs} дает ненулевые массы трим из четырех калибровочных бозонов W^1, W^2, W^3, B:

$$W^\pm_\mu = \frac{1}{\sqrt{2}}(W^1_\mu \pm iW^2_\mu), \quad Z_\mu = \cos \theta_W W^3_\mu - \sin \theta_W B_\mu, \quad \cos \theta_W = \frac{g}{\sqrt{g^2 + g'^2}},$$

которые интерпретируются как поле W^\pm- и Z-бозонов соответственно, с массами $m_{W^\pm} = gv/2, m_Z = gv/2 \cos \theta_W$. Поскольку калибровочная симметрия $SU(2)_L \times U(1)_Y$ нарушается не полностью, а до $U(1)$, одно из калибровочных полей остается безмассовым:

$$A_\mu = \cos \theta_W B_\mu + \sin \theta_W W^3_\mu, \quad m_\gamma = 0.$$

1.2.3. Массы фермионов за счет взаимодействия Юкавы. Хотя векторные бозоны приобретают массу за счет механизма Хиггса, кратко изложенного выше, фермионы остаются в теории пока что безмассовыми. Чтобы и они могли приобрести массу, приходится поступать, что фермионы могут взаимодействовать со скалярным полем Хиггса. Такое взаимодействие называется взаимодействием Юкавы и дается лагранжианом L_{Yukawa}:

$$L_{\text{Yukawa}} = \lambda_{ij} \bar{\psi}_i \psi_j H + \text{в.ч.},$$

где λ_{ij} — безразмерные константы. В (4) подразумевается, что берутся все возможные комбинации полей ψ_i, ψ_j и H, чтобы в итоге получился скаляр $\bar{\psi}_i \psi_j H$, синглетный при преобразованиях по группе СУ. Например, член $\lambda_{ec} \bar{\psi}_e \psi_e H$ после спонтанного нарушения симметрии превращается в $\lambda_{ec} \bar{\psi}_e \psi_e v$, что интерпретируется как массивный член поля электрона $m \bar{\psi}_e \psi_e$ с $m = \lambda_{ec} v$. Поскольку же, в общем случае, поля из разных дублетов могут взаимодействовать с полем Хиггса, то для того чтобы интерпретировать члены в (4) после спонтанного нарушения симметрии как «массивные», их необходимо сначала диагонализовать в терминах новых полей — линейных комбинаций безмассовых полей взаимодействия. Унитарная матрица V, связывающая состояния с определенной массой с безмассовыми полями взаимодействия для кварков, известна под названием матрицы смешивания Кабиббо—Кобаяши—Масаквы, а для нейтрино как матрица Понтекорво—Маки—Накагама—Сакаты (в англоязычной литературе матрицы CKM и PMNS соответственно). В результате, невозможные для безмассовых полей переходы из одного дублета в другой, отмененные в п. 1.2.2, становятся теперь возможными для массивных полей с амплитудой перехода, пропорциональной соответствующему элементу матрицы смешивания V_{ij}. Например, амплитуда перехода между u- и \bar{d}-кварком пропорциональна матричному элементу U_{ud}, а между u- и s-кварком $\sim U_{us}$ и т.д. Аналогично, для нейтрино и лептонов амплитуда перехода между лептоном сорта α и нейтрино с массой m_α пропорциональна $V_{\alpha \gamma}$. Обратим внимание на одну «номернузитарную» путаницу, которая часто встречается в литературе. В результате спонтанного нарушения симметрии диагональная (в массовом базисе) линейная комбинация полей взаимодействия приобретает определенную массу, тогда как сами поля взаимодействия не обладают определенной массой, поэтому они не могут описывать частицы — состояния с определенной массой. И действительно, мы никогда не называем частицей кварковую линейную комбинацию полей, диагональную в базисе взаимодействия, вроде $U_{ud} u + U_{cd} c + U_{td} t$, что вполне разумно, поскольку такая
линейная комбинация включает в себя поля с массами от нескольких MeV до 175 GeV и вряд ли может считаться «частичей». Тем не менее мы до сих пор называем аналогичную комбинацию \(V_{1l1} + V_{2l2} + V_{3l3} \) электронным нейтрино. Кроме того, в литературе часто встречаются ограничения на «массы фтэйворных» нейтрино, что, конечно, должно восприниматься не более, чем жаргон.

Итак, подведем краткие итоги. Взаимодействия фермionов и бозонов вводятся через требование калибровочной инвариантности теории. Она же запрещает фермionам и бозонам иметь массу. В теорию вводится поле скалярного бозона Хиггса с потенциалом самодействия с ненулевым вакуумным средним. Хиггсовское поле взаимодействует как со всеми калибровочными бозонами теории, так и с фермionами. Ненулевое вакуумное среднее спонтанно нарушает калибровочную симметрию, что дает массы \(W^\pm \), \(Z \)-бозонам и фермionам. Постулируется минимально возможная группа калибровочной симметрии \(SU_C(3) \times SU_L(2) \times U_Y(1) \).

В результате получается красивую и простую теорию, прекрасно согласующуюся с экспериментом! Лагранжиан SM состоит из трех слагаемых:

\[
L_{SM} = L_{kin} + L_{Higgs} + L_{Yukawa}.
\]

В SM невозможно вычислить ряд параметров, которые приходится считать свободными. Это константы взаимодействия \((g_i = g_s, g, g') \), массы лептонов \((m_1, m_\nu) \) и кварков \((m_q) \), углы смешивания нейтрино \((\theta_{12}^\nu, \theta_{13}^\nu, \theta_{23}^\nu \text{ и } CP\text{-нарушающая фаза } \delta_{CP}^\nu) \) и кварков \((\theta_{12}^q, \theta_{13}^q, \theta_{23}^q \text{ и } CP\text{-нарушающая фаза } \delta_{CP}^q) \), угол КХД вакуума2 (\(\theta_{QCD} \)), параметры потенциала самодействия поля Хиггса \((\lambda \text{ и } v) \). Их число в SM — 19, если нейтрино безмассовые \((3m_1 + 6m_\nu + 4\theta_1^\nu + 3g_i + \theta_{QCD} + v + \lambda) \), или 26, если у нейтрино есть масса \((19 + 3m_\nu + 4\theta_1^\nu) \).

Несмотря на грандиозные успехи SM, есть ряд указаний на то, что SM — не окончательная теория. Например, чем объясняются измеренные значения констант связи? Почему в SM такая иерархия масс?

На рис.2 приведены массы кварков и лептонов для каждого из трех поколений. Обращают на себя внимание два момента: иерархия масс между поколениями лептонов и кварков и сильная иерархия масс внутри одного поколения. Особенность выделяют массы нейтрино, меньше масс самых легких заряженных лептонов и кварков по крайней мере на шесть порядков. Масса бозона Хиггса требует точной подстройки параметров теории, чтобы она не стала равной бесконечности. Разумеется, SM не может считаться окончательной до тех пор, пока не будет обнаружен бозон Хиггса. Кроме того, SM не может объяснить темную материю и барионную асимметрию Вселенной, так же как ин-

1Группа SU(2)_L действует только на кварк-лэе (левые) компоненты полей частиц. Такая группа была выбрана в связи с измерением спинов нейтрино. Хорошо известно, что спиноры и киральность — это разные квантовые числа, совпадающие только для безмассовых частиц. Хороший вопрос, над которым можно было бы подумать в этой связи, такой: «какую группу выбрали бы создатели СМ, если бы в то время было хорошо измерены не равны нулю массы нейтрино?».

2Одной из нерешенных загадок КХД является проблема CP-нарушения в сильных взаимодействиях, а именно вопрос «почему сильные взаимодействия не нарушают CP-инвариантность» (в англоязычной литературе это называется strong CP problem), в то время как слабые взаимодействия их нарушают. Ненулевое значение угла \(\theta_{QCD} \) в кинетическом члене КХД лагранжана могло бы привести к CP-нарушающим сильным взаимодействиям. Выбор \(\theta_{QCD} \approx 0 \) является одним из примеров тонкой подстройки SM.
фляцию и природу космологических пертурбаций плотности. Наконец, СМ необходимо расширить, чтобы включить массу нейтрино.

Каким образом это можно сделать? Если нейтрино — это такой же дирауковский фермион, как другие лептоны, то сделать это довольно легко. Достаточно добавить для каждого поколения лептонов еще один член взаимодействия в \mathcal{L}_{Yukawa} вида

$$
\lambda_\nu \left(\bar{\nu}_L, \bar{I}_L \right) \begin{pmatrix} \nu \cr 0 \end{pmatrix} \nu_R = m_\nu \bar{\nu}_L \nu_R,
$$

где $m_\nu \equiv \lambda_\nu v$. Разумеется, малость λ_ν не может быть объявлена в СМ, так же как и для других фермийонов. Однако тот факт, что нейтрино не несет электрического заряда, открывает еще одну возможность — нейтрино может быть частицей Майорана, т. е. частица и античастица1 могут быть тождественны друг другу. Априори узнать, является ли нейтрино частицей Дираха или Майорана, невозможно. Предположение, что нейтрино — частица Майорана, расширяет наши возможности по конструированию \mathcal{L}_{Yukawa} для нейтрино. В общем случае «массовый» член состоит из дирауковского и майорановского слагаемых

$$
-\frac{1}{2} \left(\nu_L, (\nu_R)^c \right) \begin{pmatrix} m_L & m_D^T \\ m_D & m_R \end{pmatrix} \begin{pmatrix} (\nu_L)^c \\ \nu_R \end{pmatrix} + \text{c. c.}
$$

(5)

В (5) m_L, m_R, m_D — это массовые матрицы. Вектор левых нейтрино, участвующих во взаимодействии с W^-, Z-bosonами $\nu_L = (\nu_e L, \nu_\mu L, \nu_\tau L, \ldots)^T$, объединяется с вектором левых полей нейтрино, зарядово-сопряженных с правыми киральными невзаимодействующими полями $(\nu_R)^c = ((\nu_e R)^c, (\nu_\mu R)^c, (\nu_\tau R)^c, \ldots)^T$.

Лагранжиан вида (5) обладает широким спектром предсказаний для масс нейтрино. Рассмотрим сначала случай одного поколения нейтрино, тогда m_L, m_R, m_D — это просто числа, или матрицы размерности 1. В этом случае диагонализация (5) дает следующие собственные значения масс нейтрино $|m_1|, |m_2|$ и угла смешивания θ:

$$
m_{1,2} = \frac{m_L + m_R}{2} \pm \sqrt{\left(\frac{m_L - m_R}{4}\right)^2 + m_D^2}, \quad \text{tg} \ 2\theta = \frac{2m_D}{m_R - m_L}.
$$

(6)

1 Математически это означает, что $\nu(x) = \nu^c(x)$, где $\nu(x)$ — оператор поля нейтрино и $\nu^c(x) = C(\bar{\nu}(x))^T$ — зарядово-сопряженный оператор, C — матрица зарядового сопряжения.
Феноменологически интересны некоторые специальные случаи формулы (6):

а) \(m_L = m_R = 0 \). В этом случае \(m_{1,2} = m_D \), \(\theta = \pi/4 \) и имеется максимальное смещение. При этом два майорановских поля нейтрино эквивалентны одному полю Дирака.

б) \(m_L = m_R \ll m_D \). В этом случае имеется два почти вырожденных майорановских состояния с массами \(m_{1,2} = m_L \pm m_D \) и почти максимальным углом смещения \(\tan 2\theta \gg 1 \). Такие нейтрино называют псевдодираковскими, и в этом случае возможны осцилляции между \(\nu_L \) («активным») и \(\nu_R \) («стерильным») нейтрино.

в) \(m_L = 0, m_R \gg m_D \). Этот случай интересен тем, что естественным образом возникает сильная иерархия масс нейтрино: одно очень тяжелое с массой \(m_1 = m_R(1 + m_D^2/m_R^2) \approx m_R \), второе очень легкое с массой \(m_2 = m_D^2/m_R \ll m_D \). Например, если предположить, что масса \(m_D \) по порядку величины ближка к массам лептонов или кварков, т.е. в пределах от 0,5 МэВ до 200 ГэВ, и масса \(m_R \approx 10^{15} - 10^{16} \) ГэВ, то масса \(m_2 \) может быть в пределах от \(10^{-14} \) до 0,04 эВ. При этом угол смещения легкого нейтрино с тяжелым очень мал \(\theta \approx m_D/m_R \sim 10^{-20} - 10^{-13} \ll 1 \). Этот механизм называется механизмом качелей, или в англоязычной литературе «see-saw mechanism».

Тяжелое нейтрино в современных экспериментах практически не наблюдается. Лишь ничтожно малая масса легкого нейтрино может указывать на существование сверхтяжелого нейтрино так же, как тающая в воздухе ульбка чеширского кота может говорить о реальности самого кота из графства Честершир.

Появление больших масс \(m_R \approx 10^{15} - 10^{16} \) ГэВ характерно для теорий Большого объединения, таких, как лево-право симметричная \(SO(10) \)-модель. Механизм качелей естественным образом дает возможность получить малую массу нейтрино при наличии довольно тяжелых масс лептонов и кварков \(m_D \) и очень тяжелого майорановского нейтрино. Если в СМ нейтрино — частицы Майораны, то это может иметь далеко идущие последствия. Например, можно что-то узнать о физике за рамками СМ на шкале энергий \(m_R \approx 10^{15} \) ГэВ, много превышающей возможности (по крайней мере современные) ускорительной техники. Кроме того, существование майорановского нейтрино с массой \(m_R \) позволяет обнаружить барионную асимметрию Вселенной посредством лептонгенезиса на ранней стадии ее эволюции.

В случае нескольких поколений нейтрино, когда \(m_L, m_R, m_D \) — это массивные матрицы в (5), диагонализацию \(L_{Yukawa} \) необходимо проводить с учетом этой матричной структуры. В целом картина усложняется только технически и сценарии а), б), в) по-прежнему имеют место.

По-видимому, ответ на вопрос, почему массы нейтрино такие маленькие по сравнению с массами других фермIONов, даст ключ к теории за рамками СМ, так же, как в свое время сам факт существования нейтрино и нарушения четности дал ключ к построению СМ.

1.3. Масса, смещивание и число поколений нейтрино. На сегодняшний день мы знаем о нейтрино далеко не все, но уже многое. Эксперименты по прямому измерению массы нейтрино из кинематического анализа распадов частиц дают ограничения сверху на следующие комбинации масс [2]:

\[
m_{\nu_e} < 2.2 \ \text{эВ}, \quad m_{\nu_\mu} < 170 \ \text{кэВ}, \quad m_{\nu_\tau} < 15.5 \ \text{МэВ},
\]

где \(m_{\alpha}^2 = \sum_i |V_{\alpha i}|^2 m_i^2 \) для \(\alpha = e, \mu, \tau \). Кроме того, из космологии (анализ данных по анизотропии микроволнового фона, кластеризация крупномасштабных структур...)
следует модельно-зависимое ограничение [3]

$$\sum_i m_i < 0.58 \text{ эВ.}$$ \hfill (8)

Наиболее предCISIONНЫЕ данные по разности квадратов масс нейтрино $\Delta m^2_{ij} = m_j^2 - m_i^2$ следуют из анализа экспериментов по нейтринным осцилляциям. Известно, что по
крайней мере у двух из трех нейтрино масса отлична от нуля, а матрица смешивания
нейтрино отлична от единичной:

$$\Delta m^2_{12} = (7.65^{+0.23}_{-0.20}) \cdot 10^{-5} \text{ эВ}^2, \quad \sin^2 \theta_{12} = 0.30^{+0.02}_{-0.02},$$

$$|\Delta m^2_{13}| = (2.40^{+0.12}_{-0.11}) \cdot 10^{-3} \text{ эВ}^2, \quad \sin^2 \theta_{23} = 0.50^{+0.07}_{-0.06},$$

$$\sin^2 \theta_{13} < 0.040 \quad (2\sigma \text{ bound}), \quad \delta^\CP \in [0, 2\pi].$$ \hfill (9)

Из (9) можно утверждать, что масса самого тяжелого нейтрино m_{heavy} должна быть по
крайней мере больше, чем $\sqrt{|\Delta m^2_{13}|} \approx 0.05 \text{ эВ.}$ С другой стороны, на сумму масс есть
ограничения сверху (7), (8), откуда следует, что $0.05 < m_{\text{heavy}} < 1 - 2 \text{ эВ, поэтому масса}
самого тяжелого из трех нейтрино уже зажата в довольно узком интервале!

Обратим внимание также на то, что матрицы смешивания нейтрино и кварков до
вольно сильно отличаются (мы рассматриваем абсолютные значения матричных эле-
ментов):

$$|V_{\text{PMNS}}| \sim \begin{pmatrix} 0.8 & 0.5 & < 0.2 \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}, \quad |U_{\text{CKM}}| \sim \begin{pmatrix} 1 & 0.2 & 0.001 \\ 0.2 & 1 & 0.01 \\ 0.001 & 0.01 & 1 \end{pmatrix},$$

что может свидетельствовать о том, что механизмы генерации массы нейтрино и кварков
могут отличаться. Это, в свою очередь, может указывать на физику вне рамок СМ [4].

Чего же мы не знаем о нейтрино? Неизвестна масса самого легкого нейтрино, а также,
какое нейтрино тяжелее, \(\nu_1 \) или \(\nu_2 \), т.е. какова иерархия масс нейтрино. Нет измерены углы \(\theta_{13} \) и \(\delta^\CP \), не известен знак \(\cos 2\theta_{23} \). Наконец, остается открытым вопрос о том,
является ли нейтрино частицей Дирака или Майорана.

1.3.1. Осцилляции нейтрино в вакууме. Как упоминалось выше, данные о матрице
смешивания и наиболее точные измерения Δm^2_{ij} нейтрино были получены из обработки
экспериментальных данных по поиску нейтринных осцилляций. Это красивый квантый
эффект когерентности на микроскопических временах и расстояниях линейной суперпо-
зиции массовых состояний. Такая когерентная суперпозиция периодически (со временем
и расстоянием от точки рождения) выглядит как разное флуоресцентное нейтрино. Рассмо-
тривая вначале амплитуду свободного распространения собственного массового состояния
\(|\nu_i(x)\rangle \) из точки \(x \) в точку \(y \):

$$\phi_i(x - y) = \langle \nu_i(y)|e^{-i\hat{H}_0(y_0 - x_0)}|\nu_i(x)\rangle,$$ \hfill (10)

где $e^{-i\hat{H}_0t}$ — оператор эволюции по времени свободного поля; \hat{H}_0 — свободный га-
мильтонон. Если $|\nu_i(x)\rangle$ — состояние с определенными энергией и импульсом, то
$\phi_i(x - y) = e^{-ip_i(x-y)}$ и, соответственно, $|\phi_i(x - y)|^2 = 1$. В случае, когда $|\nu_i(x)\rangle$
не обладает определенной энергией и/или импульсом, вероятность обнаружить массовое состояние в точке y есть $|\phi_i(x - y)|^2 \leq 1$. Это соответствует локализованному во времени и/или пространстве состоянию нейтрино. Очевидно, что амплитуда и вероятность обнаружить другое массовое нейтрино $|\nu_j(y)|$ в точке y равна нулю: $\langle \nu_j(y)|\nu_i(x) \rangle = 0$. Ясно также, что если в точке x присутствует только одно собственное массовое состояние $|\nu_i(x)\rangle$, то оно не сможет превратиться в суперпозицию массовых состояний в y, например, в $|\nu_\alpha(x)\rangle = \sum_i V_{\alpha i}^*|\nu_i(x)\rangle$. Соответствующая амплитуда перехода есть $A_{\alpha i} = \langle \nu_\alpha(y) | e^{-iH_0(y_0-x_0)} | \nu_i(x) \rangle = V_{\alpha i} \phi_i(x - y)$ с вероятностью $|V_{\alpha i}|^2 |\phi_i(x - y)|^2$. На конце, если в точке x родилась когерентная смесь массовых нейтрино, например, $|\nu_\alpha(x)\rangle$, то амплитуда обнаружить массовое состояние $|\nu_i(y)\rangle$ в точке y есть $A_{i\alpha} = V_{i\alpha}^* \phi_i(x - y)$ с вероятностью $|A_{i\alpha}|^2 = |V_{i\alpha}|^2 |\phi_i(x - y)|^2$. Во всех рассмотренных нами случаях отсутствует характерная для нейтринных осцилляций периодическая зависимость вероятности от $x - y$. Такая зависимость появляется, только когда мы интересуемся вероятностью перехода из точки x одной суперпозиции массовых состояний в ту же или другую суперпозицию массовых состояний в точке y. Рассмотрим, что представляет собой теория нейтринных осцилляций, используемая при анализе экспериментальных данных.

Предположим, что в какой-то реакции в четырехмерной точке пространства-времени x вместе с рождением лептона ℓ_α рождается когерентная суперпозиция массовых состояний нейтрино $|\nu_\alpha(x)\rangle$. Будет ли такая квантовая смесь выглядеть точно так же в точке y или как другое состояние $|\nu_\beta(y)\rangle$? Простой расчет дает

$$A_{\alpha\alpha} = \sum_i V_{\alpha i}^* |\nu_i(x)\rangle = \sum_i |V_{\alpha i}|^2 \phi_i(x - y),$$

$$A_{\beta\alpha} = \sum_i V_{\alpha i}^* |\nu_i(x)\rangle = \sum_i |V_{\alpha i}|^2 \phi_i(x - y).$$

В упрощенной теории нейтринных осцилляций предполагается, что массивные нейтрино обладают определенной энергией и импульсом, т.е. $\phi_i(x - y) = e^{-iH_0(x - y)}$. Кроме того, предполагается, что 3-импульсы у всех нейтрино одинаковы $p_i = p_\nu$ и что скорость нейтрино равна скорости света. Тогда легко получить, что вероятность $P_{\alpha\alpha} \equiv |A_{\alpha\alpha}|^2$ обнаружить в точке y ту же самую квантовую смесь нейтрино, что и в точке x, есть

$$P_{\alpha\alpha} = \sum_{i,j} |V_{\alpha i}|^2 |V_{\alpha j}|^2 \exp (-i\Delta E_{ij} t) = \sum_{i,j} |V_{\alpha i}|^2 |V_{\alpha j}|^2 \exp \left(-i\frac{\Delta m^2_{ij}}{2|m_\nu|} t\right),$$

где $t = y_0 - x_0$, $\Delta E_{ij} = E_i - E_j$, а вероятность $P_{\beta\alpha} \equiv |A_{\beta\alpha}|^2$ обнаружить состояние $|\nu_\beta(y)\rangle$ равна

$$P_{\beta\alpha} = \sum_{i,j} V_{\alpha i}^* V_{\beta i} V_{\alpha j}^* V_{\beta j} \exp (-i\Delta E_{ij} t) = \sum_{i,j} V_{\alpha i}^* V_{\beta i} V_{\alpha j}^* V_{\beta j} \exp \left(-i\frac{\Delta m^2_{ij}}{2|m_\nu|} t\right).$$

1Это утверждение очевидно для состояний $|\nu_i(x)\rangle$ с определенными энергией и импульсом, поскольку тогда $|\phi_i(x - y)|^2 = 1$. В общем случае $|\phi_i(x - y)|^2$ может быть, в том числе, и периодической функцией с затухающими колебаниями, однако масштаб таких осцилляций будет определяться размерами волновых функций состояний $|\nu_i(x)\rangle$ и $|\nu_j(x)\rangle$ и не будет иметь никакого отношения к обсуждаемым масштабам в нейтринных осцилляциях.
$P_{\alpha\alpha}$ интерпретируется как вероятность «выживания флэйворного нейтрино» ν_α, а $P_{\beta\alpha}$ как вероятность «перехода» $\nu_\alpha \rightarrow \nu_\beta$ при распространении нейтрино из точки x в точку y. Нетрудно видеть, что $P_{\beta\alpha}$ имеет периодическую зависимость от времени t распространения нейтрино (и расстояния $L \approx t$). Например, рассмотрев для простоты случай двух поколений нейтрино, легко получить из (13), (14), что

$$P_{\beta\alpha} = \sin^2 2\theta \sin^2 \frac{\pi L}{L_{\text{vac}}}, \quad P_{\alpha\alpha} = 1 - \sin^2 2\theta \sin^2 \frac{\pi L}{L_{\text{vac}}},$$

где длина оциллиации $L_{\text{vac}} = 4\pi E/\Delta m^2 = 2.48(E/\text{ГэВ})(\text{эВ}^2/\Delta m^2)$ км — макроскопически большая величина! Чтобы почувствовать порядок величины, оцените длину оциллиаций для двух практически важных случаев: атмосферных и реакторных нейтрино. Для атмосферных нейтрино с $\Delta m^2 = |\Delta m^2_{\odot}| = 2.40 \cdot 10^{-3} \text{ эВ}^2$ и $E \sim 1 \text{ ГэВ}$ получаем L_{vac} порядка 1000 км. Для реакторных нейтрино с $\Delta m^2 = \Delta m^2_{\odot} = 7.65 \cdot 10^{-5} \text{ эВ}^2$ и $E \sim 4 \text{ МэВ}$ длина L_{vac} оказывается порядка 120 км.

Изложенная в этом разделе теория нейтриносовых оциллиаций, к сожалению, не полна и противоречива, хотя, подчеркнем еще раз, что именно она используется при анализе экспериментальных данных. Со списком вопросов к теории можно ознакомиться, например, в обзорах [5, 6]. Мы приведем лишь несколько критических замечаний, которые помогут понять суть вопроса. Предположение об оциллировании импульсов $p_i = p_\nu$, хотя и выглядит безобидным, на деле зависит от системы отсчета, а кроме того, не является физическим. Точно такое же замечание относится и к предположению об оциллировании энергий нейтрино $E_i = E_\nu$. Следующее предположение об определенном импульсе также сомнительно по ряду причин. Строго определенному импульсу частицы (нейтрино в нашем случае) соответствует полностью определенное местоположение этой частицы. В этом случае трудно придать смысл величине L. Это «расстояние» между чем и чем, если координата нейтрино не определена? Кроме того, не понятно, как быть с законом сохранения энергии в распадах частиц, порождающих нейтрино. Действительно, если рожденное «флэйворное» нейтрино обладает определенным импульсом, то и все остальные частицы обладают определенным импульсом. Однако у «флэйворного» нейтрино нет определенной энергии, в то время как у всех остальных частиц в распаде энергия строго определена. Эти и подобные вопросы демонстрируют несамосогласованность такого упрощенного подхода и требуют выхода за его рамки.

Возможным решением было бы использование волновых пакетов нейтрино вместо плоских волн, что модифицирует функцию $\phi_i(x - y)$ в (11), (12). Тогда функция $\phi_i(x - y)$ характеризуется средними значениями 4-импульса и разбросом около среднего, который можно интерпретировать также как неопределенность энергии-импульса нейтрино $\delta p_i \approx \delta E_\nu(1, L/|L|)$. Пространственно-временной размер $\phi_i(x - y)$ по порядку величины $\approx \delta x_\nu \approx 1/\delta E_\nu$. На таком пути, действительно, ряд противоречий устраняется. Кроме того, теория оциллиаций нейтрино с волновыми пакетами привносит в формулу для вероятности оциллиаций новые факторы, подавая оциллиации в двух важных случаях:

1Дочитав до следующего раздела, где мы обсуждаем эксперименты по исследованию оциллиаций нейтрино, читатель может обратить внимание на то, что многие эксперименты ставились при расстояниях между источником и детектором нейтрино, не оптимальных для наблюдения оциллиаций с характерными Δm^2. Причина этого в том, что заранее Δm^2 не были известны и оценивались из других соображений.
Введение в физику нейтрино 1203

1. На расстояниях $L \gg L_{\text{coh}}$, где L_{coh} — так называемая длина когерентности $L_{\text{coh}} \sim (E_\nu/\delta E_\nu) L_{\text{vac}}$. Причина этого подавления заключается в том, что волновые пакеты, движущиеся со средними скоростями v_i и v_j, перестают перекрываться в пространстве-времени, если $L \gg L_{\text{coh}}$, где L_{coh} определяется из $(v_i - v_j) L_{\text{coh}} \sim \delta x_\nu$.

2. Если $\delta E_\nu \ll \Delta E_{ij}$, то осцилляции подавляются независимо от L. Причина такого подавления становится более прозрачной, если переписать это неравенство в виде $\delta x_\nu \gg L_{\text{vac}}$, т.е. осцилляции подавлены, если пространственно-временной размер областей перекрытия пакетов много больше длины осцилляций.

Заметим, что эти важные результаты получены в предположении о виде волновой функции нейтрино, которая не вычисляется в такой теории. В ряде работ авторы вышли ещё дальше за рамки упрощённой теории нейтринных осцилляций и рассмотрели макроскопический процесс с рождением и регистрацией нейтрино в S-матричном формализме квантовой теории поля. В таком подходе все внешние частицы, кроме нейтрино, опи- сываются волновыми пакетами, что обеспечивает локализацию в пространстве-времени источника и детектора, а само нейтрино виртуально распространяется на макроскопиче- ски большие расстояния [5,7,8]. В рамках такого подхода «осцилляции» нейтрино есть не что иное, как интерференция диаграм с промежуточными нейтрино ν_i с массами m_i. Флайборными «метками» служат заряженные лептоны ℓ_α, ℓ_β, рожденные в источнике и детекторе, как показано на рис. 3, а. К линиям W-бозонов могут быть присоединены любые другие частицы, участвующие во взаимодействиях в источнике и детекторе нейтрино. В рамках таких теорий удаётся вычислить волновую функцию нейтрино и воспроизвести результаты теории с предполагаемой формой волнового пакета нейтрино, а также предсказать некоторые новые эффекты.

Рис. 3. а) Интерференция диаграм с промежуточным виртуальным нейтрино приводит к осцилляторной зависимости числа событий с ℓ_α, ℓ_β, рожденными в источнике и детекторе, от расстояния между ними. б) Интерференция диаграм с промежуточным заряженным лептоном приводит к «осцилляциям заряженных лептонов»

В частности, в [8] вычислена лоренц-инвариантная амплитуда распространения между 4-точками x и y нейтрино с 4-импульсом p_i и массой m_i, которая при дополнительных упрощающих предположениях (которые мы здесь опускаем) выражается в виде

$$\phi_3(z) = \exp \left(ip_i z + 2 \left(\frac{\delta E_\nu}{E_\nu} \right)^2 [(p_i z)^2 - m_i^2 z^2] \right), \quad z = y - x,$$

где функция δE_ν играет роль неопределенности энергии-импульса массивного нейтрино ν_i, возникающей в результате локализации в пространстве-времени частиц, участвующих в процессах рождения и детектирования нейтрино. В [8] величины $(\delta E_\nu, x, y)$ — не просто
параметры, а функции 4-импульсов и их неопределенности, а также положения частиц, участвующих в рождении и детектировании нейтрино. Поэтому вероятность осцилляций нейтрино в таком подходе получается после макроскопического усреднения по ансамблю частиц в источнике и детекторе.

Кроме того, в [8] предсказывается зависимость «вероятности осцилляций» от ширин временных интервалов работы источника (τ_s) и детектора (τ_d), что может быть измерено в современных экспериментах с ускорительными нейтринами (Mini(Sci)BooNe, T2K, OPERA, MINOS, Nova и т.д.), в которых τ_s варьируется в пределах от нескольких наносекунд до десятка микросекунд, а τ_d несколько больше, но сопоставимо по порядку величины. В рамках такого более общего и детального подхода можно ответить на вопрос о том, «осциллируют ли заряженные лептоны?» (См. также обсуждение в [9].) Дело в том, что с точки зрения лагранжана СМ взаимодействия лептонов с заряженными W-бозонами

$$\mathcal{L}_{cc} = -\frac{g}{2\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \sum_{i=1,2,3} V_{\alpha i} T_{\alpha i}(x) \gamma_\mu(1 - \gamma_5) \nu_i(x) W^\mu(x) + \text{э.с.},$$

введение физионной комбинации $\nu_i = \sum_i V_{\alpha i} \nu_i$ столь же закономерно, как и формальное определение $\ell_i = \sum_\alpha V^{\ast}_{\alpha i} \ell_\alpha$, — в обоих случаях \mathcal{L}_{cc} становится диагонален в следующем базисе:

$$\mathcal{L}_{cc} = -\frac{g}{2\sqrt{2}} \sum_{\alpha=e,\mu,\tau} \sum_{i=1,2,3} \ell_i(x) \gamma_\mu(1 - \gamma_5) \nu_i(x) W^\mu(x) + \text{э.с.},$$

$$= -\frac{g}{2\sqrt{2}} \sum_{i=1,2,3} \ell_i(x) \gamma_\mu(1 - \gamma_5) \nu_i(x) W^\mu(x) + \text{э.с.}.$$

Поэтому аналогично тому, как сумма диаграмм с промежуточным виртуальным нейтрино, приведенных на рис. 3, a, дает эффект осцилляций нейтрино, так и сумма диаграмм с промежуточным заряженным лептоном (рис. 3, б) должна приводить к эффекту осцилляций заряженных лептонов. Формально так оно и есть, однако тут вступает в игру множитель, подавляющий интерференцию диаграмм. Этот множитель зависит от отношения $\Delta E/\delta E$, где ΔE — разница энергий промежуточных частиц, а δE — неопределенность энергии в процессах рождения и регистрации промежуточной частицы. Нетрудно видеть, что с учетом очень малой разницы масс ν_i и ν_j разница их энергий ΔE много меньше δE: $\Delta E = \Delta E_{ij} \ll \delta E$. Поэтому нейтрино рождаются в когерентной смеси1, которая все же теряет когерентность при $L > L_{\text{coh}}$. Большая разница в массах заряженных лептонов приводит к тому, что для большинства реакций $\Delta E = \Delta E_{i\beta} \gg \delta E$. В результате интерференция диаграмм с разными заряженными лептонами практически полностью подавлена. Поэтому нейтрино осциллируют, а заряженные лептоны практически нет! Есть тем не менее пример, когда заряженные лептоны рождаются в когерентной смеси — это распады W-бозонов, ширина распада которых много больше разницы энергий заряженных лептонов. Если W-бозон распадается в покое, то длина «осцилляций заряженных лептонов» крайне мала, $\sim 2 \cdot 10^{-9}$ см для пары e, μ. Любопытно, что длина таких осцилляций может достичь вполне макроскопических размеров порядка 2 см для W-бозона с энергией $E_W = 0.8 \cdot 10^{20}$ эВ. Правда, уже через 40 см «осцилляции» затухнут.

1Важным исключением могут быть так называемые мессбаузеровские нейтрино.
Подведем краткий итог этого подраздела. Осилилляции нейтрино являются проявлением интерференции амплитуд процессов с промежуточными нейтрино разной массы. Возможность интерференции амплитуд присуща не только нейтрино. Можно придумать довольно много таких примеров, одним из которых являются заряженные лептоны. Однако большая разница масс заряженных лептонов (или других частиц) приводит к подавлению интерференции между ними. Уникальность нейтрино-осилюлляций заключается в крайне малой разнице масс нейтрино, что приводит к возможности их когерентного рождения, макроскопически большой длине «осилюлляций» и астрономически большой длине, на которой квантовая смесь нейтрино остается когерентной.

1.3.2. Осилилляции нейтрино в веществе. Аналогично тому, как в СМ массы ферми-онов возникают за счет взаимодействия с полем Хитса с ненулевым вакуумным средним (см. п. 1.2.3), нейтрино, распространяясь в среде и рассеиваясь на нулевой угол, приобретают эффективную массу, зависящую от плотности частиц среды. Матрица смешивания нейтрино в среде также отличается от вакуумной матрицы смешивания. В результате осилюлляции нейтрино в среде происходят с новыми эффективными массами и углами смешивания. Рассеяние за счет обмена Z-бозоном одинаково для всех ν_i, что дает одинаковую добавку в массу каждого типа нейтрино и не дает вклада в разность квадратов масс. Таким образом, эти рассеяния не изменяют осилюлляционной картины. Присутствие в среде электронов с плотностью частиц n_e (а также электронов и тау-лептонов) открывает канал рассеяния посредством обмена W^\pm-бозоном. Амплитуда этого процесса $\nu_i e \rightarrow \nu_i e$ пропорциональна $V_{ei} V_{e\nu}$, таким образом, вклад от такого рассеяния отличается для разных нейтрино. Кроме того, рассеяние на электронах «перемешивает» ν_i, ν_j.

Это приводит к тому, что собственные состояния энергии нейтрино в веществе $\nu^M = (\nu_1^M, \nu_2^M, \nu_3^M)^T$ и в вакууме $\nu = (\nu_1, \nu_2, \nu_3)^T$ — это разные состояния: $\nu^M = U_M^{\dagger} \nu$. Матрица U_M диагонализует оператор энергии $\hat{H} = \hat{H}_0 + \hat{W}$ посредством $\hat{H}_{\text{diag}} = U_M \hat{H} U_M^{\dagger}$. Матричные элементы гамильтониана являются суммой свободной энергии нейтрино и энергии взаимодействия нейтрино с электронами:

$$H_{ij} = \left(E_{\nu} + \frac{m^2_{i}}{2E_{\nu}} \right) \delta_{ij} + V_{ei} V_{ej} \sqrt{2G_F n_e}. \quad (15)$$

Энергия упругого взаимодействия нейтрино с электроном совсем невелика — порядка $10^{-10} - 10^{-11}$ эВ в центре Солнца. Тем не менее она играет важную роль в осилюлляциях нейтрино в веществе, поскольку сопоставима по порядку величины с вакуумной разницей энергий $\Delta E_{ij} = \Delta m^2_{ij}/2E_{\nu}$ для Δm^2 порядка $10^{-4} - 10^{-5}$ эВ2 и E_{ν} порядка нескольких МэВ.

Чтобы это было проще увидеть, рассмотрим сначала среду с постоянной плотностью и случай двух поколений нейтрино с углом смешивания θ. Гамильтониан \hat{H} — матрица размерности 2×2:

$$\hat{H} = \begin{pmatrix} E_{\nu} & \frac{m^2_1}{2E_{\nu}} \cos^2 \theta \sqrt{2G_F n_e} & \frac{m^2_2}{2E_{\nu}} \sin^2 \theta \sqrt{2G_F n_e} \\ \frac{m^2_1}{2E_{\nu}} \cos^2 \theta \sqrt{2G_F n_e} & \frac{m^2_2}{2E_{\nu}} \sin^2 \theta \sqrt{2G_F n_e} & E_{\nu} + \frac{m^2_1}{2E_{\nu}} \cos^2 \theta \sqrt{2G_F n_e} \end{pmatrix}. \quad (16)$$

Чтобы диагонализировать (16), нужно перейти от базиса $\nu = (\nu_1, \nu_2)^T$ к состояниям $\nu^M = (\nu_1^M, \nu_2^M)^T$, связанным друг с другом матрицей «поворота» U_M также размерности
2 × 2. Новые угол смешивания и разница квадратов масс:

\[
\sin^2 2\theta_M = \frac{\sin^2 2\theta}{\cos^2 2\theta (1 - \lambda)^2 + \sin^2 2\theta}, \quad \Delta m^2_M = \Delta m^2 \frac{\sin 2\theta}{\sin 2\theta_M}, \quad \lambda = \frac{L_{\text{vac}}}{L_e \cos 2\theta}.
\]

Безразмерное число \(\lambda \) можно записать в виде отношения

\[
\lambda = \frac{L_{\text{vac}}}{L_e \cos 2\theta},
\]

где \(L_{\text{vac}} \) — это вакуумная длина осцилляций, а \(L_e = 2\pi/\sqrt{2}G_F \nu_e \). \(L_e \approx 110 \) км при плотности вещества в центре Солнца порядка 150 t/cm\(^3\). Собственные энергетические состояния в веществе:

\[
|\nu_1^M\rangle = |\nu_e\rangle \cos \theta_M - |\nu_\mu\rangle \sin \theta_M = |\nu_1\rangle \cos(\theta_M - \theta) - |\nu_2\rangle \sin(\theta_M - \theta), \quad |\nu_2^M\rangle = |\nu_e\rangle \sin \theta_M + |\nu_\mu\rangle \cos \theta_M = |\nu_1\rangle \sin(\theta_M - \theta) + |\nu_2\rangle \cos(\theta_M - \theta).
\]

Длина осцилляций нейтрино в веществе равна

\[
L_M = L_{\text{vac}} \frac{\sin 2\theta_M}{\sin 2\theta} = L_{\text{vac}} \left[1 + \left(\frac{L_{\text{vac}}}{L_e} \right)^2 - \frac{2L_{\text{vac}}}{L_e} \cos 2\theta \right]^{-1/2}.
\]

Вероятность осцилляций записывается аналогично вакуумному случаю, но с заменой \(\theta \to \theta_M, L_{\text{vac}} \to L_M \):

\[
P_{ee} = \sin^2 2\theta_M \sin^2 \frac{\pi L}{L_M}, \quad P_{\mu\mu} = 1 - \sin^2 2\theta_M \sin^2 \frac{\pi L}{L_M}.
\]

Считаем для определенности, что \(|\theta| < \pi/4 \), тогда \(|\nu_1\rangle \) доминирует в \(|\nu_e\rangle \). Вещество может как усиливать, так и ослаблять осцилляции нейтрино в зависимости от знака \(\Delta m^2 \). При \(\Delta m^2 < 0 \) имеем \(\theta_M < \theta \), т.э. вещество в этом случае подавляет смешивание нейтрино и нейтрино́вые осцилляции. Разница \(\Delta m^2_M \) увеличивается по модулю по сравнению с вакуумной разностью квадратов масс. Если \(\Delta m^2 > 0 \), то в этом случае \(\theta_M \) может достигать значения \(\pi/2 \) даже при малом угле смешивания \(\theta \) в вакууме. В этом случае осцилляции нейтрино усиливаются и разность \(\Delta m^2_M \) уменьшается по сравнению с \(\Delta m^2 \). Обратим внимание на три важных пределных случая:

- \(\lambda \to 0 \) соответствует малой плотности числа электронов \(n_e \to 0 \). В этом случае осцилляции в веществе совпадают с вакуумными осцилляциями:

\[
\theta_M \to \theta, |\nu_1^M\rangle = |\nu_1\rangle \text{ и } |\nu_2^M\rangle = |\nu_2\rangle.
\]

- \(\lambda \to \infty \) отвечает бесконечно большой плотности электронов. Тогда \(\theta_M \to \pi/2, |\nu_1^M\rangle = -|\nu_\mu\rangle \text{ и } |\nu_2^M\rangle = |\nu_e\rangle \). Вероятность осцилляций в этом случае сильно подавлена:

\[
P_{\mu\mu} = \left(\frac{L_e}{L_{\text{vac}}} \right)^2 \sin^2 2\theta \sin^2 \pi L/L_e \ll 1.
\]
• \(\lambda \to 1 \). В этом случае имеется резонансный эффект: \(\theta_M \to \pi/4 \). Длина осцилляций становится \(L_M = L_{\text{vac}}/\sin 2\theta \) и вероятность \(P_{e\mu} = \sin^2 \pi(\sin 2\theta L/L_{\text{vac}}) \). Резонансная плотность \(n_{\text{res}} = \frac{\Delta m^2 \cos 2\theta}{2\sqrt{2}G_F E_\nu} \) зависит от энергии нейтрино, так что в сечении с постоянной плотностью можно реализовать сценарий конверсии \(\nu_e \to \nu_\mu \) для «окна» энергий нейтрино, удовлетворяющего соотношению \(n_\nu E_\nu = \Delta m^2 \cos 2\theta/2\sqrt{2}G_F \). Обратим внимание на то, что одного резонанса, однако, недостаточно для конверсии \(\nu_e \to \nu_\mu \), поскольку столь же эффективно происходит обратный процесс \(\nu_\mu \to \nu_e \).

В случае с переменной плотностью комбинация всех трех предельных случаев в определенной области параметров \(\Delta m^2, \sin^2 2\theta, E_\nu \) приводит к красивому физическому эффекту — конверсии \(\nu_e \) в массовое состояние \(\nu_2 \). Происходит это следующим образом. Если в точке рождения электронного нейтрино плотность электронов бесконечно велика, то состояние \(\nu_e \) совпадает со вторым массовым состоянием в веществе \(|\nu_e\rangle = |\nu_2^M\rangle \). Если плотность среды меняется достаточно медленно по сравнению с \(L_e \), то выход нейтрино из среды можно считать адабатическим. В этом случае нейтрино остается все время во втором массовом состоянии в веществе \(|\nu_2^M\rangle \), которое на выходе из вещества совпадает с \(\nu_2 \) в вакууме. Дальше такое нейтрино уже не осциллирует, как обсуждалось в начале предыдущего подраздела \(\nu_2 \) взаимодействует в детекторе на земле посредством обмена \(W \)-bosonом менее интенсивно, чем \(\nu_e \), в \(\sin^2 \theta \) раз. Это в конечном итоге приводит к уменьшению электронно-позитронных событий, тем более общему, чем меньше угол смешивания в вакууме \(\theta \). Данные явления названы MCB-эффектом (в англоязычной литературе MSW effect) по имени Михеева, Смирнова, Вольфенштейна [10, , которые первыми его предсказали. Эффект MCB важен для понимания проблемы солнечных нейтрино, о чем мы будем говорить далее в § 2.2.1. Разумеется, распространение нейтрино в Солнце является более сложной задачей, чем рассмотрено нами. Решать такую задачу приходится, вообще говоря, численно.

1.3.3. Число поколений нейтрино. Сегодня известно о существовании трех поколений массивных нейтрино \((\nu_1, \nu_2, \nu_3) \), из которых можно составить фазевые комбинации \((\nu_e, \nu_\mu, \nu_\tau) \).

Обсудим экспериментальные ограничения на число поколений нейтрино. Первое ограничение следует из экспериментов с распадами \(Z \)-bosonов, рожденных в \(e^+e^- \)-аннигиляции. \(Z \)-boson распадается на пару \(j\bar{j} \), где \(j \) может быть кварком, заряженным лептоном или нейтрино. Полная ширина распада \(Z \)-bosona складывается из парциальных ширин распадов на упомянутые фермионы и равна примерно 2500 MeV, из которых почти 500 MeV приходится на три невидимые моды распада на пары \(\nu_\ell \nu_\ell \). Экспериментальная погрешность измерения невидимой ширины распада составляет всего 1,5 MeV, что многие меньше вклада в ширину от одной пары нейтрино (порядка 166 MeV).

Экспериментальный результат

\[
N^{\text{LEP}}_\nu = 2.9841 \pm 0.0083
\]

прекрасно согласуется с вычисленными в рамках СМ с тремя поколениями нейтрино, что видно на рис. 4, на котором приведено сравнение измеренного сечения аннигиляции \(e^+e^- \) как функции полной энергии пары \(e^+e^- \) с теорией в разных предположениях о числе поколений нейтрино.
Другое ограничение следует из космологии. Как известно, сейчас Вселенная заполнена реликтовыми фотонами с распределением по энергии, хорошо описываемым планковским спектром с температурой \(T_\gamma = 2.725 \) К. Плотность фотонов и их энергии есть

\[
n_\gamma = (2\zeta(3)/\pi^2)T_\gamma^3 \approx 411/\text{см}^3 \quad \text{и} \quad \rho_\gamma = (\pi^2/15)T_\gamma^4 \approx 0.26 \text{ эВ}/\text{см}^3.
\]

В какую бы точку на небе ни посмотреть, мы увидим всюду один и тот же спектр все с той же температурой с точностью до милливольтмина. Измерив температуру более точно, мы обнаружим, что в направлении на сверхскопление Гидра-Центавра фотонь приходят немного «горячее», в среднем на \((3.335 \pm 0.008) \cdot 10^{-3} \) К. Эта анизотропия, называемая дипольной, объясняется эффектом Доплера, возникающим вследствие того, что Солнечная система движется в направлении на сверхскопление Гидра-Центавра. Движение наблюдателя со скоростью \(v \) относительно изотропного планковского поля излучения с температурой \(T_0 \) искажает спектр этого излучения в направлении \(\theta \) согласно

\[
T(\theta) = T_0 \sqrt{1 - v \cos \theta}.
\]

Если увеличить точность измерения еще на два-три порядка и вычесть эффект Доплера, то мы обнаружим, что фононы с некоторых направлений приходят чуть более горячими, всего лишь на величину порядка \(10^{-5} \) К, как видно на рис. 5. Сегодня считается, что причина этой анизотропии в возмущениях плотности в ранней Вселенной на стадии рекомбинации, когда атомы водорода и гелия были в термодинамическом равновесии с фотонами. Ядра водорода и гелия захватывали электроны из плазмы, образуя соответствующие атомы и излучая фотонь. При этом фотонь разрушили атомы, выбивая из них электроны. На этой стадии атомы и барионы были тесно связаны друг с другом. Вселенная была в тот момент непрозрачна для фотонь. Небольшие возмущения плотности барионы усилились гравитационным притяжением атомов друг к другу.

![Рис. 4. Кривые — сечения анигиляции \(e^+e^- \) как функция полной энергии лептонов \(\sqrt{s} \) для трех гипотез числа нейтрино \(N_\nu^{\text{LEP}} = 2, 3, 4 \). Точки с ошибками — экспериментальные данные коллаборации ALEPH](image)

![Рис. 5. Температурная карта реликтовых фотонов за вычетом их средней температуры и дипольной компоненты, связанной с движением Солнечной системы. Температура меняется от -200 до 200 мК](image)
Давление газа фотонов, тесно связанных с бариями, противодействовало гравита-
ционной концентрации атомов, что приводило к акустическим колебаниям барийонов, по-
аналогии со звуковыми волнами в воздухе с характерной длиной волны
\[
\lambda = \frac{2ct_{\text{dec}}}{\sqrt{3}} \approx 134 \text{ км},
\]
где \(c\) — скорость света; \(c/\sqrt{3}\) — скорость «взма» в плазме, а \(t_{\text{dec}} = 379\,000\) лет — возраста Вселенной на момент рекомбинации. В более плотных областях фотоньи тратили свою энергию, растаячивая вещество, и соответственно, в менее плотных фотоньи остава-
лись несколько более «горячи». Когда Вселенная расширилась настолько, что развал атомов стал менее эффективен, чем их образование, фотоньи «отделились» от барийонов, т. е. Вселенная стала для них прозрачной. Спектр фотоньи в этот момент «заморозился», и далее температура фотоньи уменьшилась примерно в 1000 раз и во столько же раз вырос размер Вселенной за время ее расширения.

Важно, что при этом относительная флуктуация температуры реликтовых фотоньи
не изменились со временем и остались точно такими же сегодня \((t = t_0)\), как и на момент отдельения света от вещества. \(t = t_{\text{dec}}\):
\[
\frac{\delta T(t_0)}{T(t_0)} = \frac{\delta T(t_{\text{dec}})}{T(t_{\text{dec}})}.
\]

Разницу температур в направлении единичного вектора \(n\) и средней температуре, за вычетом дипольной анизотропии, удобно выразить через сферические функции \(Y_{lm}(n)\):
\[
\delta T(n) = \sum_{lm} a_{lm} Y_{lm}(n).
\]
Угловые моменты \(l\) соответствуют флуктуациям температуры с типичным угловым мас-
штабом \(\pi/l\). Корреляция между флуктуациями температуры двух участков неба в направ-
лениях \(n_1\) и \(n_2\), усредненная по \(m\), есть
\[
\langle \delta T(n_1)\delta T(n_1) \rangle = \sum_l \frac{2l + 1}{4\pi} C_l P_l(n_1, n_2),
\]
где \(C_l = \langle a_{lm} a_{lm}^* \rangle\) и \(P_l\) — полиномы Лежандра. Для \(n_1 = n_2\) эта формула определяет
среднеквадратичную флуктуацию температуры:
\[
\langle \delta T^2 \rangle = \sum_l \frac{2l + 1}{4\pi} C_l \approx \int \frac{l(l + 1)C_l}{2\pi} d\ln l.
\]
Величина \(l(l + 1)C_l/2\pi\) отвечает суммарному вкладу угловых моментов одного порядка, и именно ее используют для характеристики среднеквадратичной флуктуации темпера-
турь реликтовых фотоньи, как показано на рис. 6. Обнаружение акустических пиков в
распределении — одно из самых значительных открытий последних лет.

Не вдаваясь в подробности, приведем лишь некоторые результаты, полученные кол-
лаборацией WMAP [11], измерившей с наилучшей точностью анизотропию температуры

1 Начиная с 2000 г. три наиболее цитируемые статьи в физике и астрономии — это работы коллаборации WMAP!
Рис. 6. $l(l+1)C_l/2\pi$ как функция l, измеренная коллаборацией WMAP [11] после семи лет набора данных. Хорошо промерены три акустических пика. Сплошная линия — наилучший фит данных в модели LCDM.

реликтовых фотонов. Возраст Вселенной, измеренный с точностью около 1%, составляет 13,73 млрд лет. Измеренная кривизна Вселенной соответствует плоской евклидовой геометрии также с точностью около 1%. Средняя плотность энергии распределена следующим образом: $(72,1\pm1,5)$ % приходится на темную энергию, $(23,3\pm1,3)$ % на темную материн и только $(4,6 \pm 0,1)$ % остается на обычное вещество. Кроме того, форма распределения $l(l+1)C_l/2\pi$ чувствительна к числу поколений нейтрино и антинейтрино (N^cosm_ν, N^LEP_ν), которые были в термодинамическом равновесии с барионами в ранней Вселенной. Наилучший фит данных WMAP вместе с другими астрофизическими данными, упоминание о которых уведет нас слишком далеко от предмета лекций, дает $N^\text{cosm}_\nu = 4,34^{+0,86}_{-0,88}$.

Число поколений нейтрино N^cosm_ν в пределах ошибок согласуется с результатами LEP: N^LEP_ν, но центральное значение указывает на заметное отличие, которое может быть очень важно, если значение N^cosm_ν подтверждется с меньшими ошибками.

Наконец, определив с хорошей точностью долю, приходящуюся на темную энергию, темное и обычное вещество, можно поставить ограничение на вклад нейтрино в плотность энергии во Вселенной:

$$\Omega_\nu \equiv \frac{\rho_\nu}{\rho_{\text{crit}}} = \frac{\sum_i m_{\nu_i} n_{\nu_i}}{3H^2/8\pi G_N} = \frac{10^{-3} \sum_i m_{\nu_i}}{0.1 \text{ эВ}}$$

где $H = 100 h \text{ км} / \text{с} \cdot \text{Мпс}$. Отсюда следует предел на сумму масс нейтрино (8).

2. **НЕЙТРИННЫЕ ЭКСПЕРИМЕНТЫ: ПРОШЛОЕ И НАСТОЯЩЕЕ**

2.1. Прямое определение массы нейтрино. Заметная экспериментальная активность в области физики нейтрино и в прошлом, и в настоящем связана с попытками прямых измерений массы нейтрино. Методы таких измерений основаны на кинематическом анализе...
реакций с участием нейтрино. Например, в распаде нейтрона \(n \rightarrow p e^- \bar{\nu}_e \) максимально возможная энергия конечного электрона будет тем меньше, чем больше масса антинейтрино. Таким образом, аккуратно измерив высокоэнергетический конец \(\beta \)-спектра, можно либо измерить массу (анти)нейтрино, либо поставить на нее ограничение. Этот метод был предложен Перреном (Perrin) (1933) и Ферми (Fermi) (1934). Первые эксперименты по измерению массы нейтрино таким методом были сделаны Курраном (Curran), Энджусом (Angus) и Кокрофтом (Cockcroft) (1948), а также Ханной (Hanna) и Понтекорво (Pontecorvo) (1949).

Энергетический спектр электронов в распаде \((A, Z) \rightarrow (A, Z + 1) + e^- + \bar{\nu}_e\) определяется некотерной суммой парциальных ширин распадов на массивные антинейтрино:

\[
\frac{d\Gamma}{dT} = \sum_k |V_{ek}|^2 \frac{d\Gamma_k}{dT},
\]

где \(\theta_C\) — угол Кабиббо; \(m_{e}\) — масса; \(p\) — модуль импульса и \(T\) — кинетическая энергия электрона; \(p_k = \sqrt{E_k^2 - m_k^2} = \sqrt{(Q - T)^2 - m_k^2}\) — импульс нейтрино; \(Q\) — энергия, выделенная в распаде (конечная точка \(\beta\)-спектра в случае нулевой массы нейтрино); \(M\) — ядерный матричный элемент и \(F(T)\) — функция Ферми, описывающая кулоновское взаимодействие конечных частиц. \(\theta\) — функция, учитывающая, что нейтрино состояние \(\nu_e\) рождается только, если полная энергия больше массы нейтрино: \(E_0 = Q - T > m_k\).

Как видно из (17), наибольшее искажение \(\beta\)-спектра из-за массы нейтрино может быть обнаружено в области

\[Q - T \sim m_k.\]

Однако для \(m_k \lesssim 1\) эВ только очень маленькая часть (около \(10^{-13}\)) от всех распадов дает вклад в область (19). Поэтому при анализе результатов используется большая часть \(\beta\)-спектра. Например, в тритиевом эксперименте в Майнц [2] использовалась область \(70\) эВ в конце спектра. Используя унитарность матрицы смешивания и предположив \(m_k^2 \ll 4(Q - T)^2\), можно получить

\[
\sum_k |V_{ek}|^2 p_k \approx \sum_k |V_{ek}|^2 (Q - T) \left[1 - \frac{m_k^2}{2(Q - T)^2}\right] \approx \sqrt{(Q - T)^2 - m_k^2},
\]

где эффективная масса нейтрино \(m_\beta\) определена как \(m_\beta^2 = \sum_k |V_{ek}|^2 m_k^2\). В результате можно выразить ширину распада нейтрона через эффективную массу нейтрино \(m_\beta\), на которую и устанавливается экспериментальный предел:

\[
\frac{d\Gamma}{dT} \propto p(T + m_e) |M|^2 F(T)K^2(T), \quad \text{где} \quad K(T) \approx (Q - T) \left[1 - \frac{m_\beta^2}{(Q - T)^2}\right]^{1/4}.
\]

Диаграмма Юри (см. рис. 7, а) для разрешенных процессов — чувствительный тест эффективной массы нейтрино \(m_\beta\). На рис. 7, б приведены опубликованные результаты о величине \(m_\beta^2\), полученные из тритиевых распадов, начиная с 1990 г. В экспериментах
2.2. Солнечные, реакторные и геонейтрины. 2.2.1. Солнечные нейтрино. Физика Солнца и солнечные нейтрино подробно обсуждаются в лекциях В. А. Наумова в этом сборнике [13]. Кроме того, можно порекомендовать книгу Дж. Бахкала (J. Bahcall) [14]. Мы лишь кратко рассмотрим основные моменты в исследовании этой увлекательной области. Солнце горит за счет протекающих в нем ядерных реакций. Наибольший вклад в энергиетику Солнца дает так называемый pp-цикл, состоящий из четырех ветвей. Эффект этих реакций можно выразить простой формулой:

$$4p \rightarrow ^4\text{He} + 2e^+ + 2\nu_e,$$

из которой видно, что четыре протона превращаются в ядро гелия с испусканием двух позитронов и двух электронов нейтрино. Таким образом, в Солнце водород «перерабатывается» в гелий. Подчеркнем, что ядерные реакции в Солнце возможны только благодаря квантовому туннелированию через кулоновский потенциальный барьер, создаваемый электрическими зарядами сталкивающихся ядер. «Зажигается» Солнце в результате реакции $pp \rightarrow d\nu_e$, которая из-за кулоновского барьера идет довольно медленно и «заканчивается» темп всем ядерным реакциям в Солнце. Родившиеся позитроны аннигилируют с электронами, испуская два фотона. Сопровождающие их ν_e, называемые pp-нейтрино, — самые низкоэнергичные из солнечных нейтрино, заметные интенсивные с потоком около $6 \cdot 10^{10}$ см$^{-2}$ с$^{-1}$.
Следующие по интенсивности — это так называемые берилиевые нейтрино, которые рождаются в реакции

\[e^- + ^7\text{Be} \rightarrow ^7\text{Li} \nu_e. \]

Ядро лития в 10% случаев оказывается в возбужденном состоянии. Переход в основное состояние сопровождается излучением фона. Поток берилиевых нейтрино составляет \(5 \cdot 10^9\ \text{см}^{-2} \cdot \text{с}^{-1}\). Обратим внимание также на борные нейтрино, которые рождаются в реакции

\[^8\text{B} \rightarrow ^8\text{Be}^* e^+ \nu_e. \]

Интенсивность борных нейтрино порядка \(6 \cdot 10^9\ \text{см}^{-2} \cdot \text{с}^{-1}\). Энергия этих нейтрино позволяет их регистрацию водными детекторами по черенковскому излучению рассеянных электронов. На рис.8 приведены потоки солнечных нейтрино как функция их энергии в рамках стандартной солнечной модели [15]. Пионерским экспериментом по детектированию солнечных нейтрино был эксперимент HOMESTAKE [16], использовавший предложенную Б. Понтекорпо реакцию

\[\nu_e + ^{37}_{17}\text{Cl} \rightarrow ^{37}_{18}\text{Ar} + e^- \]

с порогом по энергии нейтрино \(E_{\nu^\text{th}} \approx 814\ \text{kB}\). Атомы аргона \(^{37}_{18}\text{Ar}\) распадаются, захватывая орбитальный электрон. Период полураспада этих атомов около 35 сут. Каждые 2–3 периода полураспада атомы аргона извлекались химическим путем из установки и помещались в низкоэфективный пропорциональный счетчик для оценки их количества. Число нейтрино от Солнца, пересчитанное от числа атомов аргона, было примерно в три раза меньше теоретически вычисленного. Таким образом родилась «проблема солнечных нейтрино». Следующими экспериментами, использующими предложенную В.А. Кузьминим реакцию \(\nu_e + ^{71}_{31}\text{Ga} \rightarrow ^{71}_{32}\text{Ge} + e^-\) с порогом \((E_{\nu^\text{th}} \approx 232,696\ \text{kB})\), были GALLEX [17], заочивший набор данных в 1997 г., GNO [18], набирающий данные с 1998 по 2003 г., и

![Diagram](image)

Рис. 8. Спектры солнечных нейтрино, вычисленные в рамках стандартной солнечной модели [15] (CCM)
SAGE [19], продолжающий набор данных по сей день. Первым экспериментом, наблюдавшим нейтрино от Солнца в режиме реального времени, был детектор Kamiokande [20] в Японии. Детектор представлял собой большой водный детектор, регистрирующий чешуйковое излучение рассеянных электронов в реакции

$$\nu_{x} e \rightarrow \nu_{x} e.$$

Угол вылета электронов сильно коррелирует с направлением потока нейтрино, так что Kamiokande стал первым экспериментом, в котором было доказано, что нейтрино летят от Солнца. Позднее новый детектор SuperKamiokande [21] с массой воды 50 000 т заменил Kamiokande. Пороги по энергии нейтрино в экспериментах Kamiokande и SuperKamiokande были $E_{v}^{th} \approx 7$ МэВ и $E_{v}^{th} \approx 5$ МэВ соответственно, что означало возможность измерения только борных нейтрино. Малые (по сравнению с потоком pp-нейтрино) потоки последних диктуют необходимость больших объемов детекторов, таких как Kamiokande и SuperKamiokande. Заметим, что сечение реакции $\nu_{x} e \rightarrow \nu_{x} e$ больше сечения реакции $\nu_{\mu}, e \rightarrow \nu_{\mu}, e$ примерно в шесть раз из-за дополнительного вклада зарженного тока. Таким образом, рассеяние на электронах, в основном, чувствительно к ν_{e}. Все упомянутые выше эксперименты наблюдали дефицит потока солнечных нейтрино, что породило бум теоретических статей в литературе с попытками объяснить аномалию. Модельно-независимый анализ потоков нейтрино не оставлял места для берилиновых нейтрино. В связи с этим был особенно популярен эффект MCB, позволяющий «вырезать» нейтрино в узком интервале энергий за счет MCB-резонанса (см. п. 1.3.2). Осцилляции нейтрино были одним из популярных объяснений, но и десятки других имели право на существование. Ситуация изменилась после публикации данных эксперимента SNO [22]. Детектор SNO состоял из 1000 т сверхчистой тяжелой воды D2O, окруженной обычной водой для защиты от фона. SNO измерял борные нейтрино посредством их взаимодействия по каналам заряженного (CC) и нейтрального (NC) токов на дейтерии и упрого го рассеяния (ES) на электронах:

$$\nu_{e} d \rightarrow p p e^{-} \ (CC), \quad (20)$$
$$\nu_{x} d \rightarrow p n \nu_{x} \ (NC), \quad (21)$$
$$\nu_{x} e \rightarrow \nu_{x} e \ (ES). \quad (22)$$

Порог регистрации $E_{v}^{th} \approx 4$ МэВ. Нейтральный ток на дейтерии не подавлен по сравнению с водой: минимум потому, что энергия связи в ядре кислорода ($E_{bin}^{Cl_{2}} \approx 15$ МэВ) превышает максимальную энергию борных нейтрино, а у дейтерия энергия связи невелика ($E_{bin}^{D_{2}} \approx 2$ МэВ). Реакция (20) чувствительна только к ν_{e}, в то время как все нейтрино взаимодействуют по реакции (21). Это стало ключом к решению проблемы солнечных нейтрино. Если нейтрино осциллируют, то SNO должен был бы наблюдать существенную разницу в потоках нейтрино, измеренных по заряженной, нейтральной и упрогой модам. Измеренные потоки, действительно, оказались разными! В результате (в единицах 10^6 см$^{-2}$·с$^{-1}$) потоки электронных ϕ_{e} и прочих сортов нейтрино $\phi_{\mu\tau}$:

$$\phi_{e} = \left(1.76^{\pm 0.06}_{-0.05\text{(стат.)}}^{0.09\text{(систем.)}}\right) \cdot 10^6 \text{ см}^{-2} \cdot \text{с}^{-1},$$
$$\phi_{\mu\tau} = \left(3.41^{\pm 0.45}_{-0.47\text{(стат.)}}^{0.47\text{(систем.)}}\right) \cdot 10^6 \text{ см}^{-2} \cdot \text{с}^{-1}. \quad (23)$$
2.2.2. Реакторные нейтрино. Эксперименты с реакторными антинейтрино, образующимися в ходе «горения» ядерного топлива, проводились уже давно и проводятся до сих пор. Наблюдаемые потоки антинейтрино в детекторах, расположенных на расстояниях от реактора от нескольких десятков метров до километра, находились в согласии с гипотезой отсутствия осцилляций [24]. Первым реакторным экспериментом, обнаружившим осцилляции антинейтрино, стал KamLAND, расположенный в шахте старого эксперимента Kamiokande. Изобилие ядерных реакторов в Японии позволило KamLAND получить достаточно большую статистику взаимодействий $\bar{\nu}_e p \rightarrow n e^+$ в детекторе, ис-

Рис. 9. а) Потоки ϕ_e, $\phi_{\mu\tau}$, полученные из анализа данных SNO [22] по измерению CC-, NC- и ES-реакций и из ES-реакции в SuperKamiokande. Ширина полос соответствует ошибке в 1σ. Контурами обведены области совместного измерения потоков ϕ_e, $\phi_{\mu\tau}$ с вероятностями 68, 95 и 99%. Пунктирными линиями отмечена область предсказания CCM вместе с неопределенностями модели [15] (график взят из [22]). б) Вероятность выживания электронного нейтрино как функция его энергии, вычисленная в BPS09(GS98)-варианте CCM и с параметрами осцилляций $\Delta m^2 = 7,60 \cdot 10^{-5}$ зВ2 и $\tan^2\theta = 0,45$. Точки с ошибками показаны результаты измерений pp-нейтрино, SNO и Borexino [23]. График взят из [23].
пользуем 1000 т сверхчистого жидкого сцинтиллятора, находящемся в среднем на расстоянии 180 км от реакторов. KamLAND обнаружил не только дефицит антинейтрино по сравнению с гипотезой отсутствия осцилляций, но и увидел характерную для нейтринных осцилляций периодическую зависимость вероятности выживания $\bar{\nu}_e$ от энергии $E_{\bar{\nu}_e}$ (рис. 10).

На рис. 11 приведены разрешенные области параметров осцилляций на уровнях достоверности в 68, 95 и 99,73 %, а также показаны наилучшие значения параметров из глобального анализа экспериментов с солнечными нейтрино (a) и с учетом результатов KamLAND (b).
Введение в физику нейтринно 1217

бального анализа экспериментов с солнечными нейтринами (рис. 11, а) с учетом результатов KamLAND (рис. 11, б). Фактически совместный анализ всех данных не оставляет других решений, кроме единственного, показанного на рис. 11, б.

На момент написания этих лекций появилась работа [25], в которой выполнен новый расчет потоков антинейтрино от реактора. По утверждению авторов в предыдущих вычислениях недооценивался поток примерно на 3 %. Таким образом, хорошее согласие старых экспериментов с теоретическими ожиданиями в предположении отсутствия нейтринных осцилляций на расстояниях до сотен метров теперь находится под сомнением. В среднем на всех реакторных экспериментах на этих расстояниях наблюдается на 6–7 % (с ошибкой 2,7 %) меньше число антинейтрино (рис. 12). Объяснить этот дефицит осцилляциями с \(\Delta m_{12}^2, \Delta m_{13}^2 \) не удается, поэтому авторы [25] предлагают в качестве объяснения осцилляции в четвертом «стерильном» нейтрине. Заметим, что возможным объяснением также может быть неунитарность 3 × 3 матрицы смешивания нейтрино, для чего также требуется существование дополнительных типов нейтрино.

Рис. 12. Иллюстрация «реакторной аномалии». Во всех реакторных экспериментах наблюдается дефицит числа антинейтрино по сравнению с новым расчетом [25]

2.2.3. Геонейтрино. Буквально в последние годы впервые удалось увидеть антинейтрино, рождающиеся в недрах нашей планеты. Это очень важные наблюдения, связанные с исследованием вопроса о природе тепла внутри Земли. О том, что Земля внутри все горячее и горячее, если следовать к ее центру, сегодня знают даже школьники. Ответить на вопрос, почему это так, невозможно, если исходить только из умозрительных соображений. В литературе обсуждаются гипотезы об остаточном первоначальном тепле, которым обладала прото-Земля на стадии, когда она еще не сформировалась как планета. Также популярна идея о том, что Земля разогревается прямо сейчас за счет слабых радиоактивных распадов, сопровождающихся испусканием антинейтрино. Основной вклад вносит ядра \(^{235}_{92}U, ^{232}_{90}Th, ^{40}_{19}K \), поскольку у них достаточно большие времена полураспада, исчисляющиеся миллионами лет, чтобы разогреть Землю сегодня. Всерьез обсуждается возможность существования геореактора в центре планеты, а также другие гипотезы, обсуждать которые здесь мы не имеем возможности. Разумеется, не
исключено, что на практике работает комбинация этих механизмов. Наблюдение геонейтрино напрямую проверяет гипотезу о современном разогреве Земли посредством радиоактивных распадов нестабильных ядер. Геонейтрино были обнаружены в экспериментах Borexino [26] и KamLAND [27]. На рис. 13 приведены результаты этих экспериментов. Обратим внимание на то, что в эксперименте Borexino удалось наблюдать геонейтрино в области энергий, в которой присутствуют фоновые события очень маль. Это связано, в первую очередь, с рекордной очисткой жидкого сцинтиллятора от радиоактивных примесей и с удаленностью от европейских реакторов (в самой Италии ядерных реакторов нет). Существование геонейтрино подтверждено на уровне 4,2 σ (99,997 %) независимо данными Borexino и KamLAND. Совместный анализ данных KamLAND и Borexino, однако, показывает, что области возможных концентраций урана и тория, даваемые этими экспериментами, пересекаются лишь частично [28]. Точность измерений концентрации урана и тория пока что недостаточна для того, чтобы проверить различные модели структуры Земли. Тем не менее удаётся поставить ограничение на максимально возможную мощность гипотетического геореактора в центре Земли. Такой геореактор, если и существует, должен излучать не более 3 ГВт тепловой мощности. В будущих экспериментах SNO+, LENA, HanoHano¹ будет накоплена большая статистика геонейтрино, что поможет улучшить наши знания о внутреннем строении Земли.

2.3. Атмосферные и ускорительные нейтрино. 2.3.1. Атмосферные нейтрино. Атмосферные нейтрино образуются при распадах нестабильных частиц, рождающихся в результате развития широкого атмосферного ливня (ШАЛ). ШАЛ вызываются космическими протонами, бомбардирующими атмосферу. Расчет потоков нейтрино и антинейтрино в ШАЛ — это весьма сложная и трудоемкая задача, в которой пересекаются

¹http://geoscience.lngs.infn.it/
Введение в физику нейтрино 1219

астрофизика, физика частиц, атмосферная физика, физика магнитного поля Земли, солнечный ветер и другие разделы физики. Тем не менее нетрудно понять «на пальцах» основные характеристики рождения нейтрино. Поскольку нейтрино рождается в распадах и наибольший вклад в число нейтрино вносят легчайшие π^\pm, K^\pm, то можно ожидать в среднем в два раза большее число мюонных нейтрино и антинейтрино по сравнению с электронными нейтрино и антинейтрино, поскольку доминирующими процессами являются распады вида

$$
\pi^+ \to \mu^+ \nu_\mu, \quad \pi^- \to \mu^- \bar{\nu}_\mu,
$$

Потоки атмосферных мюонов и электронных (анти)нейтрино измерялись в ряде экспериментов. Наиболее важным оказался эксперимент SuperKamiokande, в котором детектировались мюно- и электроноподобные события взаимодействия (анти)нейтрино с обменом W^\pm-bosonами с ядрами в водном детекторе. Мюоны и электрона идентифицировались по черенковскому свету. Нейтринные события, зарегистрированные в объеме детектора, классифицировались как полностью или частично содержащиеся в детекторе (fully contained (FC) и partially contained (PC)). FC-события позволили провести идентификацию мюонов и электронов по структуре черенковского колца: мюоны оставляют более четкие колца по сравнению с электронами, которые из-за активной потери энергии в электромагнитных взаимодействиях оставляют диффузные колца. PC-события считаются мюонами.

Экспериментально измеренное коллаборацией SuperKamiokande отношение $N(\nu_\mu)/N(\nu_e)$ наблюдалось, однако, ближе к единице, чем к двойке — числу, следующему из теоретических расчетов $N(\nu_\mu)/N(\nu_e)_{\text{теор}}$:

$$
N(\nu_\mu)/N(\nu_e)_{\text{теор}} = 0.638 \pm 0.16 \pm 0.05.
$$

Интерпретация этого результата не однозначна. Возможно, мюонных нейтрино пришло в детектор меньше, чем должно было прийти, например, из-за осцилляций $\nu_\mu \to \nu_\tau$. В таком случае число электронных нейтрино должно быть в согласии с теоретическим предсказанием. Возможно, однако, другое объясненее — мюонных нейтрино зарегистрировано столько же, сколько было предсказано теоретически, а электронных нейтрино в детекторе оказалось больше, чем следует, например, из-за распадов протона в водном детекторе. В связи с последним объяснением напомним расшифровку аббревиатуры Kamiokande: Kamioka Nucleon Decay Experiment (эксперимент по поиску распада нуклона в Камикоде). Поиск распада протона был основной задачей эксперимента Kamiokande, а атмосферные нейтрино служили фоном к этим процессам. В пользу осцилляций нейтрино свидетельствует угловое распределение e-подобных и μ-подобных событий, демонстрирующее возрастающий дефицит μ-подобных событий с приближением θ к π, что соответствует приходу нейтрино снизу вверх (рис. 14, a).

При этом e-подобные события не обнаруживают такого искажения. Такая зависимость находит объяснение в гипотезе осцилляций $\nu_\mu \to \nu_\tau$. Чтобы убедиться в справедливости гипотезы, необходимо, однако, наблюдать ν_τ в пучке ν_μ за счет осцилляций. В SuperKamiokande был проделан соответствующий анализ по поиску ν_τ и были найдены кандидаты на такие события, имеющие направление прихода снизу.
вверх. Однако статистическая значимость обнаружения ν_τ невелика. Гипотеза о том, что эти события не являются ν_τ, исключена всего лишь на уровне 2.4σ. Необходимость наблюдения ν_τ в пучке с изначально ν_μ за счет $\nu_\mu \rightarrow \nu_\tau$ осцилляций с параметрами, найденными коллаборацией SuperKamiokande, была основной идеей эксперимента OPERA. О первых результатах этого эксперимента мы расскажем в п. 2.3.2.

Возвращаясь к атмосферным нейтрино в эксперименте SuperKamiokande, заметим, что этой коллаборацией был также проделан анализ вероятности выживания мононных нейтрино как функции L/E_ν. Измеренное распределение также обладает характерной для осцилляций нейтрино периодической зависимостью от L/E_ν (см. рис. 14, б). Тема атмосферных нейтрино, на самом деле, более сложна и обширна, чем изложено здесь. Мы предлагаем заинтересованному читателю обратиться к оригинальным статьям и обзорам [31].

Рис. 14. а) Распределение по зенитному углу $\cos \theta$ для e-подобных (левая колонка) и μ-подобных (правая колонка) событий с видимой энергией < 1.33 ГэВ (sub-GeV) и > 1.33 ГэВ (multi-GeV). События также разбиты на однокольцовые (верхний ряд) и многокольцовые (нижний ряд). Точки с ошибками — экспериментальные данные SuperKamiokande [29]. Сплошная гистограмма — теоретическое предсказание в гипотезе отсутствия осцилляций нейтрино. Пунктирной линией показан результат осцилляционного фита с наилучшими параметрами. Рисунок взят из [29]. б) Результаты L/E-анализа атмосферных данных SuperKamiokande. Точки с ошибками — отношение данных к результатам программы моделирования в гипотезе отсутствия осцилляций нейтрино как функция реконструированного L/E. Сплошная линия соответствует осцилляционному фиту $\nu_\mu \rightarrow \nu_\tau$ с наилучшими параметрами. Пунктирной линией дается предсказание для гипотезы распада нейтрино. Рисунок взят из [30].
2.3.2. Ускорительные нейтрино. Нейтринные осцилляции изучаются также в экспериментах с пучками нейтрино от ускорителя. В первых экспериментах детекторы располагались на расстоянии порядка сотен метров. Такой выбор был связан, в основном, с тем, что в те годы нейтрино считалось хорошим кандидатом на роль темной материи во Вселенной с массой порядка одного эВ. Сегодня нейтрино как темная материя утратило свою привлекательность для космологов, поскольку такое легкое нейтрино быстрее размывало любые неоднородности плотности на ранних стадиях кластеризации вещества. Наблюдение за кластеризацией галактик при разных значениях (параметре красного смещения) дает основания думать, что нейтрино с массой около 1 эВ противоречит наблюдаемым данным. Тем не менее был осуществлен ряд экспериментов с ускорительными пучками нейтрино [32] на короткой базе и, за невозможностью обнаружения осцилляций нейтрино, были получены ограничения на параметры осцилляций ($\Delta m^2, \sin^2 2\theta$). Единственным исключением является эксперимент LSND в Лос-Аламосе, который обнаружил избыток в 87.9 ± 22.4 ± 6.0 $\bar{\nu}_e$-подобных событий над фоном от распадов $\mu^+ \rightarrow e^+\nu_e\bar{\nu}_e$ в покое. Этот избыток интерпретируется как осцилляции $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ с вероятностью 0.264 ± 0.067 ± 0.045 и $\Delta m^2 \sim 0.2-10$ эВ2. На плоскости ($\Delta m^2, \sin^2 2\theta$) избыток $\bar{\nu}_e$ в LSND занимает область параметров, которую пытались исключить другие эксперименты, такие как NOMAD, CHORUS, CCFR. Большую часть этой области закрыли KARMEN и Bugey, но формально небольшая часть параметров осталась не исключенной.

Эксперимент MiniBooNE [33], работающий до сих пор, был создан, в основном, чтобы проверить "аномалию LSND" — такое звучное название дали обсуждавшему нами избыtku $\bar{\nu}_e$-подобных событий в LSND, поскольку найденные значения $\Delta m^2 \sim 0.2-10$ эВ2 не согласуются ни с солнечными, ни с атмосферными данными по осцилляциям нейтрино. Эта тема породила более 800, в основном, теоретических статей с попыткой объяснить "аномалию LSND". Популярное решение — дополнительные стерильные нейтрино (см. п. 1.2.3, пункт 6). Эксперимент MiniBooNE может работать в двух модах: с пучком нейтрино ν_μ и с пучком антинейтрино $\bar{\nu}_\mu$. С пучком ν_μ MiniBooNE не обнаружил к настоящему времени избытка ν_τ-подобных событий, которые ожидались на основе результатов LSND. С пучком $\bar{\nu}_\mu$ такой избыток был обнаружен в согласии с измерениями LSND. Статистическая точность последнего результата MiniBooNE незначительна и не позволяет утверждать, что результаты LSND подтверждены, так что вопрос остается открытым.

Первыми экспериментом с базой в сотни километров был японский эксперимент K2K [34] с пучком ν_μ, отправленным из KEK в SuperKamiokande. Спектр и поток нейтрино измерился в ближнем детекторе, стоящем по пучку нейтрино на расстоянии 300 м от места рождения нейтрино. Детектор SuperKamiokande зарегистрировал 112 ν_μ-событий из KEK против ожидавшихся 158,1$^{+9.2}_{-8.6}$, если бы осцилляции нейтрино не было [34]. Дефицит наблюдаемых нейтрино находится в согласии с атмосферными данными SuperKamiokande.

Эксперимент MINOS с пучком нейтрино и антинейтрино, направленным из Fermilab в детектор, расположенный в шахте в Судане (США), стал вторым экспериментом с двумя детекторами, расположенными вблизи и вдали от ускорителя. Дальний детектор находится на расстоянии 735 км от ускорителя. MINOS, так же как и K2K, обнаружил дефицит ν_μ в дальнем детекторе. Если интерпретировать этот дефицит как результат осцилляций $\nu_\mu \rightarrow \nu_\tau$, то параметры осцилляций согласуются с результатами SuperKamiokande по атмосферным нейтрино (рис. 15,a). Удивительным
является результат MINOS в антинейтриноной моде. В этой моде также обнаружен дефицит $\bar{\nu}_\mu$ в дальнем детекторе, интерпретация которого в терминах осцилляций дает несколько отличные значения $(\Delta m^2, \sin^2 2\theta)$ по сравнению с ν_μ-модой (см. рис. 15, 6), и разрешенные области почти не пересекаются. Разумеется, статистическая значимость этого отклика сегодня невелика, и, возможно, с увеличением статистики эта разница исчезнет.

Рис. 15. а) Область допустимых параметров $(\Delta m^2, \sin^2 2\theta)$, измеренная MINOS с пучком ν_μ, в сравнении с результатами SuperKamiokande. б) Области допустимых параметров $(\Delta m^2, \sin^2 2\theta)$, а также наилучшие значения фита данных MINOS с пучком $\bar{\nu}_\mu$ в сравнении с результатами с пучком ν_μ. Рисунки взяты с сайта коллаборации MINOS: http://www-numi.fnal.gov/

Если же разница останется, то это будет драматическим результатом, который противоречит СМ и нашим представлениям о симметрии между частицами и античастицами. Закончим обсуждение этого подраздела последними результатами эксперимента OPERA с пучком ν_μ, посылаемым из ЦЕРН в подземную лабораторию в Гран-Сассо. Расстояние между источником и детектором нейтрино составляет 730 км. Средняя энергия нейтрино в пучке $\langle E_\nu \rangle \approx 17$ ГэВ достаточна для рождения τ-лептона в детекторе в случае осцилляций $\nu_\mu \rightarrow \nu_\tau$. Трек от τ-лейтона длиной от сотен микрон до миллиметра может быть обнаружен в фотоэмульсионном детекторе. OPERA является единственным экспериментом на сегодняшний день, в котором можно обнаружить появление ν_τ-нейтрино, а не его исчезновение, что делает такое наблюдение уникальной проверкой гипотезы осцилляций. В 2010 г. коллаборацией OPERA было объявлено о наблюдении первого ν_τ-кандидата в пучке с изначально ν_μ-нейтрино [35]. За пять лет набора статистики ожидается обнаружить около 10 ν_τ-событий.

Компилляция результатов по солнечным, атмосферным, ускорительным и реакторным экспериментам, в которых исследовались осцилляции нейтрино и антинейтрино, приведена на рис. 16.
Введение в физику нейтрино

2.4. Дирак или Майорана? Эксперименты по исследованию осцилляций нейтрино с той или иной степенью достоверности показали, что у нейтрино есть масса и флэйворные состояния ν_e, ν_μ, ν_τ — это линейная суперпозиция состояний, соответствующих массивным частицам ν_1, ν_2, ν_3.

Следующий фундаментальный вопрос, который необходимо разрешить, это вопрос о том, является ли нейтрино частицей Дирака или Майорана. Из исследования осцилляций нейтрино ответить на этот вопрос невозможно, поэтому используются другие идеи. По сути, идея всего одна, и она заключается в экспериментальном поиске процессов, описываемых диаграммой на рис. 17.

Обсудим подробнее эту диаграмму. Она соответствует обмену виртуальным нейтрино (антинейтрино) между двумя параметрическими ℓ, W'. Легко понять, что такая диаграмма не существует в СМ, если нейтрино — частица Дирака. Она возможна только в случае...
майорановской природы нейтрино. Таким образом, наблюдение процессов, описываемых этой диаграммой, будет свидетельствовать о том, что нейтрино — частица Майорана. Малость амплитуды процесса на рис. 17 определяется малостью массы нейтрино:

\[A \propto m_{\text{eff}} = \sum_i V_{ei}^2 m_i. \]

Рис. 17. Клас диаграмм, которые возможны только для майорановских нейтрино

Пропорциональность амплитуды массе нейтрино можно понять, если учесть, что она пропорциональна свертке левой и правой компонент поля нейтрино, равной нулю при нулевой массе поля. Зачастую в литературе это называют переворотом спина нейтрино, что надо воспринимать как научный жаргон. Диаграмма на рис. 17 может описывать следующие процессы.

- Если считать W-бозоны на этой диаграмме виртуальными частицами, которые взаимодействуют с \(d \)-квarkом в нейтроне, переводя его в \(u \)-кварк, а \(\ell \) считать выходящими электронами, то диаграмма будет соответствовать реакции превращения двух нейтронов в два протона и два электрона без выходящих нейтрино или антинейтрино:

\[2n \rightarrow 2p + 2e^-. \]

Практически эту реакцию можно наблюдать в распадах ядер (или в нейтронных звездах), и она носит название двойной безнейтриный \(\beta \)-распад и обозначается \(0\nu\beta\beta \). Данная реакция наиболее чувствительна к природе нейтрино, если его масса не слишком велика. Поиски таких распадов проводились и проводятся в экспериментах с разными ядрами [36], и таких распадов пока не найдено. Только в одном эксперименте Гейдельберг–Москва [37] частью коллаборации было объявлено о наблюдении распада \(0\nu\beta\beta \). Масса майорановского нейтрино оценена авторами в пределах 0,2–0,6 еВ. Однако этот результат подвергся критике со стороны научного сообщества (в том числе и коллегами по коллаборации), и на сегодняшний день он нуждается в экспериментальной проверке [38]. Сегодня планируется ряд новых экспериментов по поиску \(0\nu\beta\beta \)-распада [39].

- Тяжелое нейтрино Майораны (с массой в сотни ГэВ, ТэВ) можно искать на ускорителях в реакции столкновения двух лептонов одинакового заряда с рождением двух W-бозонов:

\[\ell^- \ell^- \rightarrow W^- W^- . \]

Сечение такого процесса сильно зависит от массы майорановского нейтрино. Оно исчезающе мало при \(m_\nu \rightarrow 0 \) и \(m_\nu \rightarrow \infty \) и потенциально измеримо на коллайдерах, если \(m_\nu \sim \text{TэВ} [40]. \)

3. НЕЙТРИНЫЕ ЭКСПЕРИМЕНТЫ: БУДУЩЕЕ

Сегодня планируются и проводятся все более амбициозные экспериментальные нейтринные проекты. Ряд современных экспериментов и проектов ставит своей целью измерить \(\theta_{13} \). В 2011 г. первые результаты по измерению \(\theta_{13} \) ожидаются от ускорительного

3.1. Эксперименты off-axis. Прецизионные измерения Δm^2 в экспериментах по исследованию осцилляций нейтрино E_ν требуют знания энергии с наилучшей возможной точностью, поскольку вероятность осцилляций зависит от $\Delta m^2 L/E_\nu$ и неопределенность в измерении E_ν приведет к ошибке в определении Δm^2. Как правило, в ускорительных экспериментах нейтрино имеет довольно широкий спектр энергии. В ряде новых проектов и экспериментов T2K [41], Nova [42] используется следующая новая и, на первый взгляд, парадоксальная идея: поставить детектор не вдоль пучка, а немного в стороне!

Оказывается, существует угол вылета нейтрино θ^0_ν в распаде пион $\pi^- \rightarrow \mu^- \nu_\mu$, при котором энергия нейтрино почти не зависит от энергии пионов. Этот угол определяется следующим образом: $\cos \theta^0_\nu = v_\pi$, где $v_\pi = |p_\pi|/E_\pi$ — скорость пионов. Если пион релятивистский, то угол θ^0_ν близок к нулю, и можно получить, что $\theta^0_\nu = 1/\gamma_\pi$. На самом деле, как мы видим, угол θ^0_ν зависит от энергии пионов, так что формально для разных энергий пионов угол θ^0_ν свой. Однако практически он меняется довольно слабо, и, действительно, удаётся заметно сужить спектр энергии нейтрино. Важно, что поток при этом ослабевает всего в четыре раза по сравнению с потоком при $\theta = 0$!

3.2. Жидкостные детекторы. Очень перспективной технологией детектирования (анти)нейтрино (и других редких процессов), активно развиваемой в последние годы, является применение времепроекционной камеры с жидким аргоном (в англоязычной литературе используется аббревиатура LArTPC), впервые предложенной нобелевским лауреатом Карло Руббия (Carlo Rubbia). Принцип действия такого детектора следующий. Объем детектора, заполненного жидким аргоном, ограничен плоскостями с проволочками, находящимися под напряжением. Когда высокозернистая частица проходит через такую среду, она оставляет ионизационный след из электронов, дрейфующих в электрическом поле к проволочкам на расстоянии вплоть до метров. При попадании на проволочки электроны детектируются. Плоскости ориентированы таким образом, что можно восстановить временные и пространственные координаты каждого пути электронов. Система набора данных эксперимента снимает с большой частотой, порядка 40 МГц, такие “картинки”, что позволяет в итоге реконструировать с хорошей точностью трек каждой частицы, как в старых добреньких пузырьковых камерах (см. рис. 18, на котором изображено схематическое изображение принципа действия времепроекционной камеры ICARUS с жидким аргоном).
Исходя из топологии и выделенной энергии, можно определить тип взаимодействия. Сильными сторонами таких детекторов являются: отличное пространственное разрешение и возможность масштабирования детектора от лабораторного до 100 кт и больше.

Пионером в этих исследованиях был проект ICARUS, в котором начат набор первых данных от пучка нейтрино из ЦЕРН в подземной лаборатории в Гран-Сассо в 2010 г. В настоящее время разрабатывается ряд проектов в Европе и США с технологией LArTPC [45].

3.3. Нейтриноные фабрики. β-пучки. Очевидно, что для решения амбициозных задач в нейтриноной физике мало иметь хороший детектор нейтрино, необходим еще и интенсивный их источник. Поэтому в Европе и США ведется активная работа по проектированию таких источников. Одной из описанных является мононенный коллайдер. В двух словах, суть заключается в следующем. Мюоны из распавшихся пионов ускоряются до большой энергии за очень короткий промежуток времени, чтобы их время жизни в ускорителе увеличилось настолько, чтобы их можно было накапливать в коллайдере. Далее накопленные мюоны выводятся в распадный канал, где распадаются, производя нейтрино. Таким образом, можно получить сколоченные пучки нейтрино больших энергий и большой интенсивности. Технологически это очень сложная задача. Главная проблема заключается в создании пучка мюона с малым разбросом по энергии за время, пока они не успели распасться. Для этого мюоны сначала «охлаждаются», пропуская через газ, и лишь затем ускоряют до нужной энергии. Разработкой подобных коллайдеров занимается ряд коллективов [46].

Альтернативной идеей является использование слабых распадов ядер типа

\[^6\text{He} \rightarrow ^5\text{Li} e^- \nu, \quad ^{18}\text{Ne} \rightarrow ^{18}\text{F} e^+ \nu, \]

в которых производятся нейтрино и антинейтрино. Преимущества такого подхода заключаются в следующем. Спектр (анти)нейтрино из таких распадов хорошо известен, поскольку это обычный β-распадный спектр. Малое значение импульса нейтрино (порядка МэВ) в системе покоя ядра означает малый поперечный импульс нейтрино, когда ядро ускорено, а значит, отличную фокусировку, на два порядка лучшую, чем может обеспечить мононенный коллайдер. Как следствие, такие пучки дают больший поток (анти)нейтрино по сравнению с мононным коллайдером за счет лучшей фокусировки. Кроме того, технологии для ускорения ядер существуют уже давно и хорошо разработаны. И, наконец, в распадах ядер нет примеси других флюоров, кроме электронных (анти)нейтрино [47].

3.4. Что осталось за рамками? Несмотря на довольно широкий круг вопросов, которых мы кратко коснулись в настоящих лекциях, физика нейтрино выходит за рамки рассмотренного нами. Приведем некоторые из них, отсылая заинтересованного читателя к соответствующей литературе.

Интересным вопросом, активно исследующимся сегодня на стыке физики частиц, космологии и астрофизики, являются астрофизические нейтрино, которые изучаются в нейтринных телескопах: ICECUBE, GOLDSTONE, AMANDA, BAIKAL, NESTOR, ANTARES [48], и в установках, детектирующих ШАЛ, в которых астрофизические нейтрино имеют четкую сигнатуру — они могут давать горизонтальные ШАЛ: Pierre Auger, HIRES, AGASA, The Telescope Array, JEM-EUSO [49].

Кроме того, остались за рамками этих лекций вопросы о магнитном моменте нейтрино, нейтрино от сверхновых, тестах CP-, CPT-инвариантности, взаимодействия ней-
трито с веществом и некоторые другие. Хочется порекомендовать заинтересованному читателю замечательную и ежедневно пополняемую коллекцию литературы по нейтринной физике [50].

ЗАКЛЮЧЕНИЕ

Думается, не будет большим преувеличением сказать, что сегодня физика нейтрино находится в зените интереса к этой частице и всему, что с ней связано. Об этом свидетельствует непрекращающийся поток теоретических и экспериментальных работ, связанных с нейтрино, введение в строй новых экспериментов и разработка новых проектов. За последние годы многие загадки, связанные с нейтрино, нашли свое решение. Мы сейчас входим в новую эру прецизионных измерений в нейтринной физике, прогресс в которой невозможен без активного участия молодых ученых.

В заключение мне бы хотелось поблагодарить З.Г. Бережняни, С.М. Биленько, М.И. Высоцкого, М.О. Гончара, И.П. Иванова, В.А. Ли, В.А. Наумова, В. Потцеля, О.Ю. Смирнова, О.В. Терева, А.С. Шешукова за полезные обсуждения и критику.

Я особенно благодарен О.Ю. Смирнову, который прочел рукопись и высказал множество замечаний и предложений.

Работа выполнена в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг., ГК № 02.740.11.5220 при частичной поддержке гранта РФФИ № 10-02-00395-а и при поддержке гранта молодым кандидатам наук ОИЯИ.

СПИСОК ЛITERATURE

1. Высоцкий М.И. Лекции по теории электростабильных взаимодействий // Письма в ЭЧЯ. 2011. Т. 8, № 7(170). С.1038–1091.
Yanagida T. // Proc. of the Workshop on Baryon Number in the Universe / Eds. O. Sawada and A. Sugamoto. KEK, 1979;
 Grimus W., Mohanty S., Stockinger P. Field Theoretical Treatment of Neutrino Oscillations: The
 Strength of the Canonical Oscillation Formula. hep-ph/9909341;
 Grimus W., Mohanty S., Stockinger P. Neutrino Oscillations and the Effect of the Finite Lifetime
 Stockinger P. Introduction to a Field-Theoretical Treatment of Neutrino Oscillations // Pramana.
 2000. V. 54. P. 203;
 Cardall C. Y. Coherence of Neutrino Flavor Mixing in Quantum Field Theory // Phys. Rev. D.
 1999. V. 61. P. 073006;
 V. 66. P. 013003.
 2010. V. 37. P. 105014;
 Graham W. A., Naumov D. V. Relativistic boson packets in a quasitopological approach to
 V. 53. P. 549).
12. Lobashev V. M. The Search for the Neutrino Mass by Direct Method in the Tritium Beta-Decay and
 Bellini G. et al. Measurement of the Solar ^8B Neutrino Rate with a Liquid Scintillator Target and

33. Aguilar-Arevalo A. A. et al. (The MiniBooNE Collab.). A Search for Electron Neutrino Appearance at the $\Delta m^2 \sim 1$ eV2 Scale // Phys. Rev. Lett. 2007. V. 98. P. 231801;

43. Guo X. et al. (Daya Bay Collab.). A Precision Measurement of the Neutrino Mixing Angle θ_{13} Using Reactor Antineutrinos at Daya Bay. hep-ex/0701029.
44. Ardellier F. et al. (Double Chooz Collab.). Double Chooz: A Search for the Neutrino Mixing Angle θ_{13}. hep-ex/0606025. 2006.
 http://www-lartpc.fnal.gov/index.htm
 http://n62.fnal.gov
 http://www-microboone.fnal.gov
 http://arxiv.org/pdf/0704.1422
 http://amanda.berkeley.edu/
 http://baikalweb.jinr.ru
 http://www.uoa.gr/~nestor/
 http://antares.in2p3.fr/
 http://icecube.wisc.edu/
 http://hires.physics.utah.edu/
 http://www-akeno.icrr.u-tokyo.ac.jp/AGASA/
 http://www-ta.icrr.u-tokyo.ac.jp/
50. http://www.nu.to.infn.it/