ФИЗИКА И ТЕХНИКА УСКОРИТЕЛЕЙ

ПРОЕКТ FAMA: МОДЕРНИЗАЦИЯ КАНАЛОВ ДЛЯ МОДИФИКАЦИИ ПОВЕРХНОСТИ МАТЕРИАЛОВ

В. С. Александров, С. Л. Богомолов, Н. Ю. Казаринов, В. Ф. Шевцов

Объединенный институт ядерных исследований, Дубна

П. Беличев, Н. Нешкович, А. Добросавлевич

Институт ядерных наук «Винча», Белградский университет, Белград, Сербия

Проект FAMA связан со строительством низкоэнергетичной части ускорительной установки TESLA (TAI) в Институте ядерных наук «Винча» (Белград) и предназначен для модификации и анализа материалов пучками ионов. FAMA включает в себя три машины и шесть экспериментальных каналов. Машины: источник тяжелых ионов — машина M1, источник легких ионов — машина M2 и небольшой изохронный циклотрон — машина M3. Проведены расчеты по оптимизации низкоэнергетичных каналов. Выбраны оптимальные режимы транспортировки пучков ионов, генерируемых источниками M1 и M2. С целью уменьшения потерь в канале предложено ограничить токи от источника ионов M2. Для увеличения интенсивности на мишени пучков источника ионов M1 предложено вместо триплета квадруполей использовать соленоид и дублет. Обоснована необходимость диафрагмирования пучков тяжелых ионов. Эффективность транспортировки во всех значительных случаях близка к 100%.

Project FAMA is related to the construction of the low energy part of TESLA Accelerator Installation (TAI) in the Vinča Institute of Nuclear Sciences (Belgrade) and is intended for modification and analysis of materials by ion beams. FAMA includes three machines and six experimental channels. The machines are: a heavy ion source — the M1 machine, a light ion source — the M2 machine, and a small isochronous cyclotron — the M3 machine. The calculations for optimization of low energy channels are carried out. Optimum modes of transportation of the ion beams generated by sources M1 and M2 are fitted. For the purpose of reduction of losses in the channel it is offered to limit currents from the ion source M2. For increase in intensity at target of beams from ion source M1 it is offered to use the solenoid and a doublet of quadrupoles instead of a triplet. Necessity of a masking of beams of heavy ions is proved. Transportation efficiency is close to 100% in all considerable cases.

PACS: 29.20.-c

введение

В Институте ядерных наук «Винча» (Белград) продолжается создание ускорительной установки TESLA (TAI). Низкоэнергетичная часть установки TAI — FAMA [1,2] — включает в себя три машины и шесть экспериментальных каналов и предназначена для модификации и анализа материалов пучками ионов. Машины: источник тяжелых ионов — машина M1, источник легких ионов — машина M2 и небольшой изохронный циклотрон — машина M3. Данная работа посвящена выбору оптимальных параметров

Проект FAMA: модернизация каналов для модификации поверхности материалов 713

Рис. 1. Схема расположения каналов: М1 и М2 — источники ионов; АМ1, АМ2 и С2-МА — анализирующие магниты

каналов C1 и C2 (рис. 1) при работе с источниками M1 и M2 для различных сортов и энергий ионов. Моделирование транспортировки многокомпонентных пучков производилось с помощью программы MCIB04 [3] (particle-in-cell code). Оптимизация каналов проводилась программой OPTIMA на основе метода моментов функции распределения [4]. Обе программы учитывают апертуру канала и эффекты собственного заряда пучка.

1. КАНАЛ М1-С1

Канал источника тяжелых ионов M1 (рис. 2) включает в себя 14,5 ГГц mVINIS ЭЦРисточник [5], соленоид M1-SL, квадрупольную линзу M1-QL и анализирующий магнит AM1. Анализирующий магнит служит как для разделения компонент пучка, так и для разведения пучков по каналам C1 и C2. При моделировании начальные параметры пучков на выходе источника M1 принимались следующими: эмиттанс 250 $\pi \cdot$ мм · мрад,

Рис. 2. Схема канала источника М1

714 Александров В.С. и др.

Рис. 3. Зарядовый спектр пучка криптона

расходимость $\alpha = 0$, радиус 5 мм. Начальное распределение частиц в фазовом пространстве — Владимирского-Капчинского. Количество макрочастиц — до 10000. Пример зарядового спектра пучка криптона показан на рис. 3.

Канал С1 показан на рис. 4, где С1-SM — корректирующий магнит; С1-SB — диафрагма; С1-SL — соленоид. Полная длина канала М1-С1 составляет 5116,5 мм.

Примеры огибающих и траекторий ионов некоторых пучков показаны на рис. 5, 6. Результаты оптимизации полей и градиентов для транспортировки различных пучков источника М1 и эффективность токопрохождения приведены в табл. 1.

Рис. 4. Схема канала С1

Рис. 5. Траектории ионов пучка азота (80 к
эВ для $^{14}\mathrm{N}^{4+})$ в канале М1-С1

Проект FAMA: модернизация каналов для модификации поверхности материалов 715

Рис. 6. Огибающие пучка ${}^{4}\text{He}^{2+}$ (30 кэВ) в канале М1-С1 и магнитное поле

Выход М1			Параметры элементов			На мишени		
Тип	Энергия,	Ионный	B	В	G	Ионный	Эффек-	Размеры,
ионов	кэВ	ток,	M1-SL,	C1-SL,	M1-QL,	ток,	тивность,	$X_{\rm MF}/Y_{\rm MF}$,
		$e \cdot$ мк A	Тл	Тл	Тл/м	$e \cdot$ мкА	%	ММ
⁴ He ⁺	15	760	0,33	0,28	-0,32	494	65	10/12
4 He $^{+}$	20	760	0,38	0,33	-0,57	692	91	14/14
4 He $^{2+}$	30	410	0,25	0,20	-0,35	82	20	12/16
4 He $^{2+}$	40	410	0,28	0,22	-0,29	123	30	10/15
$^{14}N^{4+}$	60	230	0,31	0,27	-0,13	110	48	10/20
$^{14}N^{4+}$	80	230	0,35	0,31	-0,15	161	70	10/20
${}^{86}\mathrm{Kr}^{12+}$	180	130	0,46	0,41	-0,14	77	59	18/20
$^{86}{ m Kr}^{12+}$	240	130	0,54	0,43	-0,22	115	89	6/19
¹³⁶ Xe ¹⁹⁺	285	43	0,45	0,41	-0,19	35	82	21/26
¹³⁶ Xe ¹⁹⁺	380	43	0,53	0,43	-0,28	43	100	7/20

Таблица 1. Эффективность токопрохождения в канале С1

2. КАНАЛ С2 ДЛЯ ТЯЖЕЛЫХ ИОНОВ (ИСТОЧНИК М1)

Исходная схема начальной части канала C2 (между магнитами M1-AM1 и C2-MA): магнитные триплет QT1 и дублет QD1 квадруполей — показана на рис. 7, а. В процессе расчетов было установлено, что в триплете QT1 будут наблюдаться потери при любых настройках и любых токах пучка. Замена первого квадруполя триплета QT1 на соленоид

Рис. 7. Начальная часть канала: а) исходный вариант, б) улучшенный

716 Александров В.С. и др.

C2-SL (рис. 7, δ) позволила существенно улучшить токопрохождение в канале C2. Вторая часть канала показана на рис. 8. Примеры траекторий ионов и огибающих показаны на рис. 9, 10. Основные типы пучков и результаты оптимизации приведены в табл. 2.

Рис. 8. Схема второй части канала С2: корректор SM2, электростатические триплеты QT2 и QT3, сканеры SC1 и SC2

Рис. 9. Траектории ионов пучка криптона (240 къВ для ⁸⁶Kr¹²⁺) в канале М1-С2. Интерфейс программы MCIB04

Рис. 10. Среднеквадратичные огибающие пучка ⁸⁶Kr¹²⁺ (240 кэВ) в канале С2. Интерфейс программы ОРТІМА

			Выход АМ1 Вход С2-МА		C2-MA	Выход С2-МА		
Тип	Энергия,	Ионный	Эффек-	Ионный	Эффек-	Ионный	Эффек-	Ионный
ионов	кэВ	ток,	тивность,	ток,	тивность,	ток,	тивность,	ток,
		$e \cdot мкA$	%	$e \cdot$ мкА	%	$e \cdot мкA$	%	$e \cdot$ мкА
$^{14}N^{4+}$	60	230	49	113	47	108	47	108
$^{14}N^{4+}$	80	230	70	160	68	156	62	142
${}^{86}{ m Kr}^{12+}$	180	130	59	76	50	65	45	58
${}^{86}\mathrm{Kr}^{12+}$	240	130	89	115	88	114	84	109
411.+	15	760	65	494	32	243	28	213
пе	15	380	75	285	62	235	59	220
$4 \mu_{0} +$	20	760	87	660	43	327	32	243
пе	20	380	96	365	78	296	76	290
4 He $^{2+}$	30	410	20	82	20	82	20	82
$^{4}\text{He}^{2+}$	40	410	28	116	28	116	28	116
136 Xe $^{23+}$	345	25	72	18	70	17,5	63	16
$^{207}{\rm Pb}^{16+}$	400	30	98	29	84	25	84	25

Таблица 2. Эффективность токопрохождения от источника ионов М1

3. КАНАЛ М2-С2 (ЛЕГКИЕ ИОНЫ)

Начальная часть канала состоит из источника M2 и магнита AM2. Остальная часть канала C2, начиная с квадруполя C2-QD1, та же, что при транспортировке тяжелых ионов. В результате расчетов установлено, что при транспортировке пучков легких ионов происходят большие потери ионов основной зарядности в канале M2 в особенности для многокомпонентных пучков H₂, H₃, D₂, D₃, где теряется $\sim 90\%$ ионов основной зарядности.

Так как между источником M2 и магнитом AM2 не предполагается установка фокусирующих элементов, был произведен подбор токов пучков, при которых проходит 100 % тока пучка основной зарядности во всем канале M2-C2. Основные типы пучков и результаты приведены в табл. 3.

Tun uquan	Номинальное значение тока пучка	Уменьшенные токи		
тип ионов	$I_{ m tot},$ мА	$I_{\rm tot}$, мА	$I_{ m spice}$, мА	
H^{-}	3,30	1,16	1,16	
H_2^+	10,25	1,03	0,46	
H_3^+	10,28	1,03	0,77	
D^{-}	2,58	0,77	0,77	
D_2^+	7,91	0,79	0,40	
D_3^+	11,62	0,58	0,41	

Таблица 3

Рис. 11. Токопрохождение фракций пучка с D_3^+ вдоль канала М2-С2

Рис. 12. Траектории частиц пучка с D₃⁺

Примеры токопрохождения фракций и траекторий ионов пучка с D_3^+ вдоль канала M2-C2 показаны на рис. 11, 12.

выводы

Потерь в магните M1-AM1 и в канале C1 для всех пучков можно избежать. Практически для всех типов пучков есть потери в начале канала M1. При увеличении тока пучка и уменьшении его энергии потери растут (гелий и N_{14}^{4+} при энергии 60 кэВ) и добавляются потери в пуллере. Для элементов с A < 100 в районе мишени остается только основная зарядность, посторонние теряются на апертуре канала. Для более тяжелых элементов, в частности для ксенона, требуется диафрагмирование пучка.

Эффективность транспортировки в канале C2 находится в интервале 80-100%. На примере ${}^{4}\text{He}^{+}$ показано, что эффективность транспортировки можно увеличить для меньших начальных токов пучка.

В канале M2-C2 можно обеспечить 100 %-е токопрохождение, если начальные токи пучков уменьшить до величин, приведенных в табл. 3. Однако требуется увеличить до 2 кВ напряжения на квадруполях C2-QT21 и C2-QT22.

СПИСОК ЛИТЕРАТУРЫ

- 1. Concept for job 1.1: Refurbishment of the M1 Machine. Vinča Inst. of Nucl. Sci. Belgrade, 2009.
- 2. Concept for job 1.2: Refurbishment of the C1 Channel. Vinča Inst. of Nucl. Sci. Belgrade, 2009.
- 3. Aleksandrov V., Kazarinov N., Shevtsov V. Multi-Component Ion Beam Code MCIB04 // Proc. of the XIX Rus. Particle Accelerator Conf. (RuPAC-2004), Dubna, 2004. P.201.
- 4. *Kazarinov N. Yu., Shevtsov V. F.* Optimization of Transportation Channel Parameters for Beams with Large Space Charge. JINR Commun. P9-2002-148. Dubna, 2002 (in Russian).
- Efremov A. et al. Design Aspects and Status of Construction of the mVINIS Ion Source // Rev. Sci. Instr. 1998. V. 69-2. P. 679–681.