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FINAL STATE INTERACTION IN B0 → J/ψρ0

B. Mohammadi 1, H. Mehraban 2

Physics Department, Semnan University, Semnan, Iran

In this research, the hadronic decay of B0 → J/ψρ0 is analyzed by using the QCD factorization
(QCDF) and ˇnal state interaction (FSI). The D+(∗)D−(∗) for dd̄ and D0(∗)D̄0(∗) for uū contributions
via the exchange of charmed mesons are chosen for the intermediate states. These amplitudes are
calculated by using QCDF and used in the absorptive part of the diagrams. The experimental branching
ratio of B0 → J/ψρ0 decay is (2.7 ± 0.4) · 10−5 and our results according to the QCDF method and
FSI are 0.87 · 10−5 and (0.057−4.18) · 10−5, respectively.

‚ ¶·¥¤¸É ¢²¥´´μ° · ¡μÉ¥  ¤·μ´´Ò° · ¸¶ ¤ B0 → J/ψρ0  ´ ²¨§¨·Ê¥É¸Ö ¸ ÊÎ¥Éμ³ Š•„-
Ë ±Éμ·¨§ Í¨¨ (”Š•„) ¨ ¢§ ¨³μ¤¥°¸É¢¨Ö ¢ ±μ´¥Î´μ³ ¸μ¸ÉμÖ´¨¨ (‚Š‘). ‚±² ¤Ò D+(∗)D−(∗) ¤²Ö
dd̄ ¨ D0(∗)D̄0(∗) ¤²Ö uū · ¸¸³ É·¨¢ ÕÉ¸Ö ¢ ± Î¥¸É¢¥ ¶·μ³¥¦ÊÉμÎ´ÒÌ ¸μ¸ÉμÖ´¨°, ¢μ§´¨± ÕÐ¨Ì ¶·¨
μ¡³¥´¥ μÎ ·μ¢ ´´Ò³¨ ³¥§μ´ ³¨. �É¨  ³¶²¨ÉÊ¤Ò ¢ÒÎ¨¸²ÖÕÉ¸Ö ¸ ¶μ³μÐÓÕ ÊÎ¥É  ”Š•„ ¨ ¨¸¶μ²Ó-
§ÊÕÉ¸Ö ¢ Î ¸ÉÖÌ ¤¨ £· ³³, μÉ¢¥Î ÕÐ¨Ì §  ¶μ£²μÐ¥´¨¥. �±¸¶¥·¨³¥´É ²Ó´μ¥ §´ Î¥´¨¥ μÉ´μÏ¥´¨Ö
· ¸Ð¥¶²¥´¨Ö ¢ · ¸¶ ¤¥ B0 → J/ψρ0 ¡¥·¥É¸Ö · ¢´Ò³ (2,7 ± 0,4) · 10−5. � Ï¨ ·¥§Ê²ÓÉ ÉÒ, ¶μ²Ê-
Î¥´´Ò¥ ¢ · ³± Ì ÊÎ¥É  ”Š•„ ¨ ‚Š‘, Å ÔÉμ 0,87 · 10−5 ¨ (0,057−4,18) · 10−5 ¸μμÉ¢¥É¸É¢¥´´μ.

PACS: 13.25.Hw

INTRODUCTION

B-meson nonleptonic decays are signiˇcant for testing theoretical frameworks and search-
ing for new physics beyond the Standard Model. The next-to-leading order low-energy
effective Hamiltonian is used for the weak interaction matrix elements and the FSI. The im-
portance of the FSI in hadronic processes has been identiˇed for a long time. Recently, its
applications in D and B decays have attracted extensive interests and attention of theorists.

Since the hadronic matrix elements are fully controlled by nonperturbative QCD, the most
important problem is how to evaluate them properly. Factorization method enables one to sep-
arate the nonperturbative QCD effects from the perturbative parts and to calculate the latter in
terms of the ˇeld theory order by order. Several factorization approaches have been proposed
to analyze B-meson decays, such as the naive factorization approach, the QCD factorization
approach, the perturbative QCD approach and Soft Collinear Effective Theory (SCET); none
provided an estimate of the FSI at the hadronic level. These approaches, successfully explain
many phenomena; however, there are still some problems which are not easy to describe
within this framework.
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These may be some hints for the need of FSI in B decays. FSI effects are nonperturbative
in nature [1]. FSI is one of the ways to solve the nonperturbative QCD for the long-distance
case. In many decay modes, the FSI may play a crucial role [2]. In this way, the CKM matrix
elements and color factor are suppressed and the CKM's most favored two-body intermediate
states are the only ones that have been taken into consideration [3].

The FSI can be considered as a soft rescattering style for certain intermediate two-body
hadronic channel B0 → D+(∗)D−(∗) and B0 → D0(∗)D̄0(∗) decays [4]. Therefore, they can
be treated as the one-particle exchange processes at the hadron loop level (HLL). We calculated
the B0 → J/ψρ0 decay according to QCDF method and selected the next-to-leading order
Wilson coefˇcients at the scale mb [5] and obtained the BR(B0 → J/ψρ0) = 0.87 · 10−5

that is small in factorization approach. The FSI can give sizable corrections and we can
include it. Rescattering amplitude can be derived by calculating the absorptive part of triangle
diagrams. Since ρ0 = (uū − dd̄)/

√
2, intermediate states for dd̄ are D+(∗)D−(∗) and for uū

are D0(∗)D̄0(∗). We calculated the B0 → D+D− and B0 → D0D̄0 decays amplitudes as
the intermediate states by using the QCDF method. The experimental result of this decay is
BR(B0 → J/ψρ0) = (2.7± 0.4) · 10−5 [6] and we calculated that according to HLL method.
In this case, the branching ratio of B0 → J/ψρ0 for η = 1 ∼ 3.5 is (0.057−4.18) · 10−5.

This paper is organized as follows. We present the calculation of QCDF for B0 → J/ψρ0

decay in Sec. 1. In Sec. 2, we calculate the amplitudes of the intermediate states of B0 →
D+(∗)D−(∗), D0(∗)D̄0(∗) decays. Then, we present the calculation of HLL for B0 → J/ψρ0

decay in Sec. 3. In Sec. 4, we give the numerical results, and in the last section, we have a
short conclusion.

1. QCD FACTORIZATION OF B0 → J/ψρ0 DECAY

To compare QCDF with FSI, we explore QCDF analysis. In this case we only have
color-suppressed tree and color-allowed penguin topology. These contributions are small, but
it is interesting and necessary to discuss them. In the factorization method, Feynman diagrams
for the B0 → J/ψρ0 decay are shown in Fig. 1 and the amplitude when both mesons are
vector is given by

M(B0 → J/ψ(p1, ε1)ρ0(p2, ε2)) = −i
GF

2
fJ/ψmJ/ψ

{
(ε∗1 · ε∗2)(mB + mρ)A

Bρ
1 (m2

J/ψ)−

− (ε∗1 · pB)(ε∗2 · pB)
2ABρ

2 (m2
J/ψ)

mB + mρ
− iεμναβεμ

1 εν
2pα

2 pβ
B×

×
2V Bρ(m2

J/ψ)

mB + mρ

}
{a2VcbV

∗
cd + (a3 + a5 + a7 + a9)λp}, (1)

Fig. 1. Diagrams describing the decay of B0 → J/ψρ0
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here fJ/ψ is the decay constant and ε∗ is the polarization vector of vector meson. ABρ
1 (m2

J/ψ),

ABρ
2 (m2

J/ψ) and V Bρ(m2
J/ψ) are the decay form factors. We select ε0123 = +1 and

ai = ci +
1

Nc
ci+1 (i = odd),

ai = ci +
1

Nc
ci−1 (i = even), (2)

λp =
∑

p=u,c

VpbV
∗
pd,

where ci are the Wilson coefˇcients, with i running from i = 1, . . . , 10, and Nc is the number
of color in QCD. In the rest frame of the decaying B meson only longitudinally polarized ρ
and J/ψ are produced. ε∗ρ · pB and ε∗J/ψ · pB are then given by

ε∗V · pB =
mB

mV
|p| (V = ρ or J/ψ), (3)

where |p| is the absolute value of the 3-momentum of the ρ (or the J/ψ) in the B rest frame.

2. AMPLITUDES OF INTERMEDIATE STATES

In this section, before analyzing FSI in B0 → J/ψρ0 decay we introduce the factorization
approach in detail. The effective weak Hamiltonian for B decays consists of a sum of local
operators Qi multiplied by QCDF coefˇcients ci and products of elements of the quark mixing
matrix [7]. The factorization approach of the heavy meson decays can be expressed in terms
of different topologies of various decays mechanism such as tree, penguin and annihilation.

Since ρ0 = (uū − dd̄)/
√

2, intermediate states for dd̄ are D+(∗)D−(∗) and for uū are
D0(∗)D̄0(∗). The Feynman diagrams of the B0 → D+(∗)D−(∗) decays are shown in Fig. 2
and the amplitudes read

M(B0 → D+D−) = i
GF√

2
fDFBD

0 (m2
B − m2

D)
{

(a1 + a2)VcbV
∗
cd+

+ [a4 + a10 + rD
χ (a6 + a8)]λp

}
+

+ i
GF√

2
fBf2

D

{
b1VcbV

∗
cd +

[
b3 + 2b4 −

1
2
b3,ew +

1
2
b4,ew

]
λp

}
, (4)

M(B0 → D+∗D−∗) = −i
GF√

2
fD∗mD∗VcbV

∗
cd

{
(ε∗1 · ε∗2)(mB + mD∗)ABD∗

1 (m2
D∗)−

− (ε1 · pB)(ε2 · pB)
2ABD∗

2 (m2
D∗)

mB + mD∗

}{
(a1 + a2)VcbV

∗
cd + [a4 + a10 + rD∗

χ (a6 + a8)]λp

}
+

+ i
GF√

2
fBf2

D∗

{
b1VcbV

∗
cd +

[
b3 + 2b4 −

1
2
b3,ew +

1
2
b4,ew

]
λp

}
, (5)
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Fig. 2. B0 → D+(∗)D−(∗) decays diagrams

M(B0 → D+∗D−) =
√

2GF mD∗VcbV
∗
cd(εD∗ · pD)

[
fD∗FBD

1 (m2
D∗) + fDABD∗

0 (m2
D)

]
×

×
{

(a1 + a2)VcbV
∗
cd + [a4 + a10 + rD∗

χ (a6 + a8)]λp

}
+

+ i
GF√

2
fBf2

D∗

{
b1VcbV

∗
cd +

[
b3 + 2b4 −

1
2
b3,ew +

1
2
b4,ew

]
λp

}
, (6)

where ABD∗

0 , ABD∗

1 and ABD∗

2 are form factors for B → D∗; FBD
0 and FBD

1 are form
factors for B → D transitions [8] and

b1 =
CF

N2
c

c1A
i
1, b3 =

CF

N2
c

[c3A
i
1 + c5(Ai

3 + Af
3 ) + NcC6A

f
3 ],

b3,ew =
CF

N2
c

[c9A
i
1 + c7(Ai

3 + Af
3 ) + NcC8A

f
3 ],
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Fig. 3. B0 → D0(∗)D̄0(∗) decays diagrams

b4 =
CF

N2
c

[c4A
i
1 + c6A

i
2], b4,ew =

CF

N2
c

[c10A
i
1 + c8A

i
2],

Ai
1 ≈ Ai

2 = 2παs

[
9
(

XA − 4 +
π2

3

)
+ rD+

χ rD−

χ X2
A

]
,

(7)
Ai

3 = 0, Af
3 ≈ 6παs(rD+

χ + rD−

χ )(2X2
A − XA),

rD±(0)

χ =
2m2

D±(0)

(mb − mc)(md(u) + mc)
.

In the QCDF method the process of B0 → D0(∗)D̄0(∗) only occurs via annihilation between b
and d̄, so the FSI must be seriously considered to solve the B0 → D0(∗)D̄0(∗) decays and we
follow [9], for these decays, the Feynman diagrams are shown in Fig. 3 and the amplitudes
read

M(B0 → D0(∗)D̄0(∗)) = i
GF√

2
fB0fD0(∗)fD̄0(∗)(b1 + 2b4 + 2b4,ew)λp. (8)

3. FINAL STATE INTERACTION OF B0 → J/ψρ0 DECAY

When the FSI method for decay is calculated, two-body intermediate states such as D+D−,
D+∗D−∗, D+∗D−, D+D−∗, D0D̄0, D0∗D̄0∗, D0∗D̄0 and D0D̄0∗ are produced. The quark
model for B0 → D+(∗)D−(∗) → J/ψρ0 and B0 → D0(∗)D̄0(∗) → J/ψρ0 diagrams is
shown in Figs. 4 and 5. The hadronic level diagrams are shown in Figs. 6 and 7. In this
framework we choose the t-channel one-particle exchange processes. For calculation, the
relevant Lagrangian density are deˇned as follows [2,10,11]:

£DDρ = igDDρ(Dρμ∂μD̄ − ∂μDρμD̄),

£D∗Dρ = −gD∗Dρε
μναβ(D∂μρν∂αD̄∗

β + ∂μD∗
ν∂αρβD̄),

£D∗D∗ρ = igD∗D∗ρ{∂μD∗
νρμD̄∗ν − D∗

νρμ∂μD̄∗ν + (D∗ν∂μρν − ∂μD∗
νρν)D̄∗μ+

+ D∗μ(ρν∂μD̄∗
ν − ∂μρνD̄∗ν)},

£ψDD = igψDDψμ(∂μDD̄ − D∂μD̄),

£ψD∗D = −gψD∗Dεμναβ∂μψν(∂αD∗
βD̄ + D∂αD̄∗

β),

£ψD∗D∗ = −igψD∗D∗{ψμ(∂μD∗νD̄∗
ν − D∗ν∂μD̄∗

ν) + (∂μψνD∗ν − ψν∂μD∗ν)D̄∗μ+
+ D∗μ(ψν∂μD̄∗

ν − ∂μψνD̄∗ν)}.

(9)
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Fig. 4. Quark level diagram for B0 → D+(∗)D−(∗) → J/ψρ0

Fig. 5. Quark level diagram for B0 → D0(∗)D̄0(∗) → J/ψρ0

Fig. 6. HLL diagrams for long-distance t-channel contribution to B0 → J/ψρ0
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Here ε0123 = +1 and we deˇne the charm meson iso-doublets as

D̄T = (D̄0, D−), D = (D0, D+),

D̄∗T = (D̄∗0, D∗−), D∗ = (D∗0, D∗+).
(10)

With the above preparation we can write out the decay amplitude involving HLL contributions
with the following formula:

M(B(pB) → M(p1)M(p2) → M(p3)M(p4)) =
1
2

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
×

× (2π)4δ4(pB − p1 − p2)M(B → M1M2)G(M1M2 → M3M4), (11)

for which both intermediate mesons (M1, M2) are pseudoscalar. And

M(B(pB) → M(p1)M(p2) → M(p3)M(p4)) = −i
GF

2
√

2

∫
d3p1

2E1(2π)3
d3p2

2E2(2π)3
×

× (2π)4δ4(pB − p1 − p2)fD∗mD∗VcbV
∗
cd

[
(ε∗1 · ε∗2)(mB + m1)ABM1

1 (m2
2)−

− (ε∗1 · pB)(ε∗2 · pB)
2ABM1

2 (m2
2)

mB + m1

]
G(M1M2 → M3M4), (12)

in which both mesons are vectors. Also G(M1M2 → M3M4) involves hadronic vertices
factor, which is deˇned as

〈D(p3)ρ(ε2, p2)|i£|D(p1)〉 = −igDDρε2(p1 + p3),

〈D∗(ε3, p3)ρ(ε2, p2)|i£|D(p1)〉 = −i
√

2gD∗Dρεμναβεμ
2 ε∗ν

3 pα
1 pβ

2 ,

〈D∗(ε3, p3)ρ(ε2, p2)|i£|D∗(ε1, p1)〉 = −iεμ
1εν

2εα
3 [2p2μgνα − (p1 + p2)αgμν + 2p1νgμα],

〈D(p3)ψ(ε2, p2)|i£|D(p1)〉 = −igψDDε2(p1 + p3),

〈D∗(ε3, p3)ψ(ε2, p2)|i£|D(p1)〉 = −igψD∗Dεμναβεμ
2 ε∗ν

3 pα
1 pβ

2 ,

〈D∗(ε3, p3)ψ(ε2, p2)|i£|D∗(ε1, p1)〉 = −iεβ
1εη

2ε
λ
3 [2p2βgηλ − (p1 + p2)λgβη + 2p1ηgβλ].

(13)

The amplitudes of the mode B0 → D−(p1)D+(p2) → J/ψ(ε3, p3)ρ0(ε4, p4), where D+ and
D+∗ mesons are exchanged at t-channel respectively, are given by

Abs(6a) =

1∫
−1

|p1|d(cos θ)
4πmB

M(B0 → D+D−)(−i)gψDD(ε3 · p1)×

× (−i)gDDρ(ε4 · p2)
F 2(q2, m2

D)
q2 − m2

D

, (14)
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Fig. 7. HLL diagrams for long-distance t-channel contribution to B0 → J/ψρ0

Abs(6b) =

1∫
−1

|p1|d(cos θ)
16πmB

M(B0 → D+D−)(−i)gψD∗Dερσληερ
3p

λ
1pη

3×

× (−i)
√

2gD∗Dρεμναβεμ
4pα

2 pβ
4

(
gσν − qσqν

m2
D∗

)
F 2(q2, m2

D∗)
q2 − m2

D∗
. (15)

The amplitudes of the B0 → D−∗(ε1, p1)D+∗(ε2, p2) → J/ψ(ε3, p3)ρ0(ε4, p4), where D+

and D+∗ are exchanged respectively, read as

Abs(6c) =

1∫
−1

|p1|d(cos θ)
16πmB

(
− i

GF√
2

)
fD∗mD∗VcbV

∗
cd×

× (−i)gψD∗Dεμναβεμ
3pν

3pβ
1 (−i)

√
2gD∗Dρερσληερ

4p
σ
4pη

2×

×
[
(m2

B + m2
D∗)ABD∗

1 (m2
D∗)

(
− gα

χ +
pα
1 p1χ

m2
D∗

)(
− gλχ +

pλ
2pχ

2

m2
D∗

)
−

− 2ABD∗

2 (m2
D∗)

(m2
B + m2

D∗)

(
− pα

B +
(p1 · pB)pα

1

m2
D∗

)
×

×
(
− pλ

B +
(p2 · pB)pλ

2

m2
D∗

)]
F 2(q2, m2

D)
q2 − m2

D

, (16)



40 Mohammadi B., Mehraban H.

and

Abs(6d) =

1∫
−1

|p1|d(cos θ)
16πmB

(
− i

GF√
2

)
fD∗mD∗VcbV

∗
cd×

× (−i)gψD∗D∗ερ
3[2p1ρgμβ − (p1 + p3)βgμρ + 2p3μgβρ]×

× (−i)gD∗D∗ρε
λ
4 [2p2λgαν − (p2 + p4)αgνλ + 2p4νgαλ]×

×
(
− gαβ +

qαqβ

m2
D∗

)[
(m2

B + m2
D∗)ABD∗

1 (m2
D∗)

(
− gμχ +

pμ
1pχ

1

m2
D∗

)(
− gν

χ +
pν
2p2χ

m2
D∗

)
−

− 2ABD∗

2 (m2
D∗)

(m2
B + m2

D∗)

(
− pμ

B +
(p1 · pB)pμ

1

m2
D∗

)(
− pν

B +
(p2 · pB)pν

2

m2
D∗

)]
F 2(q2, m2

D∗)
q2 − m2

D∗
. (17)

The amplitudes of the mode B0 → D−∗(ε1, p1)D+(p2) → J/ψ(ε3, p3)ρ0(ε4, p4), where D+

and D+∗ are exchanged respectively, become

Abs(6e) =

1∫
−1

|p1|d(cos θ)
16πmB

√
2GF VcbV

∗
cd×

× (−2i)gDDρ(ε4 · p2)(−i)gψD∗Dεμναβεμ
3pα

1 pβ
3×

× [fD∗FBD
1 (m2

D∗) + fDABD∗

0 (m2
D)]

(
− pν

2 +
(p1 · p2)pν

1

m2
D∗

)
F 2(q2, m2

D)
q2 − m2

D

, (18)

and

Abs(6f) =

1∫
−1

|p1|d(cos θ)
16πmB

√
2GF VcbV

∗
cd×

× (−i)gψD∗D∗εν
3 [2p1νgμβ − (p1 + p3)βgμν + 2p3μgβν]×

× (i)
√

2gD∗Dρερσληερ
4p

λ
2pη

4 [fD∗FBD
1 (m2

D∗) + fDABD∗

0 (m2
D)]×

×
(
− gασ +

qαqσ

m2
D∗

)(
− pμ

2 +
(p1 · p2)p

μ
1

m2
D∗

)
F 2(q2, m2

D∗)
q2 − m2

D∗
. (19)

The amplitudes of the mode B0 → D−(p1)D+∗(ε2, p2) → J/ψ(ε3, p3)ρ0(ε4, p4), where D+

and D+∗ are exchanged respectively, read as

Abs(6g) =

1∫
−1

|p1|d(cos θ)
16πmB

√
2GF VcbV

∗
cd×

× (−2i)gψDD(ε3 · p1)(i)
√

2gD∗Dρεμναβεμ
4pα

2 pβ
4×

× [fD∗FBD
1 (m2

D∗) + fDABD∗

0 (m2
D)]

(
− pν

1 +
(p1 p2)pν

2

m2
D∗

)
F 2(q2, m2

D)
q2 − m2

D

, (20)
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and

Abs(6h) =

1∫
−1

|p1|d(cos θ)
16πmB

√
2GF VcbV

∗
cd×

× (−i)gD∗D∗ρε
μ
4 [2p2μ − (p2 + p4)αgμν + 2p4νgαμ]×

× (−i)gψD∗Dερσληερ
3p

λ
1pη

3 [fD∗FBD
1 (m2

D∗) + fDABD∗

0 (m2
D)]×

×
(
− gβσ +

qβqσ

m2
D∗

)(
− pν

1 +
(p1 · p2)pν

2

m2
D∗

)
F 2(q2, m2

D∗)
q2 − m2

D∗
. (21)

In writing the above amplitudes, we have used p · ε = 0. The effective vertices of strong
interaction for the rescattering process, such as gDDρ, gDDψ, etc., are gained from data
provided the 	avor SU(3) symmetry holds. However, since the t-channel exchanged particles
P and V are off their mass shell, a phenomenological form factor F (q2, m2

i ) is introduced to
compensate the off-shell effect at the vertices. Because the effective coupling constants, for
example, gDDρ, are obtained from the data where the three particles are all on-shell, while in
our case the exchanged D+(∗) and D0(∗) mesons are off-shell, a compensation form factor is
needed and we take it as suggested in [1, 12]

F (q2, m2
i ) =

(
Λ2 − m2

i

Λ2 − q2

)n

. (22)

The form factor (i.e., n = 1) normalized to unity at q2 = m2
i · mi and q are the physical

parameters of the exchange particle and Λ is a phenomenological parameter. It is obvious
that for q2 → 0 F (q2, m2

i ) becomes a number. If Λ � mi then F (q2, m2
i ) turns to be unity,

whereas, as q2 → ∞ the form factor approaches zero and the distance becomes small and the
hadron interaction is no longer valid. It is noted that the parameter Λ would smear the errors
caused by assuming the dominating of one-particle exchange. Since Λ should not be far from
the mi and q, we choose

Λ = mi + ηΛQCD, (23)

where η is the phenomenological parameter and the coefˇcient for the strong interaction scale.
Its value in the form factor shows importance of the strong interaction and is expected to be
of the order of unity and can be determined from the measured rates, and

q2 = p2
1 + p2

3 − 2E1E3 + 2|p1||p3| cos θ, (24)

where θ is the angle between p1 and p3. Now we want to calculate the amplitudes of
Figs. 7, aÄh. By using the equations of Abs(6a) and Abs(6b), the amplitudes of Figs. 7, a and
b, are given by

Abs(7a) =

1∫
−1

|p1|d(cos θ)
4πmB

M(B0 → D0D̄0)(−i)gψDD(ε3 · p1)×

× (−i)gDDρ(ε4 · p2)
F 2(q2, m2

D)
q2 − m2

D

, (25)
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and

Abs(7b) =

1∫
−1

|p1|d(cos θ)
16πmB

M(B0 → D0D̄0)(−i)gψD∗Dερσληερ
3p

λ
1pη

3×

× (−i)
√

2gD∗Dρεμναβεμ
4pα

2 pβ
4

(
gσν − qσqν

m2
D∗

)
F 2(q2, m2

D∗)
q2 − m2

D∗
, (26)

and the amplitudes of Figs. 7, cÄh are similar to equations Abs(6c) − Abs(6h). The decay
amplitude of B0 → J/ψρ0 due to all contributions related to ρ0 = (uū − dd̄)/

√
2 via the

HLL diagrams is

A(B0 → J/ψρ0) = {Abs(7a) + Abs(7b) − Abs(6a) − Abs(6b)}/
√

2. (27)

4. NUMERICAL RESULTS

The Wilson coefˇcients ci have been calculated in different schemes. In this paper we
will use consistently the naive dimensional regularization (NDR) scheme. The values of ci at
μ = mb with the next-to-leading order (NLO) QCD corrections are given by [5,8]

c1 = 1.117, c2 = −0.257,

c3 = 0.017, c4 = −0.044,

c5 = 0.011, c6 = −0.056, (28)

c7 = −1 · 10−5, c8 = 5 · 10−4,

c9 = −0.010, c10 = 0.002.

The relevant input parameters which are used: mB0 = 5.279 GeV, mJ/ψ = 3.1 GeV,
mρ = 0.78 GeV, mD± = mD0 = 1.87 GeV, mD±∗ = mD0∗ = 2.01 GeV, fB0 = 0.176 GeV,
fD± = fD0 = 0.222 GeV, fD±∗ = fD0∗ = 0.23 GeV, Vub = 0.0043, Vud = 0.974, Vcb =
0.042, Vcd = 0.230 [6]; fJ/ψ = 0.405 GeV [13]; ABρ

1 (0) = ABρ
2 (0) = 0.28, V Bρ(0) =

0.33 [5]; ABD∗

1 (m2
D∗) = 1.1, ABD∗

2 (m2
D∗) = 1.82, FBD

0 (m2
D) = 0.86, FBD

1 (m2
D∗) = 0.95,

ABD∗

0 (m2
D) = 2.73 [8]; gDDρ = gD∗D∗ρ = 2.52, gψDD = gψD∗D∗ = 7.71, gD∗Dρ = 2.82,

gψD∗D = 8.64 [2].
Using the parameters relevant for the B0 → J/ψρ0 decay, we get 	avor averaged branch-

ing ratio for the QCDF method as

BR(B0 → J/ψρ0) = 0.87 · 10−5. (29)

After considering intermediate states we obtain
1) The amplitude of B0 → D+D− decay

M(B0 → D+D−) = 2.10 · 10−7 (30)

and the branching ratio is given by [8]

BR(B0 → D+D−) = τB0

√
λ(m2

B0 , m2
D+ , m2

D−)
|M(B0 → D+D−)|2

16πm3
B

, (31)
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The branching ratio of B0 → J/ψρ0 decay with η = 1−3.5
and experimental data (in units of 10−5)

Branching ratio
η

1 1.5 2 2.5 3 3.5 EXP [6]

BR(B0 → J/ψρ0) 0.057 0.25 0.68 1.43 2.47 4.18 2.7 ± 0.4

Fig. 8. The variation of the branching ratio of B0 → J/ψρ0 with η = 1−4

where λ(m2
B0 , m2

D+ , m2
D−) = m4

B0 − 2m4
D± − 2m2

B0m2
D± , so

BR(B0 → D+D−) = 3.28 · 10−4 (EXP = 2.11 · 10−4). (32)

2) The amplitude and branching ratio of B0 → D0D̄0 decay [9]

M(B0 → D0D̄0) = 7.95 · 10−8,

BR(B0 → D0D̄0) = 5.68 · 10−5 (EXP < 6 · 10−5).

Now, according to FSI, we are able to obtain the branching ratios of B0 → J/ψρ0 decay
with different values of η shown in the table and Fig. 8.

CONCLUSION

In this work, we have calculated the contribution of the t-channel FSI, i.e., inelastic
rescattering processes to the branching ratio of B0 → J/ψρ0 decay. For evaluating the
FSI effects, we have only considered the absorptive part of the HLL because both hadrons
produced via the weak interaction are on their mass shells.

We have calculated the branching ratio of B0 → J/ψρ0 decay by using QCDF method
and FSI. The experimental result of this decay is BR(B0 → J/ψρ0) = (2.7± 0.4) · 10−5 [6]
and according to QCDF and FSI our results are BR(B0 → J/ψρ0) = 0.87 · 10−5 and
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(0.057−4.18) · 10−5, respectively. We have considered that the value of FSI has a good
agreement with the experimental result.

There exist some phenomenological parameters in our calculations on FSI such as η in (23)
and many other sources of uncertainties, for example, the coupling constant gD∗Dρ etc., the
neglected subdominant contributions in the FSI, the estmate of pure QCDF contribution,
etc. We have introduced the phenomenological parameter η; its value in the form factor is
expected to be of order unity and can be determined from the measured rates. For a given
exchanged particle, we have used η = 1−3.5, and the branching ratios are 0.057−4.18. We
have considered that the factor of η is important to obtain branching ratio. According to Fig. 8,
we have seen that, if η = 2.92−3.18 is selected, the branching ratio of the B0 → J/ψρ0

decay approaches the experimental value.
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