ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

ПОИСК И ИССЛЕДОВАНИЕ МАЛОМАССОВЫХ СКАЛЯРНЫХ МЕЗОНОВ В РЕАКЦИИ $np \rightarrow np\pi^+\pi^-$ ПРИ ИМПУЛЬСЕ НЕЙТРОННОГО ПУЧКА

 $P_n = (5,20 \pm 0,12)$ ГэВ/с

Ю. А. Троян, С. Г. Аракелян, А. В. Беляев, А. П. Иерусалимов, Е. Б. Плеханов, А. Ю. Троян

Объединенный институт ядерных исследований, Дубна

Приведены результаты по поиску и исследованию эффектов в системе $\pi^+\pi^-$ в реакции $np \rightarrow np\pi^+\pi^-$ при импульсе квазимонохроматических нейтронов $P_n = (5,20 \pm 0,12)$ ГэВ/с с использованием данных, полученных при облучении однометровой водородной пузырьковой камеры ЛВЭ ОИЯИ. После дополнительного отбора событий с протонами, летящими в переднюю полусферу в общей с. ц. м. (сов $\theta_p^* > 0$), в распределении эффективных масс $\pi^+\pi^-$ -комбинаций обнаружено девять особенностей с массами (350 ± 3), (408 ± 3), (489 ± 3), (579 ± 5), (676 ± 7), (762 ± 11), (878 ± 7), (1036 ± 13), (1170 ± 11) МэВ/с², ширины которых не превышают несколько десятков МэВ/с². Произведена оценка спинов резонансов, и определены их другие квантовые числа. Все особенности характеризуются одним и тем же набором квантовых чисел $I^G(J^{PC}) = 0^+(0^{++})$. Исследована последовательность скаляр-изоскалярных резонансов от их номера. Эта зависимость охватывает не только резонансные эффекты, представленные в данной работе, но и все без исключения особенности, отмеченные в таблицах мировых данных как имеющие квантовые числа $f_0(\sigma_0)$ -мезонов.

The results of search and study of resonance effects in the system of $\pi^+\pi^-$ from the reaction $np \to np\pi^+\pi^-$ at the impulse of the quasimonochromatic neutrons $P_n = (5.20 \pm 0.12)$ GeV/c from the data obtained in an exposure of the 1 m hydrogen bubble chamber of LHE (JINR) are presented. After supplementary sorting out the events where a secondary proton flies forward in the general c.m.s. of reaction $(\cos \theta_p^* > 0)$ in the effective mass spectrum of $\pi^+\pi^-$ -combinations, there were nine peculiarities found out at masses (350 ± 3) , (408 ± 3) , (489 ± 3) , (579 ± 5) , (676 ± 7) , (762 ± 11) , (878 ± 7) , (1036 ± 13) , (1170 ± 11) MeV/c² with experimental widths not more than several tens of MeV/c². The direct measurement of the spin of resonances was carried out. Also other quantum numbers were obtained. All of these peculiarities have a similar set of quantum numbers $I^G(J^{PC}) = 0^+(0^{++})$. The sequence of scalar-isoscalar resonances $f_0(\sigma_0)$ with masses in the range of $M \leq 1200$ MeV/c² was explored. The phenomenological dependence for the resonance mass on its number was found. This dependence covered not only resonances shown in this paper but also all those which are present in PDG tables with quantum numbers of $f_0(\sigma_0)$ -mesons.

PACS: 13.75.Cs

введение

Работа посвящена поиску и изучению маломассовых ($M \leq 1200 \text{ M} \cdot \text{B}/c^2$) резонансов в системе $\pi^+\pi^-$. Их существование может прояснить свойства скалярных мезонов (так называемых σ_0 -мезонов), исследование которых важно как с точки зрения изучения меха-

78 Троян Ю.А. и др.

низма реализации киральной симметрии и связанного с этим механизма деконфайнмента адронов, так и с точки зрения исследования притягивающей части нуклон-нуклонного потенциала [1].

Как подчеркнуто в работе [2], легкие скалярные мезоны составляют хиггсовский сектор сильных взаимодействий, обеспечивающий конечные массы всех легких адронов разных сортов (с одновременным исчезновением массы у π -мезона).

Для прояснения этих принципиальных вопросов необходимо тщательное изучение свойств σ_0 -мезонов, а также определение их структуры.

Этим вопросам посвящено множество публикаций. Мы отсылаем читателя к обзорной статье из PDG [3a]. Однако обзор теоретических работ [3a] касается кварк-глюонной картины строения скалярных мезонов. В них σ_0 -мезоны рассматриваются как построенные из двух или четырех кварков, как глюболы, как объединение кварков в дикварки и т. д.

Существуют и другие подходы к проблеме. Это предсказания последовательности и свойств резонансов с точки зрения многомерного пространства [4], предсказания последовательности резонансов, полученные из формул квазиклассического квантования [5], исследование свойств инстантонного вакуума [6].

Такое многообразие теоретических подходов говорит о том, что понимания свойств и структуры σ_0 -мезонов пока не существует.

Связано это, в первую очередь, с отсутствием экспериментальных данных в районе масс, меньших 1 ГэВ/ c^2 . Вопрос приобретает еще большую актуальность в связи с планированием исследований смешанной фазы в ЛФВЭ ОИЯИ [7], планированием и проведением таких исследований на других ускорителях мира, в том числе на установке HADES [8], где может быть набрана большая статистика.

Маломассовый σ_0 -мезон может явиться мощным средством изучения новых состояний вещества. Некоторые предсказания об изменении свойств σ_0 -мезонов в переходных режимах получены в статье [9].

1. РЕАКЦИЯ $np \to np\pi^+\pi^-$ ПРИ $P_n = (5,20 \pm 0,12)$ ГэВ/с

Данная статья продолжает серию работ по исследованию резонансов в системе $\pi^+\pi^$ в реакции $np \to np\pi^+\pi^-$ при различных импульсах налетающего нейтрона [10–12].

В работе [12] описано получение и проведение до мишени нейтронного пучка, приведены методические приемы выделения каналов реакций, параметры пучков и вторичных треков, подробно описано определение квантовых чисел, правила получения полиномиальных фоновых кривых, представлена применяемая OPER-модель, а также даны ссылки на соответствующую литературу.

Приводимые ниже данные — результат облучения однометровой водородной пузырьковой камеры ЛВЭ ОИЯИ пучком квазимонохроматических нейтронов при $P_n = (5,20 \pm 0,12)$ ГэВ/с [12].

В данной работе исследованы события из реакции $np \to np\pi^+\pi^-$ при $P_n = (5,20 \pm 0,12)$ ГэВ/с, выделенной с использованием процедуры, основанной на анализе величины χ^2 для каждого события (метод χ^2), с дополнительным условием $\chi^2 < 1,5$. Проведено обрезание по восстановленной недостающей массе вторичного нейтрона.

Поиск и исследование маломассовых скалярных мезонов в реакции $np \rightarrow np\pi^+\pi^-$ 79

Рис. 1. *а*) Распределение χ^2 для реакции $np \to np\pi^+\pi^-$ при $P_n = 5,20$ ГэВ/с. Гистограмма — экспериментальное распределение; кривая — стандартное распределение χ^2 с одной степенью свободы. *б*) Распределение недостающих масс в событиях, отобранных с $\chi^2 < 1,5$ для реакции $np \to np\pi^+\pi^-$ при $P_n = 5,20$ ГэВ/с. Отмечены положения максимума и ширина на полувысоте

Распределение значений χ^2 для событий указанной реакции представлено на рис. 1, *a*. Там же приведено стандартное распределение χ^2 с одной степенью свободы. Распределение значений χ^2 для событий реакции превышает, хоть и незначительно, стандартное распределение χ^2 с одной степенью свободы, начиная со значения $\chi^2 \ge 1,5$. Это может означать, что в группе событий с $\chi^2 \ge 1,5$ могут присутствовать некорректно отнесенные к исследуемой реакции. Группа событий с $\chi^2 \ge 1,5$ требует дальнейшего исследования. Поэтому в данной работе введено ограничение — используются события с $\chi^2 < 1,5$ (закрашенная область на рис. 1, *a*).

На рис. 1, δ показано распределение недостающих масс в событиях с $\chi^2 < 1.5$. Видно, что оно имеет максимум при массе нейтрона с точностью 0,1 МэВ/ c^2 , симметрично относительно центрального значения и имеет полную ширину на полувысоте, равную 20 МэВ/ c^2 . Для большей уверенности в чистоте материала проведено обрезание по восстановленной недостающей массе вторичного нейтрона (закрашенная область на рис. 1, δ).

Соответствующие импульсные и угловые распределения вторичных нейтронов, протонов, π^+ - и π^- -мезонов для отобранных событий удовлетворяют предсказаниям изотопической инвариантности в данной реакции.

После применения всех обрезающих процедур отобрано 25650 случаев реакции $np \rightarrow np\pi^+\pi^-$ при $P_n = (5,20 \pm 0,12)$ ГэВ/с, полученных в условиях 4π -геометрии. Отметим, что примесь от других каналов реакций практически отсутствует.

Ранее мы уже исследовали реакцию $np \rightarrow np\pi^+\pi^-$ [13] и показали, что в ней главным является механизм однопионного обмена, который приводит к множественному рождению Δ^{++} - и Δ^- -изобар (до 70 % сечения реакции). Основной вклад однопионный обмен дает в случаи, когда нейтрон летит в переднюю полусферу в с. ц. м. реакции.

80 Троян Ю.А. и др.

На рис. 2 представлено распределение эффективных масс $\pi^+\pi^-$ для случаев с $\cos \theta_n^* > 0$. Никаких особенностей не видно. Полином 9-й степени (сплошная кривая) описывает распределение с $\chi^2 = 1,02 \pm 0,15$ и $\sqrt{D} = 1,51 \pm 0,11$.

На распределение на рис. 2 наложена также фоновая кривая, полученная с помощью OPER-модели [12] (штриховая кривая). Эта кривая описывает распределение с $\overline{\chi^2} = 1.07 \pm 0.15$ и $\sqrt{D} = 1.60 \pm 0.11$.

На рис. 3 показано распределение эффективных масс $\pi^+\pi^-$ для случаев с $\cos \theta_p^* > 0$, т. е. для случаев, когда в переднюю полусферу в общей с. ц. м. летит вторичный протон.

Рис. 2. Распределение эффективных масс $\pi^+\pi^-$ для случаев с соз $\theta_n^* > 0$. Сплошная линия — сумма полиномов Лежандра до девятой степени включительно, штриховая — фоновая кривая, полученная с помощью ОРЕК-модели

Рис. 3. Распределение эффективных масс $\pi^+\pi^-$. Сплошная тонкая линия — полиномиальное описание внерезонансных (фоновых) областей; сплошная толстая линия — описание распределения полиномиальной фоновой кривой и девятью резонансными кривыми, взятыми в форме Брейта– Вигнера; штриховая линия — фоновая кривая, полученная с помощью OPER-модели

Полный вклад Δ^{++} - и Δ^{-} -изобар в такие случаи не превышает 17 % (расчеты по OPERмодели [13]), и, следовательно, сильно снижается фон для исследуемых эффектов.

Видно сильное отличие распределения на рис. 3 от распределения на рис. 2.

После отбора событий с $\cos\,\theta_p^*>0$ осталось 7647 случаев.

Распределение на рис. 3 описывалось суммой полиномов Лежандра до девятой степени включительно и девятью резонансными кривыми, взятыми в форме Брейта–Вигнера (сплошная толстая кривая) так, как изложено в [12]. Стрелками на графике отмечены подобранные фитом центральные значения масс.

Фон (сплошная тонкая кривая) составляет 89% всего распределения и описывается с $\overline{\chi^2} = 0.97 \pm 0.24$ и $\sqrt{D} = 1.36 \pm 0.17$. Эта же фоновая кривая, нормированная на 100% событий в графике, описывает распределение с $\overline{\chi^2} = 1.26 \pm 0.15$ и $\sqrt{D} = 1.59 \pm 0.11$ (доверительный уровень 9%).

На распределение на рис. 3 наложена еще одна фоновая кривая, полученная с помощью OPER-модели (штриховая кривая). Эта кривая описывает фон с $\overline{\chi^2} = 0.95 \pm 0.24$ и $\sqrt{D} = 1.45 \pm 0.17$, а нормированная на 100 % событий в графике описывает распределение с $\overline{\chi^2} = 1.24 \pm 0.15$ и $\sqrt{D} = 1.87 \pm 0.11$ (доверительный уровень 11%).

Результаты аппроксимации представлены в табл. 1.

Таблица 1. Результаты аппроксимации распределения, представленного на рис. 3

n	$M_{\rm pe_3} \pm \Delta M_{\rm pe_3}$, МэВ/ c^2	$\Gamma_{\rm pes}^{ m skcn} \pm \Delta \Gamma_{\rm pes}^{ m skcn}, { m M}$ эВ/ c^2	$\Gamma_{\rm pe3}^{\rm mct}\pm\Delta\Gamma_{\rm pe3}^{\rm mct},{\rm M}$ эВ/ c^2	σ , мкб	S. D.
1	350 ± 3	11 ± 8	7 ± 9	12 ± 6	3,0
2	408 ± 3	11 ± 8	7 ± 9	12 ± 6	3,5
3	489 ± 3	20 ± 10	16 ± 11	20 ± 8	4,0
4	579 ± 5	17 ± 14	7 ± 14	18 ± 8	3,8
5	676 ± 7	11 ± 14	16 ± 15	11 ± 6	3,0
6	762 ± 11	53 ± 33	48 ± 33	26 ± 8	6,1
7	878 ± 7	30 ± 14	11 ± 16	11 ± 5	3,6
8	1036 ± 13	61 ± 30	50 ± 33	15 ± 5	5,1
9	1170 ± 11	65 ± 33	51 ± 35	11 ± 4	5,8

В таблице приведены $M_{\rm pe3}$ и $\Gamma_{\rm pe3}^{\rm эксп}$ — экспериментальные (определенные фитом) значения масс и ширин резонансных эффектов, $\Gamma_{\rm pe3}^{\rm ucr}$ — истинные значения ширин резонансных эффектов, полученные с учетом разрешения по массам [12], σ — сечения резонансов, вычисленные с учетом сечения всего канала реакции $np \rightarrow np\pi^+\pi^-$ при $P_n = (5,20\pm0,12)$ ГэВ/с ($\sigma = (6,22\pm0,28)$ мб) [14], и S.D. — число стандартных отклонений эффектов от фона (S.D.= $N_{\rm pe3}/N_{\rm фон}$). Ошибки в приведенных значениях масс, ширин и сечений резонансов являются комбинацией методических и статистических ошибок в квадратурах.

2. КВАНТОВЫЕ ЧИСЛА РЕЗОНАНСОВ

Значения квантовых чисел резонансов — *I*, *J*, *G*, *P*, *C* — были получены в соответствии с методикой, приведенной в [12].

Все результирующие распределения для исследуемых особенностей, построенные для оценки спинов, изотропны, что согласуется с результатами предыдущих исследований [10, 11]. Характерные распределения для каждого резонанса представлены на рис. 4. Для всех наблюдаемых особенностей, с большой вероятностью, $J_{pe3} = 0$.

Рис. 4. Гистограммы с величинами ошибок — угловое распределение π^+ -мезонов из области резонанса в спиральной системе координат с вычтенным угловым распределением π^+ -мезонов из области фона для резонансов при массах $M_{\pi^+\pi^-}$: *a*) 350 МэВ/ c^2 ; *b*) 408 МэВ/ c^2 ; *b*) 489 МэВ/ c^2 ; *b*) 579 МэВ/ c^2 ; *b*) 676 МэВ/ c^2 ; *e*) 762 МэВ/ c^2 ; *w*) 878 МэВ/ c^2 ; *s*) 1036 МэВ/ c^2 ; *u*) 1170 МэВ/ c^2 . Сплошные прямые линии — наиболее вероятные описания распределений

В соответствии с логикой, изложенной в [12] для определения I, нами были изучены системы $\pi^{-}\pi^{0}$ из реакции $np \rightarrow pp\pi^{-}\pi^{0}$ [10] и $\pi^{-}\pi^{-}$ из реакции $np \rightarrow pp\pi^{+}\pi^{-}\pi^{-}$ [15]. Мы не наблюдаем особенностей при массах, соответствующих представленным на рис. 3, ни в комбинациях $\pi^{-}\pi^{0}$, ни в спектре эффективных масс $\pi^{-}\pi^{-}$. Кроме того, определенные для $\pi^{-}\pi^{-}$ -эффектов значения спинов сильно отличаются от нулевых значений. Таким образом, значение изотопического спина для исследуемых резонансов определяется как I = 0.

Из вышесказанного можно сделать вывод, что все наблюдаемые нами особенности, с большой долей вероятности, имеют квантовые числа σ_0 -мезона $I^G(J^{PC}) = 0^+(0^{++})$.

3. СРАВНЕНИЕ С ДРУГИМИ ЭКСПЕРИМЕНТАМИ

Существует некоторое количество экспериментов, с которыми можно было бы сравнить наши результаты.

Прежде всего это эксперимент, в котором был наблюден так называемый ABCэффект [16]. В нем, в разных ядерных реакциях, был обнаружен пик при массе $M = 350 \text{ МэB}/c^2$. Подобный эффект найден нами в реакции $np \rightarrow d\pi^+\pi^-$ при $P_n = (1,73 \pm 0,04)$ ГэB/c [17]. Обнаруженный нами эффект в системе $\pi^+\pi^-$ находится в области эффективных масс $M_{\pi^+\pi^-} \approx 400 \text{ МэB}/c^2$.

Резонансная особенность при массе $M_{\gamma\gamma} = 360 \text{ МэB}/c^2$ была обнаружена в спектре эффективных масс 2γ -квантов в dС-взаимодействиях при импульсе 2,75 ГэВ на нуклон [18]. В распределении эффективных масс 2γ -квантов в двухметровой пропановой камере обнаружены эффекты при $M_{\gamma\gamma} = 350 \text{ МэB}/c^2$. В импульсном распределении γ -квантов обнаружены пики, которые можно объяснить, если предположить, что образуются резонансы при массах $M_{\gamma\gamma} = 350 \text{ МэB}/c^2$, которые распадаются на два γ -кванта [19].

Наблюдение и исследование эффекта при массе 404 МэВ/ c^2 с квантовыми числами σ_0 -мезона в реакции $np \rightarrow np\pi^+\pi^-$ при $P_n = 3,83$ ГэВ/c описано в [12].

Скалярный полюс при массе 489 МэВ/ c^2 был обнаружен при фазовом анализе событий от распада K_s^0 -мезонов на 2 π -мезона и 4 лептона [20]. Однако ширина резонанса очень большая — $\Gamma/2 = 264$ МэВ/ c^2 . Также наблюдался полюс в системе $\pi^+\pi^-$ при массе 478 МэВ/ c^2 в распаде $D^+ \to \pi^+\pi^+\pi^-$ [21].

Узкий, с шириной 30 МэВ/ c^2 , пик в системе $\pi^+\pi^-$ при массе около 755 МэВ/ c^2 хорошо выделен в аннигиляции $\bar{p}n \rightarrow 2\pi^+3\pi^-$ [22].

Наконец, отметим таблицы из PDG [36] с результатами K-матричного анализа ряда экспериментов по поиску маломассовых $\pi^+\pi^-$ -особенностей. Представленные в них значения масс хорошо совпадают с нашими наблюдениями, но ширины резонансов очень велики. В эти же таблицы составителями внесены (с отметкой «по PWA») и наши данные из [10], касающиеся резонанса с массой $M_{\pi^+\pi^-} = 759 \text{ МэВ/}c^2$ и полученные в прямом исследовании массового спектра.

4. ФЕНОМЕНОЛОГИЧЕСКОЕ ОПИСАНИЕ ПОСЛЕДОВАТЕЛЬНОСТИ СКАЛЯРНЫХ РЕЗОНАНСОВ

Мы предприняли попытку феноменологического описания последовательности скалярных $f_0(\sigma_0)$ -резонансов с учетом как представленных в настоящей работе резонансных эффектов, так и данных, приведенных в PDG [3в].

Из анализа всех данных видно, что расстояние между резонансами изменяется довольно сложным образом. Это наводит на мысль о существовании нескольких траекторий, описывающих увеличивающиеся массы резонансов.

Для аппроксимации выбрана форма

$$M_n = M_0 + x \frac{n(n+1)}{2},$$
(1)

где M_0 — начальное возбуждение траектории; x — параметр возбуждения; n — номер резонанса на траектории. Член вида n(n+1)/2 возникает при суммировании членов натурального ряда чисел от 1 до n. Таким образом, масса резонанса номер n может быть представлена схематически в виде суммы последовательностей возбуждений силой x. Просуммировав все цепочки, получим форму (1), представленную на рис. 5.

Ī

Нами были построены четыре последовательности резонансов, для которых подобраны значения M_0^i и x^i (здесь i — номер последовательности).

Рис. 5. Схематическое представление, согласно форме (1), массы резонанса номер n в виде суммы последовательностей возбуждений силой x

n	$\frac{n(n+1)}{2}$	$M_{\rm pes}^{\rm выч}$, МэВ/ c^2	$M_{\rm pe3}^{ m эксп} \pm \Delta M_{\rm pe3}^{ m эксп}$, МэВ/ c^2	n	$\frac{n(n+1)}{2}$	$M_{\rm pes}^{\rm выч}$, МэВ/ c^2	$M_{\mathrm{pe3}}^{\mathrm{эксп}} \pm \Delta M_{\mathrm{pe3}}^{\mathrm{эксп}}$, МэВ/ c^2		
Траектория 1 ($M_n = 305 + 120 \frac{n(n+1)}{2}$)				Траектория 2 ($M_n = 350 + 136 \frac{n(n+1)}{2}$)					
0	0	305		0	0	350	353±6		
1	1	425	408 ± 5	1	1	486	489±4		
2	3	665	678±3	2	3	758	764±18		
3	6	1025	$1036{\pm}10$	3	6	1166	1168±11		
4	10	1505	1505±6	4	10	1710	1724±7		
5	15	2105	2103±8	5	15	2390	2330±20		
	Траектория 3 ($M_n = 420 + 158 \frac{n(n+1)}{2}$)					Траектория 4 ($M_n = 485 + 170 \frac{n(n+1)}{2}$)			
0	0	420	$408{\pm}5$	0	0	485	489		
1	1	578	585 ± 6	1	1	655	678±3		
2	3	894	876±4	2	3	995	980±10		
3	6	1368	1370	3	6	1505	1505±6		
4	10	2000	1992±16	4	10	2185	2189±13		

Таблица 2. Экспериментальные и вычисленные, в зависимости от номера n в каждой из последовательностей (траекторий), значения масс скалярных резонансов

Примечание. Для каждой части таблицы, относящейся к траектории *i*: первая колонка — номер резонанса *n* последовательности *i*; вторая — сумма членов натурального ряда чисел от 1 до *n*; третья — вычисленные значения масс; четвертая — экспериментальные значения масс скалярных резонансов (включая ошибки) как приведенных в табл. 1, так и взятых из PDG.

Рис. 6. Графическое представление подобранных траекторий согласно табл. 2. По оси абсцисс отложено значение K = n(n+1)/2, по оси ординат — массы $f_0(\sigma_0)$ -мезонов из данных табл. 1 (+) и из PDG (×). Номера траекторий (справа налево) показаны вверху. Экспериментальные значения масс $f_0(\sigma_0)$ -мезонов приведены справа. Величины экспериментальных ошибок сравнимы с размерами отметок на графике

В табл. 2 приведены вычисленные значения масс резонансов в зависимости от номера n для каждой из последовательностей, указаны начальные возбуждения M_0^i и возбуждения кластеров x^i и приведены экспериментальные значения масс скалярных резонансов как из нашего эксперимента, так и из PDG [3в].

Сформированные четыре траектории содержат все без исключения наши резонансы и скалярные резонансы, отмеченные в PDG. Мы ограничились массами до 2400 $M \Im B/c^2$, так как далее данные очень неопределенные.

Подобранные траектории отображены на рис. 6, где по оси абсцисс отложено значение K = n(n+1)/2, по оси ординат — массы $f_0(\sigma_0)$ -мезонов из наших данных (плюсы) и из PDG (крестики). Экспериментальные значения приведены на рисунке справа. Величины экспериментальных ошибок сравнимы с размерами отметок на графике.

Как из табл. 2, так и из рис. 6 видно очень хорошее совпадение вычисленных с помощью формулы (1) и экспериментальных данных во всем диапазоне масс $\pi^+\pi^-$ от суммы масс (280 МэВ/ c^2) до массы 2400 МэВ/ c^2 .

Таким образом, можно думать, что резонанс с номером n содержит целую последовательность возбуждений кластеров, эффект от которых складывается и дает суммарное возбуждение скалярного поля.

5. ОБСУЖДЕНИЕ И ВЫВОДЫ

Нами наблюдена серия резонансных состояний в системе $\pi^+\pi^-$ -мезонов в реакции $np \rightarrow np\pi^+\pi^-$ при $P_n = (5,20 \pm 0,12)$ ГэВ/с с квантовыми числами σ_0 -мезона $0^+(0^{++})$ и с массами в области $M \leq 1200$ МэВ/ c^2 . Данные о таких резонансах практически отсутствуют.

Ширины найденных особенностей достаточно малы. Это резко противоречит данным экспериментов, обработанным с помощью фазового анализа, в котором получены ширины в несколько сотен $M \Im B/c^2$. Такие широкие резонансы в нашем эксперименте мы наблюдать не могли бы.

Резонансы возникают, по-видимому, в рассеянии π^+ на π^- . При этом происходит упорядоченное возбуждение скалярных полей.

Мы не видим распада резонанса f_0 с массой M = 980 МэВ/ c^2 , а видим, скорее, провал в распределении масс $\pi^+\pi^-$ в этом месте. Это наводит на мысль о том, что резонанс $f_0(980)$ в нашем эксперименте замаскирован пороговым эффектом рождения пары K^+K^- -мезонов.

Исследование свойств σ_0 -мезонов в горячей и плотной среде даст много информации о свойствах такой среды. Таким образом, исследование σ_0 -мезонов крайне важно как для проекта NICA/MPD, так и для экспериментов с ядерными пучками на всех ускорителях мира.

Мы благодарим проф. В. Л. Любошица за значительную помощь в нашей работе, проф. А. И. Малахова, проф. С. Вокала, д-ра П. Палацци за интерес к работе, д-ра М. В. Токарева за полезные обсуждения.

Работа выполнена в ЛФВЭ им. В.И. Векслера и А.М. Балдина ОИЯИ в рамках темы 1087.

86 Троян Ю.А. и др.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ericson T., Weise W. Pions and Nuclei. Oxford: Claredon Press, 1988.
- Pennington M. R. Structure of the Scalars // Proc. of the 11th Intern. Conf. on Meson– Nucleon Physics and Structure of the Nucleon, Sept. 10–14, 2007. FZJ, Juelich, 2007; http://ru.arxiv.org/abs/0711.1435.
- 3. Nakamura K. et al. (Particle Data Group) // J. Phys. G. 2010. V. 37. P. 075021.
- 3a. http://pdg.lbl.gov/2010/reviews/rpp2010-rev-scalar-mesons.pdf.
- 36. http://pdg.lbl.gov/2010/listings/rpp2010-list-f0-600.pdf.
- 3B. http://pdg.lbl.gov/2010/tables/rpp2010-qtab-mesons.pdf.
- 4. Arkhipov A.A. L-Particle and Kaluza-Klein World. IHEP Preprint No. 2002-43. Protvino, 2002; hep-ph/0208215.
- Гареев Ф.А., Казача Г.С., Ратис Ю.Л. Резонансы в субатомной физике и принципы подобия и размерности // ЭЧАЯ. 1996. Т. 27, вып. 1. С. 99–172; http://wwwinfo.jinr.ru/publish/ Archive/Pepan/1996-v27/v-27-1/3.htm.
- Hee-Jung Lee, Kochelev N. I. Instanton Interpolating Current for σ-tetraquark // Phys. Lett. B. 2006. V. 642, Iss. 4. P. 358–365; http://arxiv.org/abs/hep-ph/0608188.
- 7. http://nica.jinr.ru/files/NICA_CDR.pdf.
- 8. http://www-hades.gsi.de.
- Volkov M. K., Radzhabov A. E., Russakovich N. L. Mesons in Hot and Dense Matter // ЯΦ. 2003. T. 66, № 5. C. 1030–1037.
- 10. Troyan Yu. A. et al. The Evidence of $\sigma_0[0^+(0^{++})]$ Mesons at a Mass of $M(\pi^+\pi^-) = (759 \pm 5)$ MeV/ c^2 Observed in $\pi^+\pi^-$ Combinations from the Reaction $np \to np\pi^+\pi^-$ at an Incident Momentum of $P_n = (5.20 \pm 0.16)$ GeV/c // Краткие сообщ. ОИЯИ. 1998. № 5[91]. С. 33–40.
- Troyan Yu. A. et al. The Search and Study of the Resonances in the System of π⁺π⁻ Mesons from the Reaction np → npπ⁺π⁻ at P_n = 5.20 GeV/c // Part. Nucl., Lett. 2000. No. 6[103]. P. 25–33; Troyan Yu. A. et al. Resonances in the System of π⁺π⁻ Mesons from np → npπ⁺π⁻ Reaction at P_n = 5.20 GeV/c: Search, Results of Direct Observations, Interpretation // Part. Nucl., Lett. 2002. No. 5[114]. P. 53–60; hep-ex/0405049v4;

Troyan Yu. A. et al. Low-Mass $(M \leq 1.2 \text{ GeV}/c^2) \sigma_0$ -Meson Produced in the System $\pi^+\pi^-$ from the Reaction $np \rightarrow np\pi^+\pi^-$ at $P_n = 5.20 \text{ GeV}/c$ // Proc. of the XVIII ISHEPP «Relativistic Nuclear Physics and Quantum Chromodynamics», JINR, Dubna, Sept. 2006; hep-ex/0611033v2.

- Троян Ю.А. и др. Поиск и исследование маломассовых скалярных мезонов в реакции np → npπ⁺π⁻ при импульсе нейтронного пучка P_n = 3,83 ГэВ/с // Письма в ЭЧАЯ. 2011. Т. 8, № 6(169). С. 928–935.
- Иерусалимов А. П. и др. Интерференция основных диаграмм ОРЕК-модели в реакции np → npπ⁺π⁻ при энергиях 1–5 ГэВ // Краткие сообщ. ОИЯИ. 1989. № 2[35]. С. 21–26.
- Бешлиу С. и др. Сечения каналов реакций пр-взаимодействий при P_n = 1 ГэВ/с ÷ 5 ГэВ/с // ЯФ. 1986. Т. 43. С. 888–892.
- Troyan Yu. A. et al. Narrow Resonances in the System of Two π-Mesons // JINR Rapid Commun. 1996. No. 6[80]. P. 73.
- 16. Abashian A., Booth N. E., Growe K. M. Possible Anomaly in Meson Production in p+d Collisions // Phys. Rev. Lett. 1960. No. 5. P. 258–260;
 Booth N. E., Abashian A., Growe K. M. Anomaly in Meson Production in p+d Collisions // Phys. Rev. Lett. 1961. No. 7. P. 35–39;
 Booth N. E., Abashian A., Growe K. M. Meson Production in p+d Collisions and the I = 0 π π Interaction. 3: Spin and Parity of the I = 0 Anomaly // Phys. Rev. 1963. No. 132. P. 2309–2313.

- 17. Abdivaliev A. et al. Analysis of the Production Mechanism of Narrow Enhancements in the Effective Mass Spectrum $(\pi^+\pi^-)$ in the Reaction $np \rightarrow d\pi^+\pi^-$ at the Neutron Incident Momentum of $P_n = 1.73$ GeV/c. JINR Preprint E1-12903. Dubna, 1979. 12 p.
- 18. Abraamyan Kh. U. et al. Resonance Structure in the $\gamma\gamma$ Invariant Mass Spectrum in pC- and dC-Interactions // Phys. Rev. C. 2009. V. 80. P. 034001; nucl-ex/0806.2790v5.
- 19. Тогоо Р. и др. Поиск легких мезонов по их радиационным распадам в столкновениях отрицательных пионов с протоном и ядром углерода при импульсе 40 ГэВ/с // Proc. of the Mongol. Acad. of Sci. 2005. V. 178, No. 4. P. 45–53.
- 20. Yndurain F. J., Garcia-Martin R., Pelaez J. R. Experimental Status of the $\pi\pi$ Isoscalar S Wave at Low Energy: $f_0(600)$ Pole and Scattering Length // Phys. Rev. D. 2007. V. 76, No. 7. P. 10; http://prd.aps.org/abstract/PRD/v76/i7/e074034.
- 21. Ablikim M. et al. (BES Collab.). The σ Pole in $J/\psi \rightarrow \omega \pi^+ \pi^-$ // Phys. Lett. B. 2004. V. 598. P. 149–158; hep-ex/0406038v1.
- 22. Gaspero M. Study of a Narrow $\pi^+\pi^-$ Peak at about 755 MeV/ c^2 in $\bar{p}n \rightarrow 2\pi^+3\pi^-$ Annihilation at Rest // Proc. of the 13th Intern. Conf. on Hadron Spectroscopy, Tallahassee, FL, USA, Nov. 29 Dec. 4, 2009. AIP Conf. Proc. 2010. V. 1257. P. 272–276; hep-ex/1005.2381v1.

Получено 4 марта 2011 г.