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HYDRODYNAMICS OF FLUIDS WITH SPIN
F. Becattini 1

Universit�a di Firenze and INFN Sezione di Firenze, Firenze, Italy

We discuss the possibility of a nonvanishing spin tensor in relativistic hydrodynamics and its
relevance to the description of QuarkÄGluon-Plasma evolution in relativistic heavy ion collisions. After
a short historical introduction, we report on some recent theoretical results for fully equilibrated �uids.
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INTRODUCTION

The hydrodynamical description of the system created in the collisions of heavy nuclei at
high energy has been remarkably successfull [1]. The hydrodynamical model is apparently
able to account in some detail for the observed transverse momentum spectra of the various
hadronic species and the large anisotropies of the azimuthal components of the transverse
momentum, the so-called elliptic �ow. While the ˇrst generation of hydro-based analyses
did not include dissipative terms (ideal �uid description), shear and bulk viscosity terms of
the stress-energy tensor are normally employed in current analyses. The success of such an
approach and the evidence that dissipative terms seem to be crucial for the correct description
of elliptic �ow [2] rises one more question of whether possible further terms, thus far
disregarded, could be present in the stress-energy tensor that may be able to in�uence the
hydrodynamical evolution equations. In this paper we will discuss one possible addition to
the familiar hydrodynamical scheme, namely terms related to the onset of a macroscopic spin
density in the �uid. The paper is organized as follows: in Sec. 1 we will discuss the general
features of �uids with ˇnite spin density; in Sec. 2 we will brie�y summarize the history of
the subject, while in Sec. 3 we will present some recent results on the simplest instance of
�uid with spin, the ideal Boltzmann gas with macroscopic angular momentum; in Sec. 4 we
will discuss possible developments.

1. FLUIDS WITH SPIN

A �uid with spin is a �uid which needs a spin tensor Sλ,μν (the indices μ, ν being
antisymmetric) to be described in addition to the familiar stress-energy tensor T μν . The
equations of motion are two coupled partial differential equations, the continuity equations
for energy-momentum and angular momentum:

∂μT μν = 0,

∂λJ λ,μν = ∂λ(Sλ,μν + xμT λν − xνT λμ) = 0.
(1)
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These equations enjoy a peculiar ®gauge¯ invariance insofar as the two tensors can be trans-
formed according to

T ′μν = T μν +
1
2
∂λ

(
Φλ,μν − Φμ,λν − Φν,λμ

)
,

S′λ,μν = Sλ,μν − Φλ,μν ,
(2)

the (1) being unchanged in replacing original tensors with primed ones. Also unchanged
under (2) are the spacial integrals yielding total four-momentum and angular momentum; this
holds provided that the rank-3 tensor Φ fulˇlls suitable boundary conditions.

The transformation (2) is used to get rid of the spin tensor Sλ,μν by setting Φ = S
in the second of (2), a procedure leading to the well-known Belinfante symmetrized stress-
energy tensor. By invoking this ®gauge¯ invariance, the spin tensor is usually disregarded
because in the particular Belinfante ®gauge¯ it vanishes. However, the Belinfante procedure
can be applied provided that the original spin tensor to be eliminated vanishes at the bound-
ary, or at least fulˇlls boundary conditions such that total energy-momentum and angular
momentum do not change, and that local entropy density is not affected. Both these con-
ditions are indeed not trivial and, for instance, they are not fulˇlled in the case of an ideal
relativistic rotating gas [3]. This problem rises in turn some interesting issues about the pos-
sibility of eliminating the spin tensor at a microscopic level (in Quantum Field Theory) and
the relation between the microscopic quantum stress-energy, spin tensors and their macro-
scopic correspondents. These fundamental problems are beyond the scope of the present
paper; for the present, we will conˇne ourselves to the observation that a nonvanishing,
noneliminable, spin tensor exists for the simple case of an ideal relativistic rotating gas,
as shown in [3].

Anyhow, the need of including a spin tensor in the dynamical description of a �uid shall
ultimately rest on experimental evidence rather than on theoretical arguments. Indeed, there is
a clear demonstration of the need of a nonvanishing spin tensor, namely the Barnett effect [4].
This occurs when an uncharged body initially spun around its axis slows down and, at the
same time, develops a small magnetization [5,6]:

M =
χ

g
ω, (3)

where χ is the magnetic susceptibility, g the gyromagnetic factor and ω the angular velocity
of the body. The onset of a magnetization is the result of a dissipative transformation of
orbital angular momentum (= the total angular momentum at the very beginning) into spin
angular momentum driven by spin-orbit coupling between the molecules of the body [6].
The converse effect is better known and it called EinsteinÄDe Haas effect: an uncharged
body initially put into an external magnetic ˇeld H starts rotating [7]. Since the Barnett
effect is an irreversible process, it involves an increase of entropy and heating of the body.
Altoghether, it proves that at thermodynamical equilibrium a fraction of the original angular
momentum must appear as polarization of the molecules along the rotation axis and that,
therefore, a spin density and a spin tensor are needed to describe the thermodynamical state
of the body.
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2. A BRIEF HISTORY OF FLUIDS WITH SPIN

The ˇrst attempt to formulate a relativistic theory of �uids with internal spin dates back
to Mathissen [8] and Weyssenhoff [9]. The latter formulated a model enforcing the condi-
tion of vanishing projection of the spin density tensor 1 over the four-velocity ˇeld, namely

A macroscopic �uid at thermody-
namical equilibrium has a rigid

velocity ˇeld. Also shown is
a comoving frame with FrenetÄ

Serret axes

tμ ≡ σμνuν = 0. This condition is commonly known as
Frenkel condition and the �uid fulˇlling it is also known
as Weyssenhoff �uid. The Frenkel condition was criti-
cally examined in a later work by Bohm and Vigier [11]
where they proposed to extend the Weyssenhoff theory to
a more general motion allowing the four vector t �= 0, yet
without giving a deˇnite quantitative formulation. A major
step in formulating a theory of �uids with spin was made
in 1960 by F.Halbwachs [12] who took a variational La-
grangian approach, though keeping the Frenkel condition as
auxiliary external constraint. The hydrodynamics of relativis-
tic �uids with spin has since become the subject of specialized
literature in general relativity and cosmology [13], especially
in the framework of EinsteinÄCartan gravity theory [14].

Indeed, none of the thus far proposed general theories of
(relativistic) �uids endowed with a macroscopic spin density
appears to be really convincing. In all studies quoted above,
at some point simplifying assumptions (especially the Frenkel
condition) are taken in order to make the problem manage-
able, what implies a loss of generality and makes the validity
of the approach eventually questionable.

Instead of trying to reformulate or to amend a previous
general theory of �uids with spin, we have studied in two
recent papers [3,15] the simplest instance of �uids with spin,
that is the ideal rotating Boltzmann gas made of massive particles with spin. This is a system
at full thermodynamical equilibrium and can be therefore entirely studied within statistical
mechanics, independently of any previous formulation of a hydrodynamical theory and freely
from the danger of begging the question.

3. THE ROTATING GAS AT FULL THERMODYNAMICAL EQUILIBRIUM

The requirement of full thermodynamical equilibrium is a stringent condition: it implies
that a macroscopic system must be rigidly rotating, a classic nonrelativistic result [16] which
holds in relativistic mechanics (see [15] for the generalization). For a classical (nonquantum)
system this means that the velocity ˇeld is rigid, i.e.:

v = ω × x (4)

1In special relativity, the spin density tensor σμν is deˇned as the projection of the spin tensor Sλ,μν over the
four-velocity ˇeld, i.e., σμν = Sλ,μνuλ.
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with ω a constant angular velocity vector, whereas for a quantum system this is most properly
formulated as

ρ̂ =
1

Zω
exp

[
− Ĥ

T
+ ω · Ĵ

T

]
PV , (5)

ρ̂ being the density operator and PV the projector onto the set of quantum states pertaining
to the ˇnite region V ; such an additional operator is needed because, for a rigid rotation, the
thermodynamical limit V → ∞ is, strictly speaking, forbidden not to violate the light speed
limit at a sufˇciently large distance from the rotation axis. In Eq. (5) Ĥ is the total energy, Ĵ
the total angular momentum, T the temperature, ω the constant angular velocity vector and Zω

the normalizing factor also known as rotational grand-canonical partition function.
Among the many consequences of equations (4) and (5) (see [3,15] for a detailed deriva-

tion), there is a remarkable modiˇcation of the expression of local entropy density:

T0s = ρ − μ0q + p − 1
2
Ωμνσμν , (6)

where T0 and μ0 are the proper (comoving) temperature and chemical potential, respectively.
The relation between the proper temperature, measured by a comoving frame in the �uid,
and the global temperature T , measured by the external inertial frame (which sees the �uid
rotating around its axis) reads

T0 = Tγ = T (1 − v2)−1/2,

as pointed out by Israel [17]; the same for the chemical potential. The most striking feature
of Eq. (6) is that local entropy gets an additional term proportional to the double-contracted
product between the acceleration tensor Ω, relevant to the FrenetÄSerret tetrad of the velocity
ˇeld (see [3] for a detailed discussion), and the spin density tensor σ. The acceleration
tensor Ω is indeed a tetrad-dependent object, generally deˇned as

Ωμν =
∑

i

ėiμeν
i (7)

(ei i = 0, 1, 2, 3 being the tetrad four-vectors). While in general this can be written as a
function of the acceleration vector a and the angular velocity vector ω as

Ω =

(
0 γ3a − γ3(ω × v)

γ3a − γ3(ω × v) γ3ω − γ3ω · vv + γ3a × v

)
(8)

for the FrenetÄSerret tetrad of a rigid velocity ˇeld becomes simply

Ω =

⎛⎜⎜⎝
0 0 0 0
0 0 γω 0
0 −γω 0 0
0 0 0 0

⎞⎟⎟⎠ . (9)

For an ideal Boltzmann gas the single-particle polarization (that is the expectation value of the
PauliÄLubanski four-vector) [15] can be calculated explicitly by factorizing the density oper-
ator ρ̂ into single-particle density operators and turns out to be aligned with the vector ω and
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essentially proportional to �ω/KT , a tiny value for most macroscopic systems 1. The ensuing
spin density tensor turns out to be proportional to Ω itself through a scalar coefˇcient ι [3]:

σμν = ιΩμν , ι = S(S + 1)n/3T, (10)

n being the particle density. It should be pointed out that the additional spin-dependent
term in entropy expression has been used in literature in the context of relativistic �uids
with spin [13] and the EinsteinÄCartan theory [14]. It is a correction to the entropy density
of quantum origin that should be applied to off-equilibrium situations as well, that is in
dissipative �uid motion. It is interesting to note that, assuming that the spin tensor is simply
given by

Sλ,μν = σμνuλ, (11)

it is then impossible to eliminate it with the Belinfante procedure without violating the global
angular momentum conservation and the invariance of local entropy [3].

The phase space distribution for this kind of gas can also be obtained from the distribu-
tion (5) and reads

f (x,p)τσ = λ e−β·p 1
2

(
DS

(
[p]−1Rω̂

iω

T
[p]

)
+ DS

(
[p]†Rω̂

iω

T
[p]†−1

))
τσ

(12)

for a (Boltzmann) particle with spin S. In Eq. (12) λ is the fugacity, β is the temperature
four-vector, R is a rotation and [p] is the (arbitrary) Lorentz transformation taking the unit
vector of the time axis into the unit vector along the particle four-momentum. The appearance
of Wigner matrices D of the irreducible representations (0, S) and (S, 0) of the Lorentz group

is a remarkable consequence of the term proportional to the angula rmomentum operator Ĵ
in the density operator. Therefore, for rotating systems, the phase space distribution is a
nondiagonal 2 × 2 matrix rather than a scalar function, as pointed out in [18]. In the more
familiar Dirac spinor formalism, formula (12) can be rewritten as

f(x,p)σ,ρ = λ e−β·p 1
2
ūσ(p)D(0,1/2)⊕(1/2,0)

(
R3

iω

T

)
uρ(p) (13)

for a particle with spin 1/2; u is a four-component spinor and D now denotes the 4×4 matrix
of the irreducible representation (0, 1/2) ⊕ (1/2, 0) of the Lorentz group. From the phase
space distribution (12), the stress-energy tensor can be derived and takes the form required
by Israel [17] at the complete thermodynamical equilibrium, namely

T μν = (ρ + p)uμuν − pgμν . (14)

Another consequence of Eq. (9) is the nonvanishing of the four-vector t, that is a violation
of the Frenkel condition:

tμ = ιΩμνuν = ιAμ = ι(0, γ2ω × v) �= 0 (15)

with Aμ = (0, γ2ω × v) the four-acceleration relevant to the velocity ˇeld (4). Since the
Frenkel condition is not fulˇlled even for the simplest instance of a �uid with spin, it turns
out that such a constraint is not appropriate for a realistic general theory of such �uids and
should be released right from the outset.

1It should be pointed out though that this tiny value is responsible for the Barnett effect.
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4. OUTLOOK

We are just at the outset of a complete formulation of the theory of �uids with spin. Our
ˇnding [3] that Frenkel condition is violated even for an ideal gas at full thermodynamical
equilibrium demands a revision of the theories proposed in literature. In a general theory,
the stress-energy tensor will most likely be no longer symmetric and additional dissipative
terms shall appear which depend on the spin density tensor. Our goal is to ˇnd these terms
starting from an extension of the (relativistic) kinetic theory [18] including spin degrees of
freedom. A new generation of kinetic coefˇcients governing the transformation of polarization
of particles into orbital angular momentum and vice versa, as well as the spin transport, will
eventually turn up.

The relevance of these new kinetic processes for the QuarkÄGluon Plasma as a relativistic
�uid is difˇcult to assess for the present. It is possible that they will turn out to be negligible
corrections to the main hydrodynamical scheme, as they are in most macroscopic phenomena
involving electromagnetic interactions (with the exception of peculiar effects like Barnett's
and EinsteinÄDe Haas'). However, the microscopic driving forces determining these new
kinetic coefˇcients are spin-orbit and spin-tensor couplings which are notoriously larger for
strong interactions than for electromagnetic ones, hence their effect could be quantitatively
more important.

It is also possible that such, perhaps tiny, effects could be studied more effectively with
cold atom clouds; such systems can be handled under fully controlled experimental conditions
and can be spun at various angular velocities [19].
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