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The formulae for m-order correlators Km of a given particle observable (e.g., energy, transverse
momentum or a conserved discrete quantum number) accounting for the track reconstruction efˇciencies
in a real detector are presented. The calculation of second- to fourth-order correlators is considered in
some detail. Similar to the case of an ideal detector, the correlators can be expressed through the event-
by-event 	uctuation measures of the observable single event mean, the pseudocorrelators (determined by
the pseudocentral moments of the observable distribution) and their cross terms. It allows one to avoid
the combinatorics and essentially reduce the computer time when calculating the higher-order correlators
in high multiplicity events. Compared with the case of ideal detector, this reduction is somewhat smaller
due to the increased number of pseudocorrelators and additional calculations of the moments of the
distribution of the track weights. For a constant track reconstruction efˇciency, the correlator formulae
reduce to those for an ideal detector. However, in real experiments the efˇciencies are usually essentially
dependent on particle momenta and may lead to substantial corrections of momentum correlators on the
level of tens of percent.

�·¥¤¸É ¢²¥´Ò Ëμ·³Ê²Ò ¤²Ö ±μ··¥²ÖÉμ·μ¢ m-£μ ¶μ·Ö¤±  Km ´ ¡²Õ¤ ¥³ÒÌ ¤²Ö Î ¸É¨Í ¢¥²¨-
Î¨´ (É ±¨Ì ± ± Ô´¥·£¨Ö, ¶μ¶¥·¥Î´Ò° ¨³¶Ê²Ó¸ ¨²¨ ¸μÌ· ´ÖÕÐ¨¥¸Ö ¤¨¸±·¥É´Ò¥ ±¢ ´Éμ¢Ò¥ Î¨¸² )
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§´ Î¨É¥²Ó´Ò³ ¶μ¶· ¢± ³ ± ¨³¶Ê²Ó¸´Ò³ ±μ··¥²ÖÉμ· ³ ´  Ê·μ¢´¥ ¤¥¸ÖÉ±μ¢ ¶·μÍ¥´Éμ¢.
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INTRODUCTION

The investigation of correlations is very important for hadron physics [1Ä4]. The inte-
gral correlation characteristics Å the correlators of particle energies, transverse momenta or
rapidities Å have been suggested [5,6] to study the production mechanism of very high multi-
plicity events. It was shown [7] that the correlators are closely related with the event-by-event
	uctuations of the event mean particle observables.

It should be noted that the higher-order 	uctuation measures or the higher, non-Gaussian,
moments of the event-by-event distribution of the observable mean (related with skewness
and kurtosis for the orders m = 3 and 4, respectively) are more sensitive signatures of the
critical phenomena in multiparticle production (e.g., in the case of particle freeze-out near the
critical endpoint) since they increase as powers ξ5m/2−3 of the correlation length ξ [4].

In the case of an ideal 100% efˇcient detector, a fast and simple procedure to calculate the
correlators with the help of the 	uctuation measures and so-called event-wise pseudocorrelators
has been suggested [7], exploiting the expressions of pseudocorrelators through the central
moments of the observable distribution [8]. Using the PYTHIA generator, the multiplicity
dependence of second- and third-order pseudocorrelators and their ratio have been studied
in [9]. The correction terms generated in the correlator analysis due to the multiplicity-
dependent observable mean have been investigated in [10]. The two-particle transverse
momentum correlators have been used as a correlation measure and studied as a function of
event centrality in Au + Au collisions at RHIC [11]. Both the analyses in [10] and [11] are
valid on the assumption of a constant detector efˇciency.

In this paper, we formulate a fast decomposition procedure to calculate the correla-
tors, avoiding the combinatorics in the case of observable-dependent track reconstruction
efˇciencies.

1. PARTICLE CORRELATORS IN THE CASE OF IDEAL DETECTOR

In the case of an ideal detector, the mth order correlator in the events with a given charged
hadron multiplicity n is deˇned as

Km(n) =

〈
1

Cn
m

n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

Δε
(l)
i1

· · ·Δε
(l)
im

〉
, (1)

Δε
(l)
iλ

= ε
(l)
iλ

− 〈ε〉. (2)

Here Cn
m =

n!
m!(n − m)!

is the normalization factor equal to the number of combinations;

ε
(l)
iλ

is the observable (e.g., energy, momentum, strangeness, electric or baryon charge) of the
iλth charged hadron (i1 < . . . < im) in the lth event; n is the charged hadron multiplicity in
an event. The observable mean

〈ε〉 = 〈ε(l)〉, (3)

where ε(l) is the observable average in the lth event:

ε(l) =
1
n

n∑
i=1

ε
(l)
i , (4)
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and 〈 〉
=

1
N(n)

N(n)∑
l=1

(5)

stands for the averaging over the N(n) events with the charged hadron multiplicity n. Note
that the correlator formula (1), when formally applied to one particle, yields K1(n) = 0
according to deˇnition of the observable means in (3) and (4).

Deˇning

Δε(l) = ε(l) − 〈ε〉, (6)

Δε̃
(l)
i = ε

(l)
i − ε(l) (7)

and using the equality Δε
(l)
i = Δε̃

(l)
i + Δε(l), one can decompose the correlator on the

event-by-event 	uctuations of the event mean observable Δε(l), event-wise pseudocorrelators

k
(l)
λ (n) and the corresponding cross terms [7]:

Km(n) =
〈 m∑

λ=0

Cm
λ Δε(l) m−λk

(l)
λ (n)

〉
, (8)

where k
(l)
0 = 1. The event-wise pseudocorrelators are deˇned similarly to (1) up to the

substitution Δε
(l)
i → Δε̃

(l)
i :

k(l)
m (n) =

1
Cn

m

n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

Δε̃
(l)
i1

· · ·Δε̃
(l)
im

. (9)

Similar to the correlator, the ˇrst-order pseudocorrelator also vanishes by deˇnition: k
(l)
1 = 0.

It is remarkable that one can avoid the combinatorics in (9), expressing the pseudocorrelators
through the central moments of the observable distribution [7,8] (see also Sec. 3).

2. ACCOUNTING FOR TRACK RECONSTRUCTION EFFICIENCIES

In the case of a nonideal detector, one has to account for the track reconstruction efˇcien-
cies with the help of the weighting function

w
(l)
i =

f
(l)
i

ω
(l)
i

, (10)

where ω
(l)
i is the track reconstruction efˇciency depending on particle pseudorapidity η and

transverse momentum pT associated with ith track in lth event, and f
(l)
i is a function correcting

for fake tracks, secondary and out of kinematic region particles.
The efˇciency corrected average observable in the lth event is

ε(l) =

n∑
i=1

ε
(l)
i w

(l)
i

n∑
i=1

w
(l)
i

. (11)
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For the efˇciency corrected m-particle correlator, we have

Km(n) =

〈n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

w
(l)
i1

· · ·w(l)
im

Δε
(l)
i1

· · ·Δε
(l)
im

n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

w
(l)
i1

· · ·w(l)
im

〉
. (12)

The decomposition similar to (8) now takes the form

Km(n) =

〈
m∑

λ=0

Cm
λ Δε(l) m−λk

(l,m)
λ (n)

〉
, (13)

where k
(l,m)
0 = 1. Note that now the pseudocorrelators k

(l,m)
λ depend also on the correlator

order m:

k
(l,m)
λ (n) =

n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

w
(l)
i1

· · ·w(l)
im

Δε̃
(l)
i1

· · ·Δε̃
(l)
iλ

n−(m−1)∑
i1=1

· · ·
n∑

im=im−1+1

w
(l)
i1

· · ·w(l)
im

. (14)

Obviously, such a pseudocorrelator coincides with the true one for λ = m only: k
(l,m)
m = k

(l)
λ .

Again, K1 = k
(l)
1 = 0 by deˇnition. Note, however, that the pseudocorrelators k

(l,m)
1 do not

vanish for m > 1.
Particularly, the second-order correlator can be decomposed as

K2(n) = 〈Δε(l)2 + 2Δε(l)k
(l,2)
1 (n) + k

(l,2)
2 (n)〉. (15)

Here the ˇrst term
〈
Δε(l)2

〉
is a quadratic measure of the 	uctuation of the observable event-

wise mean around the sample mean. The second term is a cross term which vanishes in the

ideal case of unit reconstruction weights w
(l)
i since the ˇrst-order event-wise pseudocorrelator

for ideal detector k
(l)
1 vanishes by deˇnition.

Similarly, the three-particle correlator is decomposed into four terms:

K3(n) = 〈Δε(l)3 + 3Δε(l)2k
(l,3)
1 (n) + 3Δε(l)k

(l,3)
2 (n) + k

(l,3)
3 (n)〉. (16)

Here the ˇrst term 〈Δε(l)3〉 is a cubic measure of the 	uctuation of the observable event-wise
mean around the sample mean. The second and third terms are cross terms, the ˇrst of
them vanishing in the case of an ideal detector due to vanishing of the ˇrst-order event-wise

pseudocorrelator k
(l)
1 .

3. CALCULATING EVENT-WISE PSEUDOCORRELATORS THROUGH
PSEUDOCENTRAL MOMENTS OF OBSERVABLE DISTRIBUTION

We will describe in some detail the calculation of the event-wise second- and third-order
pseudocorrelators with the help of pseudocentral moments of the observable distribution.
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In the case of an ideal detector, one may use the identity

n∑
i=1

Δε̃
(l)
i = 0 (17)

and its powers to express the event-wise pseudocorrelators k
(l)
m (n) through the central moments

S
(l)
λ , λ � m, of the single-particle observable distribution,

S
(l)
λ (n) =

1
n

n∑
i=1

Δε̃
(l)λ
i . (18)

Thus, for the second- and third-order pseudocorrelator, we have [7,8]:

k
(l)
2 (n) = − 1

n − 1
S

(l)
2 , (19)

k
(l)
3 (n) =

2
(n − 1)(n − 2)

S
(l)
3 . (20)

Using the identity

n∑
i=1

n∑
j=1, �=i

w
(l)
i w

(l)
j fij =

n∑
i=1

w
(l)
i

⎛⎝ n∑
j=1

w
(l)
j fij − w

(l)
i fii

⎞⎠ , (21)

where fij are arbitrary functions. After generalizing identity (17) and its second power for
the case of a nonideal detector:

n∑
i=1

w
(l)
i Δε̃

(l)
i = 0, (22)

n∑
i=1

(w(l)
i Δε̃

(l)
i )2 +

n∑
i=1

n∑
j=1, �=i

w
(l)
i w

(l)
j Δε̃

(l)
i Δε̃

(l)
j = 0, (23)

and substituting the sums over the ordered m-plets {i1 < . . . < im} in the pseudocorrelator
deˇnitions by the sums over the m-plets {i1 �= . . . �= im}, one gets for the ˇrst- and second-
order pseudocorrelators contributing to the second-order correlator:

k
(l,2)
1 (n) = −

n∑
i=1

w
(l)2
i Δε̃

(l)
i

n(nw(l)2 − w(l)2)
, (24)

k
(l,2)
2 (n) ≡ k

(l)
2 (n) = −

n∑
i=1

w
(l)2
i Δε̃

(l)2
i

n(nw(l)2 − w(l)2)
, (25)

where

w(l)λ =
1
n

n∑
i=1

w
(l)λ
i . (26)
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Formula (25) shows that the pseudocorrelator k
(l)
2 is negatively deˇned and does not explicitly

depend on correlations of the observables of different particles.
Note that it can be rewritten as

k
(l)
2 (n) = − w(l)S

′ (l,2)
2

nw(l)2 − w(l)2
, (27)

where S
′(l,2)
2 is the event-wise second pseudocentral moment:

S
′ (l,2)
2 (n) =

n∑
i=1

w
(l)2
i Δε̃

(l)2
i

n∑
i=1

w
(l)
i

. (28)

We use the preˇx ®pseudo¯ because of the quadratic weights in (28) for S
′ (l,2)
2 contrary to

the linear weights in the true efˇciency corrected λth central moment:

S
(l)
λ (n) =

n∑
i=1

w
(l)
i Δε̃

(l)λ
i

n∑
i=1

w
(l)
i

. (29)

Generally, the λ-order pseudocorrelators contributing to m-order correlator (λ � m) can be
expressed through the λth pseudocentral moments calculated with the powers μ � m of the
weights:

S
′ (l,μ)
λ (n) =

n∑
i=1

w
(l)μ
i Δε̃

(l)λ
i

n∑
i=1

w
(l)
i

. (30)

Of course, S
′ (l,μ)
λ = Sλ in case of an ideal detector.

Thus, the ˇrst-order pseudocorrelator in (24) can be rewritten as

k
(l,2)
1 (n) = − w(l)S

′ (l,2)
1

nw(l)2 − w(l)2
. (31)

As for the pseudocorrelators contributing to the the third-order correlator, using in addition
the identity valid for arbitrary functions fijk:

n∑
i=1

n∑
j=1, �=i

n∑
k=1, �=i,j

w
(l)
i w

(l)
j w

(l)
k fijk =

n∑
i=1

w
(l)
i ×

×
[

n∑
j=1

w
(l)
j

(
n∑

k=1

w
(l)
k fijk − w

(l)
i fiji − w

(l)
j fijj

)
−

− w
(l)
i

(
n∑

k=1

w
(l)
k fiik − 2w

(l)
i fiii

)]
(32)
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and the third power of identity (22):

n∑
i=1

(w(l)
i Δε̃

(l)
i )3 + 3

n∑
i=1

n∑
j=1, �=i

w
(l)
i Δε̃

(l)
i (w(l)

j Δε̃
(l)
j )2+

+
n∑

i=1

n∑
j=1, �=i

n∑
k=1, �=i,j

w
(l)
i w

(l)
j w

(l)
k Δε̃

(l)
i Δε̃

(l)
j Δε̃

(l)
k = 0, (33)

one gets

k
(l,3)
1 (n) = −2

n∑
i=1

w
(l)2
i (nw(l) − w

(l)
i )Δε̃

(l)
i

n(n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3)
, (34)

k
(l,3)
2 (n) = −

n∑
i=1

w
(l)2
i (nw(l) − 2w

(l)
i )Δε̃

(l)2
i

n(n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3)
, (35)

k
(l,3)
3 (n) ≡ k

(l)
3 (n) = 2

n∑
i=1

w
(l)3
i Δε̃

(l)3
i

n(n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3)
. (36)

Obviously, the pseudocorrelators in Eqs. (34), (35) and (36) can be expressed through the
pseudocentral moments of the observable distribution as

k
(l,3)
1 (n) = −2

w(l)(nw(l)S
′ (l,2)
1 − S

′ (l,3)
1 )

n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3
, (37)

k
(l,3)
2 (n) = − w(l)(nw(l)S

′ (l,2)
2 − 2S

′ (l,3)
2 )

n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3
, (38)

k
(l)
3 (n) = 2

w(l)S
′ (l,3)
3

n2w(l)3 − 3nw(l)w(l)2 + 2w(l)3
. (39)

The generalization of the expressions for the efˇciency corrected pseudocorrelators k
(l,m)
λ (n)

for m > 3 is straightforward. To perform the corresponding rather lengthy analytical calcu-
lations, we have written a Maple [12] code, which is available under the request. Here we
present only the results for m = 4:

k
(l,4)
1 = −3w(l)(n2 w(l)2S′(l,2)

1 − n w(l)2S′(l,2)
1 − 2n w(l)S′(l,3)

1 + 2 S′(l,4)
1 )

n3 w(l)4 − 6n2 w(l)2w(l)2 + 3n w(l)2
2

+ 8n w(l)w(l)3 − 6 w(l)4
, (40)

k
(l,4)
2 =

w(l)(4n w(l)S′(l,3)
2 2n w(l)S′(l,2)

1

2
n w(l)2S′(l,2)

2 − n2 w(l)2S′(l,2)
2 − 6 S′(l,4)

2 )

n3 w(l)4 − 6n2 w(l)2w(l)2 + 3n w(l)2
2
+ 8n w(l)w(l)3 − 6 w(l)4

, (41)
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k
(l,4)
3 =

w(l)(2n w(l)S′(l,3)
3 + 3n w(l)S′(l,2)

1 S′(l,2)
2 − 6 S′(l,4)

3 )

n3 w(l)4 − 6n2 w(l)2w(l)2 + 3n w(l)2
2
+ 8n w(l)w(l)3 − 6 w(l)4

, (42)

k
(l,4)
4 =

3w(l)(n w(l)S′(l,2)
2

2
− 2 S′(l,4)

4 )

n3 w(l)4 − 6n2 w(l)2w(l)2 + 3n w(l)2
2
+ 8n w(l)w(l)3 − 6 w(l)4

. (43)

It should be noted that all the formulae used to calculate correlators of a given observ-
able ε reduce to those for an ideal detector in the case of ε-independent track reconstruction
efˇciencies.

4. CALCULATING CORRELATORS FOR MONTE-CARLO EVENTS

To estimate the computing time of the correlator calculations as well as the corrections
of momentum correlators due to realistic momentum dependence of the track reconstruction
efˇciency, we have used the Monte-Carlo generator PYTHIA [13] to simulate events of pp
interactions at 7 TeV with charged hadron multiplicity n � 5. The reconstructed tracks
have been simulated with the help of the rejection method [14] assuming a similar pT - and
η-dependence of the track reconstruction efˇciency as in the ATLAS experiment [15]: it
depends only weakly on η and rapidly increases with pT from ∼ 10% at pT = 0.1 GeV/c and
achieves a level of ∼ 80% at pT = 0.8 GeV/c. Such a dependence is typical for high-energy
multiparticle production experiments [16Ä19].

To estimate the acceleration of the correlator calculations, when substituting the direct for-
mula (12) by the decomposition formula (13), we have used the Processor AMD Phenom(tm)
II X6 1100T with CPU 3.3 GHz. We have found that the computation time of the correlator
Km according to (12) behaves in accordance with the corresponding combinatorics:

Tm(n, N) = 1.9
nm

m!
N(n) [ps], (44)

while the computation time according to the decomposition formula (13) is strongly reduced
and depends on the multiplicity only linearly:

T ′
m(n, N) =

{
0.5

[
m +

1
2
m(m + 1)

]
n + 300

}
N(n) [ps]. (45)

The m-dependence in square brackets corresponds to the calculation of m averages w,

w2, . . . , wm and 1+2+ . . .+m terms ε, S
′(2)
1 , S

′(2)
2 , . . . , S

′(m)
1 , S

′(m)
2 , . . . , S

′(m)
m . This reduc-

tion is somewhat smaller than in the case of a constant track reconstruction efˇciency, when
the square bracket in (45) reduces to [m + 1] in correspondence with the calculation of m + 1
terms ε, S1, S2, . . . , Sm.

The reduction of the computation time is not critical for moderate multiplicities and not
too high orders of the correlators. Thus, for the multiplicity n = 100, the computation
time according to the direct formula (12) is reasonable even for the ˇfth-order correlator and
for N = 106 events it composes about 160 s. The decomposition formula (13) becomes of
principle importance for calculation of higher-order correlators in central heavy-ion collisions
at high energies. Thus, for a typical charged hadron multiplicity n = 1000 the computation
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time of the ˇfth-order correlator in N = 106 events comprises half a year according to the
direct formula (12), compared with 10 ms when using the decomposition formula (13).

As for the corrections of the momentum correlators Km or the 	uctuation measures 〈Δεm〉
due to a typical momentum-dependent track reconstruction efˇciency, for m � 4 they amount
up to several tens of percent.

We have not considered here the corrections due to possible multiplicity dependence of
the observable mean which may be on the level of several tens of percent [10].

CONCLUSIONS

The formulae for the m-order correlators Km of a given particle observable ε (e.g., energy,
transverse momentum, rapidity or a conserved discrete quantum number) accounting for the
track reconstruction efˇciencies are presented with some calculation details for m = 2, 3, 4.
Similar to the case of an ideal detector, one can reduce the computation time by avoiding the
combinatorics and expressing the correlators through the event-by-event 	uctuation measures
of the observable single event mean, the pseudocorrelators (determined by the pseudocentral
moments of the observable distribution) and their cross terms. The number of the terms
to be calculated is however higher due to increased number of pseudocorrelators and addi-
tional calculations of the moments of the distribution of the track weights. The correlators
are affected by detector inefˇciency in the case of substantial ε-dependence of track recon-
struction efˇciencies. The reduction of the correlator computation time with the help of the
decomposition formula as well as the corrections of momentum correlators due to a typical
momentum-dependent track reconstruction efˇciency have been estimated with the help of
Monte-Carlo events of pp collisions at 7 TeV for particles with pT > 0.1 GeV/c. It was
found that the reduction of the computation time is of principle importance for calculation of
the higher-order (m > 4) correlators in the events with charged hadron multiplicities of the
order of several hundreds or higher. The estimated corrections of the momentum correlators
Km or the 	uctuation measures 〈Δεm〉 for m � 4 are up to several tens of percent and should
be taken into account.
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