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EFFECTIVE MODEL APPROACH
TO THE DENSE STATE OF QCD MATTER

K.Fukushima
Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, Japan

The ˇrst-principle approach to the dense state of QCD matter, i.e., the lattice-QCD simulation
at ˇnite baryon density, is not under theoretical control for the moment. The effective model study
based on QCD symmetries is a practical alternative. However, the model parameters that are ˇxed by
hadronic properties in the vacuum may have unknown dependence on the baryon chemical potential.
We propose a new prescription to constrain the effective model parameters by the matching condition
with the thermal Statistical Model. In the transitional region where thermal quantities blow up in the
Statistical Model, deconˇned quarks and gluons should smoothly take over the relevant degrees of
freedom from hadrons and resonances. We use the Polyakov-loop coupled NambuÄJona-Lasinio (PNJL)
model as an effective description in the quark side and show how the matching condition is satisˇed by
a simple anséatz on the Polyakov loop potential. Our results favor a phase diagram with the chiral phase
transition located at slightly higher temperature than deconˇnement which stays close to the chemical
freeze-out points.

PACS: 12.38.-t

INTRODUCTION

Exploration of the QCD (Quantum Chromodynamics) phase diagram, particularly toward a
higher baryon-density regime, is of increasing importance in both theoretical and experimental
sides [1]. From the theoretical point of view, so far, only the lattice-QCD simulation [1Ä4] is
the ˇrst-principle calculation of QCD at work to explore the phase transitions associated with
chiral restoration and quark deconˇnement. The Polyakov loop Φ and the chiral condensate
〈ψ̄ψ〉 are the (approximate) order parameters for quark deconˇnement and chiral restoration,
respectively, which are gauge-invariant and measurable on the lattice (though both require
renormalization corrections). The lattice-QCD simulation is, however, of limited practical
use and it works only when the baryon chemical potential μB is sufˇciently smaller than the
temperature T . For μB/T � 1 the notorious sign problem prevents us from extracting any
reliable information from the lattice-QCD data [1, 5].

The effective model study is an alternative and pragmatic approach toward the phase
diagram of dense QCD. Some may complain that the model study relies on not QCD directly
but on just a model. Results from the model analysis are, nevertheless, what we can get
at best for the moment. Even within the framework of the model study there are several
different attitudes. One way for theorists to go is to simplify QCD so that it can be solvable
without introducing further approximations. QCD-like models in lower dimensions (such as
the 't Hooft model) [6], the strong-coupling expansion in the lattice formulation [7], and the
large-Nc limit of QCD [8] are typical examples in this direction.
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Fig. 1. Schematic picture to show how the effective model is constructed as an interpolation between

the pure-gluonic theory (at mq � ΛQCD and T ∼ ΛQCD) and the chiral models (at mq � mphys and
T < fπ). The prediction from the interpolated effective model is done as an extrapolation toward

some new axis such as the baryon chemical potential, whose consistency with available data must be

eventually checked

Here, we shall take another way to proceed into the phase structure. The idea is the
following (as schematically illustrated in Fig. 1):

1. Construct a model that works for inˇnitely heavy quarks (mq → ∞) in such a way that
the model respects the global symmetry (center symmetry) in the ˇnite-T pure gluonic sector.

2. Choose a chiral model based on the global symmetry (chiral symmetry) for massless
quarks (mq → 0) in such a way that the spontaneous breakdown of chiral symmetry is
correctly described.

3. Interpolate a ˇnite-mq model between the above-mentioned two. It is minimally
required that the inˇnite mq limit and the vanishing mq limit should recover the above
models, respectively.

4. Check if the interpolation is properly chosen or not by comparing the model outputs to
available lattice-QCD and/or phenomenological data.

Along this line the model is not necessarily solvable and usually needs some additional
approximations. Nevertheless, if item 4 above is taken into account very carefully, one may
claim that one is dealing with a phase diagram of QCD, not of QCD-like models, in a sense
that the situation one is handling is not (1 + 1) dimensions, not g2 → ∞, and not Nc → ∞.
Sometimes, to this aim toward the QCD phase diagram, one has to face ®dirty¯ businesses;
it is often the case that the phase structure might be signiˇcantly changed by uncontrollable
model parameters, which one can take in twofold ways Å pessimists would be disappointed
and say that the model cannot predict anything, and on the other hand, optimists would be
delighted and say that the model has clariˇed a nontrivial role played by the model parameter
in understanding the phase diagram.

Let us brie�y explain how to implement items 1 and 2. In the absence of particles
transforming in the color fundamental representation, the genuine gauge symmetry possessed
by the pure gluonic theory is SU(Nc)/Z(Nc). If one performs the Z(Nc) transformation on
the gauge links, the ˇelds are shifted typically by 2π/(Nca), where a is a characteristic scale
(lattice spacing). The perturbation theory breaks this Z(Nc) symmetry but this is practically
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no problem because the shift goes to inˇnity as a → 0. Furthermore, one can generalize
a similar procedure onto not the individual gauge link but a product of the Nτ gauge links
along a ˇnite extent. Then, the ˇelds are shifted by 2π/(NcNτa) = 2πT/Nc, which remains
sensible in the a → 0 limit. In this way the Polyakov loop matrix L is deˇned, that is,
L =

∏
τ

Uτ and the Z(Nc) symmetry with respect to L is called ®center symmetry¯ which

breaks in the perturbation theory [9].

The expectation value of the traced Polyakov loop, Φ = 〈tr L〉, is the order parameter
for the quark deconˇnement phase transition in the pure gluonic system. The most intuitive
way to understand this comes from the property that Φ is related to the free energy gain of a
static single quark placed in a hot gluonic medium as Φ = exp [−fq/T ]. Therefore, Φ = 0
implies fq = ∞, meaning that quarks never show up (conˇnement). Once Φ becomes
nonvanishing, fq should take a ˇnite value and thermal quark excitations are permitted. The
effective action for L or Φ has been computed perturbatively [10] but in order to discuss the
phase transition from center symmetric to center broken phases, one needs a nonperturbative
evaluation of the effective action.

Concerning the chiral dynamics, the model choice could be anything as long as it can
correctly describe the dynamical chiral symmetry breaking pattern. Then, the chiral proper-
ties are almost automatically derived from the so-called low-energy (soft-pion) theorems. Of
course, some details of the phase transition such as the critical temperature and the thermody-
namic quantities depend on the choice of the chiral model. Because we are interested in the
phase transition associated with restoration of chiral symmetry, the nonlinear representation
is inappropriate which is based on the symmetry breaking.

The order parameter for the chiral phase transition is given by the chiral condensate 〈ψ̄ψ〉.
This is simple to understand Å the quark mass mq and an operator ψ̄ψ are conjugate to
each other, so mq is a source to generate 〈ψ̄ψ〉 and in turn 〈ψ̄ψ〉 is a source to generate the
dynamical mass that breaks chiral symmetry. There are well-established chiral models such
as the NambuÄJona-Lasinio (NJL) model and the quarkÄmeson (QM) model.

The interpolation at item 3 is the main problem. There is no theoretical justiˇcation at
all for the existence of reasonable interpolation. We can judge how good or how bad it is
only through the comparison at item 4. At this point it is already obvious that the Polyakov
loop model is not sufˇcient to access the realistic QCD phase transition, though it may
capture interesting phenomenological consequences [11]. In a similar sense conventional chiral
models are not good enough to draw the QCD phase diagram even though they are usually
designed to be a good description of hadronic properties in the vacuum [12]. To address
the QCD phase transitions, the ˇrst test for the validity of the model description should be
the consistency check with the known properties available from the lattice-QCD simulation
at T �= 0 and μB = 0; the ˇnite-T behavior of two order parameters, Φ and 〈ψ̄ψ〉, and
the thermodynamic quantities such as the pressure, the internal energy density, the entropy
density, etc.

Along this line the Polyakov-loop coupled chiral models such as the PNJL (PolyakovÄ
NJL) [13, 14] and the PQM (Polyakov-QM) [15, 16] models are quite successful to treat
both order parameters on the equal footing. Besides, the Polyakov loop potential U [Φ] is
determined by the lattice data in the pure gluonic theory, namely, by the Polyakov loop Φ(T )
and the pressure p(T ) as functions of T . This means that the PNJL and PQM models include
the pressure contribution from gluons as well as quarks, so that the models are able to deal
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with the full thermodynamics which are to be compared with the full lattice-QCD simulation.
The important point is that the dynamics of transverse gluons AT

i is also under the control of
the deconˇnement order parameter Φ and thus is to be encompassed in the parametrization of
the Polyakov loop potential U [Φ], while the Polyakov loop itself is expressed in terms of the
longitudinal gluon A4.

Here we would like to emphasize that the success of the PNJL and PQM models is
far beyond the ˇtting physics. Model parameters are ˇxed separately in two regions, i.e.,
in the pure-gluonic theory (at mq � ΛQCD and T ∼ ΛQCD) and in the chiral models (at
mq � mphys and T < fπ). The interpolation procedure does not involve any further ˇtting.
It is a highly nontrivial discovery that there exists a reasonable way to make an interpolation
fairly consistent with the full lattice-QCD data.

The next step one should think of is the prediction from the model. This is done by
an extrapolation of the model toward some new axis such as the baryon chemical potential.
By now there are different versions of the ®QCD phase diagram¯ drawn in this way by
means of the PNJL and PQM models with different parameter tunings [13Ä17]. If we go
into small details, there are many places where we can talk about the difference. Here we
shall limit ourselves to look at the difference mainly in the behavior of the Polyakov loop
or the deconˇnement (crossover) transition line. Some of the model results may be close to
the true answer, and some may not. We must have a guiding principle to select out which
is preferred and which is not. The available and reliable data at ˇnite baryon density is,
however, extremely limited. In what follows we shall elucidate the idea and ˇnd that the
naive extrapolation from the PNJL and PQM models is not acceptable. To see this, we will
explain the results from the thermal Statistical Model in the next section.

1. THERMODYNAMICS FROM THE STATISTICAL MODEL

Regarding the QCD phase diagram at ˇnite T and μB useful information is quite limited.
The lattice-QCD at ˇnite density is being improved, but still different techniques to circumvent
the sign problem lead to different results. Only the chemical freeze-out points in the heavy-
ion collisions are experimental hints about the phase diagram. Although the freeze-out points
shape an intriguing curve on the μBÄT plane, as plotted by error-bar dots in Fig. 2, one
should carefully interpret it.

The freeze-out points are not the raw experimental data but an interpretation through the
thermal Statistical Model [18, 19]. In this model the grand canonical partition function is
given by contributions from the noninteracting gas of hadrons and resonances. In view of the
fact that the Statistical Model is such successful to ˇt various particle ratios with μB and T
only (μQ, μs, and μc are determined by the collision condition), it should be legitimate to
take the freeze-out points for experimental data, which in turn validates the Statistical Model
(though why it works lacks for an explanation from QCD).

Let us proceed by further accepting that the Statistical Model is a valid description of the
state of matter until the freeze-out curve or even slightly above. It is then a straightforward
application of the Statistical Model to estimate thermodynamic quantities such as the pres-
sure p, the entropy density s, the baryon number density n, etc. We here utilize the open
code THERMUS ver.2.1 to calculate s and n at various T and μB [20]. From now on the
Statistical Model analysis speciˇcally means the use of THERMUS.
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Fig. 2. Chemical freeze-out points taken from [18, 19]. The red and blue (upper and lower) bands

represent the regions where the entropy density s and the baryon number density n, respectively,
increase quickly from 0.3 to 0.8 in the unit of free quarkÄgluon values, sfree and nfree (see Eq. (1))

Figure 2 shows the chemical freeze-out points taken from [18, 19], on which s and n are
overlaid. For convenience we normalized these quantities by

sfree =
{

(N2
c − 1) +

7
4
NcNf

}
4π2

45
T 3 +

NcNf

3
μ2

qT,

nfree = Nf

(
μ3

q

3π2
+

μqT
2

3

)
.

(1)

These are the entropy density and the baryon number density of free massless N2
c − 1 gluons

and NcNf quarks.
Here we note that, in drawing Fig. 2, we have intentionally relaxed the neutrality conditions

for electric charge and heavy �avors and simply set μQ = μs = μc = 0. We have done
so in order to make it possible to compare the results from the Statistical Model to the
chiral effective model in later discussions. (We note that one can force the chiral model
to satisfy neutrality but it would be technically involved [21].) Nevertheless, we would
emphasize that the neutrality conditions have only minor effects on the bulk thermodynamics
and make only small differences in any case. We should also mention that we used Eq. (1)
with Nc = Nf = 3. The choice of sfree and nfree (and relevant Nf ) is arbitrary and the
following discussions do not rely on this particular choice, for we will use sfree and nfree just
as common denominators to display the Statistical Model results and the PNJL model results.

The Statistical Model cannot tell us about the QCD phase transitions. Still, Fig. 2 is already
suggestive enough. We can clearly see the thermodynamic quantities from the Statistical
Model blowing up in a relatively narrow region. The red and blue (upper and lower) bands
indicate the regions where s/sfree and n/nfree, respectively, grow quickly from 0.3 to 0.8. In
Hagedorn's picture [22] this rapid and simultaneous rise in s and n has a natural interpretation
as the Hagedorn limiting temperature above which color degrees of freedom are liberated,
i.e., color deconˇnement.
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The idea here is to make use of the thermodynamics from the Statistical Model as shown
in Fig. 2 to judge if the Polyakov-loop coupled chiral models work ˇne at ˇnite density. We
also make an important remark that this idea can be effective only up to about μB � 400 ∼
600 MeV because the chemical freeze-out points start dropping down steeply in this density
region, which suggests an onset of some new form of matter; an example of such possibilities
is quarkyonic matter [23].

2. THERMODYNAMICS FROM THE PNJL MODEL

Figure 2 is useful to make a guesstimate about the deconˇnement boundary, but we can
deduce no information about the chiral property. This is because the thermal Statistical Model
needs no medium modiˇcation driven by chiral restoration. So, to address the QCD phase
transitions and associated boundaries, we must ˇnd a way to connect the thermodynamics
in Fig. 2 to the order parameters Φ and 〈ψ̄ψ〉. Here let us go into details of the chiral
effective model.

It is crucial to adopt the Polyakov-loop coupled model here because the entropy density
should contain contributions from gluons which are taken care of by the Polyakov loop
potential U [Φ]. The PNJL model that we use below is deˇned with the following potential:

U [Φ, Φ̄] = T 4

{
−a(T )

2
Φ̄Φ + b(T ) ln

[
1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2

]}
(2)

with a(T ) = a0 +a1(T0/T )+a2(T0/T )2 and b(T ) = b3(T0/T )3. There are thus ˇve parame-
ters one out of which is constrained by the StefanÄBoltzmann limit, i.e., U → −(8π2/45)T 4

at Φ = Φ̄ = 1 in the T → ∞ limit. These parameters are ˇxed by the pure-gluonic lat-
tice data as a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 = −1.75 [14], and T0 = 270 MeV
from the deconˇnement temperature of ˇrst order in the pure-gluonic theory [24]. It is im-
portant to note that only T0 is a dimensional parameter, so that the energy scale is set by
this T0 alone.

In addition, the NJL sector of the PNJL model has ˇve more parameters in the three-�avor
case [13] appearing in the mean-ˇeld thermodynamic potential:

ΩNJL = gS

(
〈ūu〉2 + 〈d̄d〉2 + 〈s̄s〉2

)
+ 4gD〈ūu〉〈d̄d〉〈s̄s〉 − 2Nc

∑
i

Λ∫
d3p

(2π)3
εi(p)−

− 2T
∑

i

∫
d3p

(2π)3

{
ln det

[
1 + L e−(εi(p)−μq)/T

]
+ ln det

[
1 + L† e−(εi(p)+μq)/T

]}
, (3)

where the energy dispersion relation εi(p) depends on the �avor index i as εi(p)2 = p2 +M2
i

and the constituent quark masses are Mu = mu − 2gS〈ūu〉 − 2gD〈d̄d〉〈s̄s〉 and so on. The
model parameters are then the light and heavy quark masses mud and ms, the momentum
cutoff Λ, the four-fermionic interaction strength gS , and the U(1)A-breaking six-fermionic
interaction strength gD, which are all ˇxed by the pion mass mπ, the kaon mass mK , the
eta-prime mass mη′ , the pion decay constant fπ, and the chiral condensate 〈ψ̄ψ〉 [12].

In the presence of dynamical quarks, if we keep using the pure-gluonic critical temper-
ature T0 = 270 MeV, the simultaneous crossover temperature of deconˇnement and chiral
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Fig. 3. Entropy density normalized by sfree (from 0.3 to 0.8) in the Statistical Model (bottom band with
red color; same as shown in Fig. 2) and that in the PNJL model with a choice T0 = 200 MeV (top band

with green color). The blue band between two represents the results with the anséatz (5)

restoration becomes over 200 MeV, which is too high as compared to the lattice-QCD value.
It is nicely argued in [15] that the back reaction from quark loops affects the mass scale T0

which changes from T0 = 270 MeV for Nf = 0 down to T0 = 208 MeV for Nf = 2 and
T0 = 187 MeV for Nf = 2 + 1 [15]. Here we choose to use T0 = 200 MeV for calculations
at μB = 0 throughout.

In Fig. 3 we show the entropy density calculated in the mean-ˇeld PNJL model with
T0 = 200 MeV ˇxed, in the same way as in the Statistical Model drawn in Fig. 2. The bottom
(top) band in red (green) color is the result from the Statistical Model (PNJL model). From
the ˇgure it is obvious that the PNJL model is not consistent with the Statistical Model even at
the qualitative level. With the properly scaled T0 from 270 MeV down to 200 MeV, the blow-
up behavior in s from the Statistical Model can be smoothly connected to the PNJL model
description only in the region up to μB � 400 MeV. The curvature of the band as a function
of μB is signiˇcantly different; the PNJL model result is too �at horizontally and the green
band eventually takes apart from the red region where the Statistical Model breaks down.

3. MATCHING PRESCRIPTION

Such a manifest discrepancy from the Statistical Model is a critical drawback of the PNJL
model. The situation is not changed even in the PQM model as long as T0 is a constant.
To make the entropy density at μB � 400 MeV get saturated earlier as is the case in the
Statistical Model, quark degrees of freedom must be released at smaller temperature than
predicted by the PNJL model.

One can imagine how this drawback occurs in the PNJL model study; the energy scale
in the Polyakov loop potential is speciˇed by the dimensional parameter T0 that may differ
depending on the effects of T and μB in the quark sector. We have shifted T0 from 270 MeV
down to 200 MeV, through which we have incorporated the scale change induced by Nf

quarks at ˇnite T . In this way we may well consider that T0 should decrease with increas-
ing μB as pointed out in [15].
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Our idea proposed here is to make use of Fig. 3 to ˇx T0(μB) for consistency with
phenomenology. One can pick up other thermodynamic quantities than the entropy density
like the internal energy density, which would anyway make little change in the ˇnal result.
Besides, the choice of the entropy density is most natural because it counts the effective
degrees of freedom and thus is a sensitive quantity to probe deconˇnement. In [18] the
freeze-out curve is parametrized as

Tf (μB) = a − b μ2
B − c μ4

B (4)

with the ˇtting result a = 166(2) MeV, b = 1.39(16) · 10−4 MeV−1, and c = 5.3(21) ×
10−11 MeV−3. Because the behavior of the entropy density must be dominantly controlled
by deconˇnement, we postulate that the change in T0 is to be correlated with Tf (μB). We
see that the freeze-out points and the entropy band in Fig. 2 have roughly same curvature
indeed. Let us simply use same b and make an anséatz as

T0(μB)
T0

= 1 − (bT0)
(

μB

T0

)2

= 1 − 2.78 · 10−2

(
μB

T0

)2

, (5)

which yields the blue band in the middle of Fig. 3. (To prevent unphysical negative T0

for large μB , we set a threshold at 10 MeV so that T0 � 10 MeV. Hence, the results at
T < 10 MeV are not meaningful.) We see at a glance that the results from this modiˇed
PNJL model have a reasonable overlap with the Statistical Model results in the whole density
region as plotted.

At this point one might have thought of several questions. First, the anséatz (5) might
look ad hoc, but we point out that our choice happens to be very close to the indepen-
dent argument in [15], in which the μB-dependence has been estimated from the running
coupling constant as T0(μB) = Tτ e−1/(α0b(μB)) which is expanded to be T0(μB)/T0 	
1−2.1 · 10−2(μB/T0)2 + . . . In the perturbative manner one can also understand how the μB-
dependence enters the Polyakov loop potential which consists of the closed loop of dressed
gluon propagator. The quarkÄantiquark polarization diagrams inserted in the gluon propagator
generate the back reaction dependent on μB . There is another phenomenological anséatz for
the μB-dependent U [Φ] [26]. Second, one might wonder if the energy scale in the quark (NJL)
sector should be modiˇed as well. Such a modiˇcation is not necessary, however. This is
because, as we have mentioned, the Statistical Model requires no modiˇcation associated with
the chiral dynamics, which strongly implies that we do not have to introduce μB-dependent
changes in the NJL parameters. Third, the anséatz (5) has terms only up to the quadratic
order. This means that we cannot go to high-density regions with μB � T0. This is indeed
so and we have actually truncated higher-order terms in Eq. (5). In any case, as we have
noted before, the idea of the entropy matching holds only up to μB � 400 ∼ 600 MeV, and
we should not take the results in the high-density region seriously.

4. PHASE DIAGRAM

Now we get ready to proceed to the possible QCD phase diagram that is fully consistent
with the Statistical Model thermodynamics in Fig. 2. Using the standard computational pro-
cedure of the mean-ˇeld PNJL model, we can solve Φ and 〈ψ̄ψ〉 as functions of T and μB ,
from which the phase boundaries of deconˇnement and chiral restoration are located.
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Fig. 4. A ˇgure taken from [27]. Phase boundaries associated with deconˇnement (blue band) and
chiral restoration (red band). Each band represents a region where the (normalized) order parameter

develops from 0.4 to 0.6

Figure 4 (the central result of [27]) shows the phase diagram from the modiˇed PNJL
model. The blue (red) band is a region where the Polyakov loop (normalized light-quark
chiral condensate) increases from 0.4 to 0.6. In contrast to the old PNJL model, the new
results indicate that the chiral phase transition is almost parallel to and entirely above the
deconˇnement, which agrees with the situation considered phenomenologically in [25]. We
have found the critical point [28,29] at (μB, T ) 	 (45 MeV, 330 MeV), but should not take
it seriously since its location is beyond the validity region of the current prescription.

CONCLUSIONS

It is an intriguing observation that the chiral phase transition occurs later than deconˇne-
ment. This is quite consistent with the Statistical Model assumption. In the Statistical Model
the hadron masses are just the vacuum values and any hadron mass/width modiˇcations are
not considered, which would be a reasonable treatment only if the chiral phase transition
is separated above the Hagedorn temperature. Under such a phase structure, besides, our
assumption of neglecting μB-dependence in the NJL-model parameters turns out to be ac-
ceptable in a similar sense as the Statistical Model treatment. This can be understood from
the fact that the NJL part yields the hadron masses in the vacuum which are intact in the
Statistical Model.

The failure of the standard PNJL model is attributed to baryonic degrees of freedom which
are missing; the singlet part of the thermal excitation in the PNJL model can be translated
into an expression in terms of baryons as

∫
d3k

(2π)3
exp

⎡
⎣−Nc(

√
k2 + M2

q − μq)

T

⎤
⎦ =

1
N3

c

∫
d3k′

(2π)3
exp

⎡
⎣−

√
k′2 + M2

N − μB

T

⎤
⎦, (6)
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where MN = NcMq , μB = Ncμq , and k′ = Nck with which a factor 1/N3
c appears

from the integration measure. Therefore, the PNJL model signiˇcantly underestimates the
baryonic excitations by 1/N3

c . Hence, one may say that a modiˇcation made in U [Φ] by
hand stems, in principle, from conˇnement effects, which can be presumably parametrized by
the Polyakov loop. This idea is reminiscent of the treatment of transverse gluons. It is an
important question how our phenomenological input (5) is validated/invalidated from the ˇrst-
principle QCD calculation. This may be answered by future developments in the functional
renormalization group method [30].
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