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In recent years Hagedorn states have been used to explain the physics close to the critical temperature
within a hadron gas. Because of their large decay widths, these massive resonances lower η/s to near
the AdS/CFT limit within the hadron gas phase. A comparison of the Hagedorn model to recent lattice
results is made and it is found that for both Tc = 176 MeV and Tc = 196 MeV, the hadrons can
reach chemical equilibrium almost immediately, well before the chemical freeze-out temperatures found
in thermal ˇts for a hadron gas without Hagedorn states. In this paper we also observe the effects of
Hagedorn states on the K+/π+ horn seen at AGS, SPS, and RHIC.

PACS: 25.75.-q

INTRODUCTION

As two heavy ions collide color neutral clusters are formed within which the number of
particles per cluster increase. The clusters become so dense and begin to overlap so that it
is impossible to distinguish quarks from one cluster from those in another, i.e., a percolation
transition. The critical density for this is about ε ≈ 1 GeV/fm3. Following the phase
transition into QuarkÄGluon Plasma, the interactions are dominated by quarks and gluons.
Through gluon fusions, strange quarks can easily be reproduced. Eventually the QGP cools
back into hadrons where the particle yields and ratios are measured.

If one only considers binary collisions, which react too slowly for strange particles to
reach chemical equilibrium within the hadron gas phase, then it is clear that strange particle
yields can only be explained through gluon fusion within QGP [1] and that the hadrons must
exist in QGP already in full chemical equilibrium [2]. However, multimesonic collisions
nπ ↔ XX̄ have been demonstrated to reach chemical equilibration for various (strange)
antibaryons quickly at SPS [3, 4], although they are still not enough to explain the particle
yields of exotic antibaryons at the higher energies at RHIC [5, 6]. In order to circumvent
such longer time scales ∼ 10 fm/c for a situation of a nearly baryon-free system with nearly
as much antibaryons as baryons, it was then suggested by Braun-Munzinger, Stachel and
Wetterich [7] that near Tc there exists an extra large particle density overpopulated with
pions and kaons, which then drive the baryons/antibaryons into equilibrium by exactly such
multimesonic collisions. But it is not clear how and why this overpopulation of pions and
kaons should appear, and how the subsequent population of (anti)baryons would follow in
accordance with a standard statistical hadron model: According to the mass action law the
overpopulated matter of pions will result in an overpopulation of (anti)baryons. For such a
large number of (anti)baryons it is difˇcult to get rid of them quickly enough in order to
reach standard hadron equilibrium values before the chemical freeze-out [8].
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Rather, understanding the rapid chemical equilibration is possible using Hagedorn states,
heavy resonances that drive similar and more multihadronic reactions close to Tc, as shown
in [8Ä12]. Close to Tc the matter is then a strongly interacting mixture of standard hadrons
and such resonances. Using the Hagedorn states as potential and highly unstable catalysts,
the standard hadrons can be populated reactions:

nπ ↔ HS ↔ n′π + XX̄, (1)

where XX̄ can be substituted with pp̄, KK̄, ΛΛ̄, or ΩΩ̄. The large masses of the decaying
Hagedorn states open up the phase space for multiparticle decays.

In this note we will compare the particle ratios obtained by using reactions driven by Hage-
dorn states and those of the experiments at RHIC. We ˇnd that both strange and nonstrange
particles match the experimental data well within the error bars. Furthermore, we are able to
make estimates for the chemical equilibration time and ˇnd that they are very short, which
implies that the hadrons can easily reach chemical equilibrium within an expanding, hadronic
ˇreball and that hadrons do not need to be ®born¯ into chemical equilibrium [10Ä12]. Hage-
dorn states thus provide a microscopic basis for understanding hadronization of deconˇned
matter to all hadronic particles.

Before starting with the details, we emphasize that Hagedorn states have become quite
popular to understand the physics of strongly interacting matter close to the critical tem-
perature: Hagedorn states have been shown to contribute to the physical description of a
hadron gas close to Tc. The inclusion of Hagedorn states leads to a low η/s in the hadron
gas phase [13], which nears the string theory bound η/s = 1/(4π). Calculations of the trace
anomaly including Hagedorn states also ˇt recent lattice results well and correctly describe the
minimum of the speed of sound squared, c2

s, near the phase transition found on the lattice [13].
Estimates for the bulk viscosity including Hagedorn states in the hadron gas phase indicate
that the bulk viscosity, ζ/s, increases near Tc [13]. We also remark here that Hagedorn states
can also explain the phase transition above the critical temperature and, depending on the
intrinsic parameters, the order of the phase transition [14].

Because of the success of thermal models when ˇtting experimental data at RHIC, SPS,
and AGS [15Ä21], a study was done on the effect of adding in the in�uence of Hagedorn states
to the thermal models at RHIC energies [22,23]. It was found that not only does the addition
of Hagedorn states improve the χ2 of the ˇt but that the addition of Hagedorn states increases
slightly the chemical freeze-out temperature. Due to the success of the implementation of
Hagedorn states into other aspects of hadronic gas physics, we have decided to investigate the
possible effects that Hagedorn states would have on the horn seen in the K+/π+ ratio [24,25].
A recent study has investigated the effects by adding in the decay of Hagedorn states into
pions [26]. In this proceedings we will include the effects of Hagedorn states on all particles,
not just the pions, in order to observe the horn. We ˇnd that the Hagedorn states do not
contribute signiˇcantly to the horn.

1. SETUP

The basis of the Hagedorn spectrum is that there is an exponential mass increase along
with a prefactor; i.e., the mass spectrum has the form: f(m) ≈ em/TH [27]. The exponential
mass spectrum drives open the phase space, which allows for multimesonic decays to dominate
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close to Tc (we assume TH ≈ Tc). We use the form

ρ =

M∫
M0

A

[m2 + m2
r]

5/4
exp

(
m

TH

)
dm, (2)

where M0 = 2 GeV and m2
r = 0.5 GeV. We consider two different lattice results for Tc:

Tc = 196 MeV [28,29] (the corresponding ˇt to the trace anomaly is then A = 0.5 GeV3/2,
M = 12 GeV, and B = (340 MeV)4), which uses an almost physical pion mass, and Tc =
176 MeV [30] (the corresponding ˇt to the energy density leads to A = 0.1 GeV3/2, M =
12 GeV, and B = (300 MeV)4). Both are shown and discussed in [12]. Furthermore, we need
to take into account the repulsive interactions and, thus, use volume corrections [12, 13, 31],
which ensure that our model is thermodynamically consistent. Note that B is a free parameter
based upon the idea of the MIT bag constant.

We need to consider the back reactions of multiple particles combining to form a Hagedorn
state in order to preserve detailed balance. The rate equations for the Hagedorn resonances
Ni, pions Nπ, and the XX̄ pair NXX̄ , respectively, are given by
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The decay widths for the ith resonance are Γi,π and Γi,XX̄ , the branching ratio is Bi,n (see
below), and the average number of pions that each resonance will decay into is 〈ni〉. The
equilibrium values N eq are both temperature- and chemical potential-dependent. However,
here we set μb = 0. Additionally, a discrete spectrum of Hagedorn states is considered, which
is separated into mass bins of 100 MeV.

The branching ratios, Bi,n, are the probability that the ith Hagedorn state will decay into
n pions where

∑
n

Bi,n = 1 must always hold. We assume the branching ratios follow a

Gaussian distribution for the reaction HS↔ nπ:

Bi,n ≈ 1
σi

√
2π

exp
[
− (n − 〈ni〉)2

2σ2
i

]
, (4)

which has its peak centered at 〈ni〉 ≈ 3−34 and the width of the distribution is σ2
i ≈ 0.8−510

(see [12]). For the average number of pions when an XX̄ pair is present, we again refer to
the microcanonical model in [8, 32] and ˇnd

〈ni,x〉 =
(

2.7
1.9

)
(0.3 + 0.4mi) ≈ 2−7, (5)
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where mi is in GeV. In this paper we do not consider a distribution but rather only the
average number of pions when an XX̄ pair is present. We assume that 〈ni,x〉 = 〈ni,p〉 =
〈ni,k〉 = 〈ni,Λ〉 = 〈ni,Ω〉 for when a kaonÄantikaon pair, ΛΛ̄, or ΩΩ̄ pair is present.

The decays widths are deˇned as follows (see [12]):

Γi =0.15mi − 0.0584 = 250 to 1800 MeV,

Γi,XX̄ = 〈Xi〉Γi, Γi,π = Γi − Γi,XX̄ .
(6)

Γi is a linear ˇt extrapolated from the data in [33]. It is then separated into two parts, one for
the reaction HS ↔ nπ, i.e., Γi,π, and one for the reaction HS ↔ nπ + XX̄, i.e., Γi,XX̄ . The
decay width Γi,XX̄ is found by multiplying 〈Xi〉, which is the average X that a Hagedorn
state of mass m will decay into, that is found from both microcanonical [8,32] and canonical
models [12]. The large masses open up the phase space for such more special multiparticle
decays. A detailed explanation is found in [12].

The equilibrium values are found using a statistical model [34], which includes 104
light or strange particles from the PDG [33]. Throughout this paper our initial condi-
tions are the various fugacities at t0 (at the point of the phase transition into the hadron
gas phase) α ≡ λπ(t0), βi ≡ λi(t0), and φ ≡ λXX̄(t0) which are chosen by holding
the contribution to the total entropy from the Hagedorn states and pions constant, i.e.,
shad(T0, α)V (t0) + sHS(T0, βi)V (t0) = shad+HS(T0)V (t0) = const and the corresponding
initial condition conˇgurations we choose later can be seen in table (for further discussion,
see [12]). In our model we do not just consider the direct number of hadrons but also the
indirect number that comes from other resonances. For example, for pions we consider also
the contribution from resonances such as ρ's, ω's, etc. The number of indirect hadrons can be
calculated from the branching ratios for each individual species in the particle data book [33].
Moreover, there is also a contribution from the Hagedorn states to the total number of pions,
kaons, and so on, as described in [10, 12]. Thus, the total number of ®effective¯ pions can
be described by

Ñπ = Nπ +
∑

i

Ni〈ni〉, (7)

whereas the total number of ®effective¯ p's, K's, Λ's, etc. (generalized as X) can be
described by

ÑX = NX +
∑

i

Ni〈Xi〉. (8)

Because the Hagedorn states are relevant only near Tc, the contribution of the Hagedorn states
to the total particles numbers is only effected close to Tc.

Initial condition conˇgurations

α = λπ(t0) βi = λi(t0) φ = λXX̄(t0)

IC1 1 1 0
IC2 1 1 0.5
IC3 1.1 0.5 0
IC4 0.95 1.2 0
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2. RESULTS: EXPANSION

In order to include the cooling of the ˇreball, we need to ˇnd a relationship between the
temperature and the time, i.e., T (t). To do this, we apply a Bjorken expansion for which the
total entropy is held constant:

const = s(T )V (t) ∼ Sπ

Nπ

∫
dNπ

dy
dy, (9)

where s(T ) is the entropy density of the hadron gas with volume corrections. The total
number of pions in the 5% most central collisions, dNπ/dy, can be found from experimental

results in [35]. Thus, our total pion number is
∑
i

Nπi =
0.5∫

−0.5

(dNπ/dy)dy = 874. While for

a gas of noninteracting Bose gas of massless pions Sπ/Nπ = 3.6, we do have a mass for our
pions, so we must adjust Sπ/Nπ accordingly. In [36] it was shown that when the pions have
a mass, the ratio changes and, therefore, the entropy per pion is close to Sπ/Nπ ≈ 5.5, which
is what we use here.

The effective volume at midrapidity can be parametrized as a function of time. We do
this by using a Bjorken expansion and including accelerating radial �ow. The volume term
is then

V (t) = π ct

(
r0 + v0(t − t0) +

1
2
a0(t − t0)2

)2

, (10)

where the initial radius is r0(t0) = 7.1 fm for TH = 196 and the corresponding t
(196)
0 ≈

2 fm/c. For TH = 176 we allow for a longer expansion before the hadron gas phase is

reached and, thus, calculate the appropriate t
(176)
0 from the expansion starting at TH = 196,

which is t
(176)
0 ≈ 4 fm/c. We use v0 = 0.5 and a0 = 0.025 (see [12]).

Because the volume expansion depends on the entropy and the Hagedorn resonances
contribute strongly to the entropy only close to the critical temperature (see [12]), the effects
of the Hagedorn states must be taken into account with calculating the total particle yields
otherwise the yields do not increase with the temperature (see [12] for further discussion).
This is precisely what is done in Eqs. (7) and (8) because Hagedorn states also contribute
strongly to the π's and XX̄ pairs close to Tc.

Along with the expansion, we also must solve these rate equations, Eq. (3), numerically.
We start with various initial conditions as seen in table and the initial temperature is the
respective critical temperature and we stop at T = 110 MeV. A summary graph of all our
results is shown in Fig. 1. The black error bars cover the range of error for the experimental
data points from STAR and PHENIX. The points show the range in values for the initial
conditions at a ˇnal expansion point with a temperature T = 110 MeV. We see in our graph
that our freeze-out results match the experiments well and the initial conditions have little
effect on the ratios, which implies that information from the QGP regarding multiplicities is
washed out due to the rapid dynamics of Hagedorn states. A smaller βi slows the equilibrium
time slightly. However, as seen in Fig. 1, it still ˇts within the experimental values. Further
discussion of the effects of our chosen decay widths can be found in [12], as well as individual
results for those ratios within an expanding ˇreball. Furthermore, in [10] we showed that the
initial conditions play almost no role whatsoever in K/π+ and (B+B̄)/π+, thus strengthening
our argument that the dynamics are washed out following the QGP.
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Fig. 1. Plot of the various ratios including all initial conditions deˇned in table. The points show the
ratios at T = 110 MeV for the various initial conditions (circles are for TH = 176 MeV and diamonds

are for TH = 196 MeV). The experimental results for STAR and PHENIX are shown by the black

error bars

3. K+/π+ HORN

The K+/π+ ratio was ˇrst discussed in [24, 25] and has yet to be accurately explained
using thermal models. However, it has been suggested that Hagedorn states could possibly
be the explanation for the horn [26]. Using the Tch and μb given in [19], we calculate the
strange chemical potential, μs, with the conservation of strangeness∑

i

niSi∑
i

niBi
= 0; (11)

we are then able to calculate the corresponding K+/π+ at each experimental data point. At
present we do not conserve charge (or rather isospin), however, we are currently working on
a model that includes the electrical charge. We used data from RHIC, SPS, and AGS. The
citations for the experimental data can all be found in [18,19].

In Fig. 2 we have plotted the K+/π+ ratio versus
√

sNN . The experimental data points
are shown with the error bars, while our pure hadron gas is a dot. The two thermal model
results with Hagedorn states are the square and star, which represent TH = 196 MeV and
TH = 176 MeV, respectively. One can clearly see from the graph that there is almost no
difference between the three different results. This is not surprising because at lower beam
energies, the chemical freeze-out temperature is also lower. Around the peak of the horn the
chemical freeze-out temperature ranges from T = 124−160 MeV, which means that most
of the Hagedorn states have already died out even from the lower critical temperature of
TH = 176 MeV and have long since died out from TH = 196 MeV. One can clearly see from
the effects of the Hagedorn states on the total particle yields in Figs. 14 and 15 in [12] that
at T = 160 MeV the Hagedorn states have almost no effect on the particle yields regardless
of the TH . If one were to lower the critical temperature closer to T ≈ 160 MeV, then there
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Fig. 2. Thermal model results for the K+/π+ ratio at various energies without Hagedorn states and
with using two different Hagedorn temperatures: TH = 176 MeV and TH = 196 MeV. A comparison

is shown to the data from AGS, SPS, and RHIC

might be a stronger in�uence of the Hagedorn states on the horn. In recent lattice calculations
it has been suggested that the critical temperature might be lower [37], which we plan to look
at in the future. Additionally, in our upcoming paper we will reˇt the results using a thermal
model that conserves baryon number, charge, and strangeness.

CONCLUSION

In this paper we discussed the effects of Hagedorn states on the K+/π+ horn, which were
found to be negligible. Because the K+/π+ horn is measured at lower beam energies than
RHIC (and, hence, the typical temperatures are signiˇcantly below TH , i.e., Tch < 160 MeV
at the peak of the horn), it is not surprising that Hagedorn states do not play a role because
Hagedorn states are highly suppressed far from the critical temperature. It is interesting to
note that if recent lattice calculations are correct that exhibit a lower critical temperature
region [37], then possibly the Hagedorn states could effect the K+/π+ horn, which we will
attempt to study in a future paper. An attempt to look at Hagedorn states within this new
lattice framework was shown in [38]. However, the repulsive interactions were not taken into
account. As a future project we will create a thermal model that conserves baryon number,
strangeness, and charge that looks speciˇcally at the effects of Hagedorn states on thermal
ˇts for energy ranges at AGS, SPS, and RHIC.

The Hagedorn states provide a mechanism for quick chemical equilibration times. Our
model gives chemical equilibration times on the order of Δτ ≈ 1−3 fm/c. Furthermore,
the particle ratios obtained from decays of Hagedorn states match the experimental values
at RHIC very well, which leads to the conclusion that hadrons do not need to be born in
chemical equilibrium. Rather a scenario of hadrons that reach chemical freeze-out shortly
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after the critical temperature due to multimesonic reactions driven by Hagedorn states, is
entirely plausible. We have shown that both strange (Λ's and K's) and nonstrange (π's
and p's) hadrons can reach chemical equilibration by T = 160 MeV. Thus, it would be
interesting to implement Hagedorn states into a transport approach such as UrQMD [39]. Such
multiquark droplets are clearly recognized when looking at effective models of hadronization
like the chromodielectric model [40]. Moreover, even multistrange baryons such as Ω's can
reach chemical equilibrium in such a scenario. Our work indicates that the population and
repopulation of potential Hagedorn states close to phase boundary can be the key source
for a dynamical understanding of generating and chemically equilibrating the standard and
measured hadrons. Hagedorn states thus can provide a microscopic basis for understanding
hadronization of deconˇned matter.
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