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MODIFICATION OF THE COULOMB LAW
AND ENERGY LEVELS OF HYDROGEN ATOM

IN SUPERSTRONG MAGNETIC FIELD
M. I. Vysotsky 1

Institute of Theoretical and Experimental Physics, Moscow

The screening of the Coulomb potential by superstrong magnetic ˇeld is studied. Its in	uence on
the spectrum of a hydrogen atom is determined.
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I will discuss recently solved Quantum Mechanical Ä Quantum Electrodynamical problem
in this lecture. It was solved numerically in papers [1, 2], and then analytical solution was
found in papers [3, 4].

We will use Gauss units convenient in atomic physics: e2 = α = 1/137. We will call
magnetic ˇelds B > m2

ee
3 strong, while B > m2

e/e3 will be called superstrong. An important
quantity in the problem under consideration is Landau radius aH = 1/

√
eB called magnetic

length in condensed matter physics.
Let us consider hydrogen atom in external homogeneous magnetic ˇeld B. At strong B,

Bohr radius aB is larger than aH , so there are two time scales in the problem: fast mo-
tion in the plane perpendicular to magnetic ˇeld and slow motion along the magnetic ˇeld.
That is why adiabatic approximation is applicable: averaging over fast motion, we get one-
dimensional motion of electron along the magnetic ˇeld in effective potential

U(z) ≈ −e2√
z2 + a2

H

. (1)

The energy of a ground state can be estimated as

E0 = −2m

⎛
⎝ aB∫

aH

U(z) dz

⎞
⎠

2

∼ −me4 ln2(B/m2e3), (2)

and it goes to minus inˇnity when B goes to inˇnity.

1E-mail: vysotsky@itep.ru
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We will see that radiative corrections qualitatively change this result: ground-state energy
goes to ˇnite value when B goes to inˇnity. This happens due to screening of the Coulomb
potential.

Since at strong B reduction of the number of space dimensions occurs and motion takes
place in one space and one time dimensions, it is natural to begin systematic analysis from
QED in D = 2. At tree level the Coulomb potential is

Φ(k) ≡ A0(k̄) =
4πg

k̄2
, (3)

while, taking into account loop insertions into photon propagator, we get

Φ(k) ≡ A0 = D00 + D00Π00D00 + . . . = − 4πg

k2 + Π(k2)
, (4)

where the photon polarization operator equals

Πμν ≡
(

gμν − kμkν

k2

)
Π(k2), (5)

Π(k2) = 4g2

[
1√

t(1 + t)
ln (

√
1 + t +

√
t) − 1

]
≡ −4g2P (t), (6)

t ≡ −k2/4m2, and the dimension of charge g equals mass in D = 2.
Taking k = (0, k‖), k2 = −k2

‖ for the Coulomb potential in the coordinate representation,
we get

Φ(z) = 4πg

∞∫
−∞

eik‖z dk‖/2π

k2
‖ + 4g2P (k2

‖/4m2)
, (7)

and the potential energy for the charges +g and −g is ˇnally: V (z) = −gΦ(z).
In order to perform integration in (7), we need a simpliˇed expression for P (t). Taking

into account that asymptotics of P (t) are

P (t) =
{

(2/3)t, t � 1,
1, t � 1,

(8)

let us take as an interpolating formula the following expression:

P (t) =
2t

3 + 2t
. (9)

The accuracy of this approximation is better than 10%.
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Substituting (9) into (7), we get

Φ = 4πg

∞∫
−∞

eik‖z dk‖/2π

k2
‖ + 4g2(k2

‖/2m2)/(3 + k2
‖/2m2)

=

=
4πg

1 + 2g2/3m2

∞∫
−∞

[
1
k2
‖

+
2g2/3m2

k2
‖ + 6m2 + 4g2

]
eik‖z dk‖

2π
=

=
4πg

1 + 2g2/3m2

[
−1

2
|z| + g2/3m2√

6m2 + 4g2
exp

(
−
√

6m2 + 4g2|z|
)]

. (10)

In the case of heavy fermions (m � g) the potential is given by the tree level expression;
the corrections are suppressed as g2/m2.

In the case of light fermions (m � g),

Φ(z)
∣∣∣

m�g
=

⎧⎪⎪⎨
⎪⎪⎩

π e−2g|z|, z � 1
g

ln
( g

m

)
,

−2πg

(
3m2

2g2

)
|z|, z � 1

g
ln
( g

m

)
.

(11)

For m = 0 we have Schwinger model Å the ˇrst gauge invariant theory with a massive
vector boson. Light fermions make a continuous transition from m > g to m = 0 case. The
next two ˇgures correspond to g = 0.5, m = 0.1. The expression for V̄ contains P̄ .

To ˇnd the modiˇcation of the Coulomb potential in D = 4, we need an expression for Π
in strong B.

One starts from electron propagator G in strong B. Solutions of the Dirac equation in
homogeneous constant in time B are known, so one can write spectral representation of
electron Green function. Denominators contain k2 − m2 − 2neB, and for B � m2/e and
k2
‖ � eB in sum over levels the lowest Landau level (LLL, n = 0) dominates. In coordinate

Fig. 1. Potential energy of the charges +g and

−g in D = 2. The solid curve corresponds to P ;

the dashed curve corresponds to P̄

Fig. 2. Relative difference of potential energies

calculated with the exact and interpolating for-

mulae for the polarization operator for g = 0.5,
m = 0.1
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representation the transverse part of the LLL wave function is Ψ ∼ exp ((−x2−y2)eB), which
in momentum representation gives Ψ ∼ exp ((−k2

x−k2
y)/eB) (gauge in which A = 1/2[B×r]

is used).
Substituting electron Green functions into the polarization operator, we get

Πμν ∼ e2eB

∫
dqx dqy

eB
exp

(
−

q2
x + q2

y

eB

)
×

× exp

(
−

(q + k)2x + (q + k)2y
eB

)
dq0 dqzγμ

1
q̂0,z − m

γν
1

q̂0,z + k̂0,z − m
=

= e3B exp
(
− k2

⊥
2eB

)
Π(2)

μν (k‖ ≡ kz), (12)

Φ =
4πe

(k2
‖ + k2

⊥)
(

1 − α

3π
ln
(

eB

m2

))
+

2e3B

π
exp

(
− k2

⊥
2eB

)
P

(
k2
‖

4m2

) , (13)

Φ(z) = 4πe

∫
eik‖zdk‖d

2k⊥/(2π)3

k2
‖ + k2

⊥ +
2e3B

π
exp

(
−k2

⊥
2eB

)
k2
‖/2m2

e

3 + k2
‖/2m2

e

, (14)

Φ(z) =
e

|z|

[
1 − e−

√
6m2

e|z| + exp

(
−
√

2
π

e3B + 6m2
e|z|
)]

. (15)

For magnetic ˇelds B � 3πm2/e3 the potential is the Coulomb up to small power suppressed
terms:

Φ(z)
∣∣∣

e3B�m2
e

=
e

|z|

[
1 + O

(
e3B

m2
e

)]
(16)

in full accordance with the D = 2 case, where g2 plays the role of e3B.
In the opposite case of superstrong magnetic ˇelds B � 3πm2

e/e3, we get

Φ(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

|z| exp

(
−
√

2
π

e3B|z|
)

,
1√

(2/π)e3B
ln

(√
e3B

3πm2
e

)
> |z| >

1√
eB

,

e

|z|

(
1 − exp

(
−
√

6m2
e|z|
))

,
1
m

> |z| >
1√

(2/π)e3B
ln

(√
e3B

3πm2
e

)
,

e

|z| , |z| >
1
m

,

(17)
V (z) = −eΦ(z). (18)

The spectrum of the Dirac equation in magnetic ˇeld constant in space and time is well
known:

ε2
n = m2

e + p2
z + (2n + 1 + σz)eB, (19)
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Fig. 3 (color online). The modiˇed Coulomb po-
tential at B = 1017 G (blue) and its long distance

(green) and short distance (red) asympotics

Fig. 4. Relative accuracy of analytical formula for
the modiˇed Coulomb potential at B = 1017 G

n = 0, 1, 2, 3, . . .; σz = ±1. For B > Bcr = m2
e/e the electrons are relativistic with only one

exception: electrons from lowest Landau level (n = 0, σz = −1) can be nonrelativistic.
In what follows, we will study the spectrum of electrons from LLL in the Coulomb ˇeld

of the proton modiˇed by the superstrong B.
The spectrum of Schréodinger equation in cylindrical coordinates (ρ̄, z) in the gauge where

Ā = (1/2) [B̄r̄] is

Epznρmσz =
(

nρ +
|m| + m + 1 + σz

2

)
eB

me
+

p2
z

2me
; (20)

LLL corresponds to nρ = 0, σz = −1, m = 0,−1,−2, . . .
A wave function factorizes on those describing free motion along a magnetic ˇeld with

momentum pz and those describing motion in the plane perpendicular to magnetic ˇeld:

R0m(ρ̄) =
[
π(2a2

H)1+|m|(|m|!)
]−1/2

ρ|m| exp
(

imϕ − ρ2

4a2
H

)
. (21)

Now we should take into account electric potential of atomic nuclei situated at ρ̄ = z = 0.
For aH � aB adiabatic approximation is applicable and the wave function in the following
form should be looked for:

Ψn0m−1 = R0m(ρ̄)χn(z), (22)

where χn(z) is the solution of the Schréodinger equation for electron motion along a magnetic
ˇeld: [

− 1
2m

d2

dz2
+ Ueff(z)

]
χn(z) = Enχn(z). (23)

Without screening the effective potential is given by the following formula:

Ueff(z) = −e2

∫ |R0m(ρ)|2√
ρ2 + z2

d2ρ, (24)

For |z| � aH the effective potential equals the Coulomb potential:

Ueff(z)|z�aH = − e2

|z| , (25)
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and the effective potential is regular at z = 0:

Ueff(0) ∼ − e2

|aH | . (26)

Since Ueff(z) = Ueff(−z), the wave functions are odd or even under re	ection z → −z;
the ground states (for m = 0, −1, −2, . . .) are described by even wave functions.

To calculate the ground state of hydrogen atom, in the textbook ®Quantum Mechanics¯
by L.D. Landau and E.M. Lifshitz the shallow-well approximation is used:

Esw = −2me

⎡
⎣ aB∫

aH

U(z) dz

⎤
⎦

2

= −
(

mee
4

2

)
ln2

(
B

me2e3

)
. (27)

Let us derive this formula. The starting point is one-dimensional Schréodinger equation:

− 1
2μ

d2

dz2
χ(z) + U(z)χ(z) = E0χ(z). (28)

Neglecting E0 in comparison with U and integrating, we get

χ′(a) = 2μ

a∫
0

U(x)χ(x) dx, (29)

where we assume U(x) = U(−x), that is why χ is even.
The next assumptions are: 1) the ˇnite range of the potential energy: U(x) 	= 0 for

a > x > −a; 2) χ undergoes very small variations inside the well. Since outside the well

χ(x) ∼ e−
√

2μ|E0| x, we readily obtain

|E0| = 2μ

⎡
⎣ a∫

0

U(x) dx

⎤
⎦

2

. (30)

For

μ|U |a2 � 1 (31)

(condition for the potential to form a shallow well) we get that, indeed, |E0| � |U | and
that the variation of χ inside the well is small, Δχ/χ ∼ μ|U |a2 � 1. Concerning the
one-dimensional Coulomb potential, it satisˇes this condition only for a � 1/(mee

2) ≡ aB .
This explains why the accuracy of log2 formula is very poor.
A much more accurate equation for atomic energies in strong magnetic ˇeld was derived

by B.M. Karnakov and V. S. Popov [5]. It provides a several percent accuracy for the energies
of EVEN states for H > 103 (H ≡ B/(m2

ee
3)).

The main idea is to integrate the Schréodinger equation with effective potential from x = 0
till x = z, where aH � z � aB and to equate the obtained expression for χ′(z)/χ(z) to the
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logarithmic derivative of Whittaker function Å the solution of Schréodinger equation with the
Coulomb potential, which exponentially decreases at z � aB:

2 ln
(

z

aH

)
+ ln 2 − ψ(1 + |m|) + O

(aH

z

)
=

= 2 ln
(

z

aB

)
+ λ + 2 lnλ + 2ψ

(
1 − 1

λ

)
+ 4γ + 2 ln 2 + O

(
z

aB

)
, (32)

E = −
(

mee
4

2

)
λ2. (33)

The energies of the ODD states are

Eodd = −mee
4

2n2
+ O

(
m2

ee
3

B

)
, n = 1, 2, . . . (34)

So, for superstrong magnetic ˇelds B ∼ m2
e/e3 the deviations of odd states energies from the

Balmer series are negligible.

Fig. 5. Spectrum of hydrogen levels in the limit of inˇnite magnetic ˇeld. Energies are given in

Rydberg units, Ry ≡ 13.6 eV
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When screening is taken into account, an expression for effective potential transforms into

Ũeff(z) = −e2

∫ |R0m(ρ)|2√
ρ2 + z2

d2ρ

[
1 − e−

√
6m2

e z + exp

(
−
√

2
π

e3B + 6m2
e z

)]
. (35)

The original KP equation for LLL splitting by the Coulomb potential is

ln (H) = λ + 2 lnλ + 2ψ

(
1 − 1

λ

)
+ ln 2 + 4γ + ψ(1 + |m|), (36)

where ψ(x) is the logarithmic derivative of the gamma function; it has simple poles at
x = 0,−1,−2, . . .

The modiˇed KP equation, which takes screening into account, looks like

ln

⎛
⎜⎝ H

1 +
e6

3π
H

⎞
⎟⎠ = λ + 2 lnλ + 2ψ

(
1 − 1

λ

)
+ ln 2 + 4γ + ψ(1 + |m|), (37)

E = −(mee
4/2)λ2. In particular, for a ground state λ = −11.2, E0 = −1.7 keV.

In conclusion,
1) analytical expression for charged particle electric potential in d = 1 is given; for m < g

screening takes place at all distances;
2) analytical expression for charged particle electric potential Φ(z, ρ = 0) at superstrong

B at d = 3 is found; screening takes place at distances |z| < 1/me;
3) an algebraic formula for the energy levels of a hydrogen atom originating from the

lowest Landau level in superstrong B has been obtained.
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