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HIGHER-ORDER CORRECTIONS TO THE
GRIMUSÄSTOCKINGER FORMULA

S. E. Korenblit1, D. V. Taychenachev
Irkutsk State University, Irkutsk, Russia

For the GrimusÄStockinger formula one and the same dimensionless parameter of asymptotic ex-
pansion is found by several ways of calculations. This parameter strongly depends on the width of wave
packet.
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INTRODUCTION

For the modern theory of neutrino oscillations [1,2] the main tool is the GrimusÄStockinger
theorem [3], which gives the leading asymptotic behaviour with |R| = R → ∞ for the integral

J (R) =
∫

d3q

(2π)3
e−i(q·R)Φ(q)
(q2 − κ2 − i0)

≈ eiκR

4πR
Φ (−κn)

[
1 + O(R−1/2)

]
, (1)

where R = Rn, n2 = 1, and the function Φ(q) ∈ C3 decreases at least like 1/q2 together
with its ˇrst and second derivatives. In order to understand the physical conditions necessary
for this expansion, the dimensionless parameters should be determined from the higher-order
corrections to this formula. Here, this parameter is deˇned unambiguously by the use of
various asymptotic expansions allowing one to calculate the further corrections.

1. CORRECTIONS FOR THE THREE-DIMENSIONAL CASE

To obtain the higher corrections of order R−n we suppose that Φ(q) and its ˇrst and
second derivatives are represented by Fourier-transform as

Φ(q) =
∫

d3x ei(q·x) ϕ(x), ∇qΦ(q) = i

∫
d3x ei(q·x) xϕ(x), (2)
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and so on. Since 1/q2 is also Fourier-image of 1/|x|, Eqs. (2) are valid at least in the sense of
distributions also for the functions deˇned in [3]. By using the ˇrst equality of the following
well-known representations for spherical wave as a free Schréodinger three-dimensional Green
function with κ = 2λ, q = 2p:

eiκ|x|

4π|x| =
∫

d3q

(2π)3
e∓i(q·x)

(q2 − κ2 − i0)
= i

∫
d3p

4π3
e∓2i(p·x)

∞∫
0

dt eit(λ2+i0−p2), (3)

and by interchanging the order of integration for integral (1) one ˇnds

J (R) =
∫

d3x
eiκ|R−x|

4π|R − x| ϕ(x). (4)

Substituting here the expansion, which in the exponential should always contain one additional
order with respect to the ones in denominator

|R − x| = R

[
1 − 2

(n · x)
R

+
x2

R2

]1/2

= R − (n · x) +
x2 − (n · x)2

2R
+ . . . ,

we come to the corresponding expansion of integral (4) up to O(R−2):

J (R) =
eiκR

4πR

∫
d3x e−iκ(n·x)ϕ(x)

[
1 +

(n · x)
R

+
iκ

2R

(
x2 − (n · x)2

)
+ . . .

]
,

that by making use of (2) transcribes as

J (R) =
eiκR

4πR

[
1 − i

R
(n · ∇q) +

iκ

2R

(
(n · ∇q)2 − ∇2

q

)
+ . . .

]
Φ(q)

∣∣∣∣
q=−κn

, (5)

with
(n · ∇q)Φ(q)

∣∣
q=−κn

= −∂κΦ(−κn), (6)

and so on. For any positive deˇnite quadratic form of momentum q: ζ = (qA−1q) > 0, with
Φ(q) = H(ζ), α(n) =

(
nA−1n

)
, α2(n) =

(
nA−2n

)
, that is

[
1 − i

R
(n · ∇q) +

iκ

2R

(
(n · ∇q)2 − ∇2

q

)]
Φ(q)

∣∣∣∣
q=−κn

�−→

�−→
[
1 +

iκ

R

[
3α(n) − Tr {A−1}

]
∂ζ − i2κ3

R

(
α2(n) − α2(n)

)
∂2

ζ2

]
H(ζ)

∣∣∣∣
ζ=κ2α(n)

. (7)

Then, for Gaussian wave packet: H(ζ) = e−ζ/4, expression (5) reads

J (R) =
eiκR−κ2α(n)/4

4πR

[
1 − iκ

4R

[
3α(n) − Tr {A−1}

]
− iκ3

8R

(
α2(n) − α2(n)

)]
. (8)

Here, the square bracket evidently represents corrections only to the phase of the exponential.
It may be directly obtained by the saddle-point method.
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To this end let us transcribe integral (1) for the above Gaussian wave packet by using the
second representation of Eq. (3). Gaussian integration gives

J (R) =
i

4

∞∫
0

dt

[
|Kt|
π3

]1/2

eiF (t), Kt =
(
A−1 + itI

)−1
, K0 = A, (9)

where

iF (t) = it(λ2 + i0) − (RKtR) , iF ′′(t) = 2
(
R {Kt}3 R

)
, (10)

iF ′(t) = i
[
λ2 + i0 +

(
R {Kt}2 R

)]
�→ 0, t0 = R/λ + iα(n) + ε, (11)

t0 is the saddle point as asymptotical solution of Eq. (11) for R → ∞ up to ε = O(λ/R).
It is obtained by diagonalization A = O� AO onto the eigenvalues A = diag {aj}, with
0 < aj = 1/αj < ∞ and determinant |A| ≡ det{A} = a1a2a3, by using a suitable orthogonal
rotation � = OR, �2 = R2, and due to Eq. (11) deˇnes F (t0) and |Kt0 | up to O(ε2). Along
the path deformed according to α(n) > 0 we obtain

J (R) ≈ i

4
eiπ/4

[
|Kt0 |
π3

]1/2 [
2π

|iF ′′(t0)|

]1/2

eiF (t0) =
eiΘ(R)

4πR
e−λ2α(n), (12)

Θ(R) = 2λR − λ

2R

[
3α(n) − Tr {A−1}

]
− λ3

R

[
α2(n) − α2(n)

]
, (13)

that for

κ = 2λ, Tr {A−1} =
3∑

j=1

αj ,

3∑
j=1


2
j [αn(n) − (αj)n] = 0, (14)

exactly coincides with Eq. (8) with the same precision. The corrections in (8), (13) evidently
disappear for degenerate case: αj = α1, for j = 2, 3.

For the neutrino oscillations problem: κ =
√

E2
κ − m2 ≈ Eκ, and for the Gaussian wave

packet with coordinate width σx: A ∼ σ−2
x , so Tr {A−1} ∼ α(n) ∼ σ2

x, whence, the true
expansion parameters appear as combinations of two different dimensionless ones: κσx and
σx/R, that deˇne the application conditions of the GrimusÄStockinger formula as

(κσx)
σx

R
≈ (Eκσx)

σx

R
	 1, and (κσx)3

σx

R
≈ (Eκσx)3

σx

R
	 1. (15)

2. THE FOUR-DIMENSIONAL CASE

In fact, the above integral (1) is only the three-dimensional part of the four-dimensional
one deˇning macroscopic Feynman diagram [2] of the problem:

J(R) =
∫

d4q

(2π)2
e−i(qR) Φ(q)

(q2 − m2 + i0)
=

∫
d4r

m2

i
h

(
i0 − m2(R + r)2

)
φ(r), (16)

with
Rμ = (T,R) → ∞,

√
R2 =

√
RμRμ =

√
T 2 − R2 � T

m

Eκ
� T, (17)
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where
m2

i
h

(
m2a2

)
=

∫
d4q

(2π)2
e−i(qx)

(q2 − m2 + i0)
≈ m2

i

√
π

2
e−ma

(ma)3/2
, (18)

for a2 = i0 − x2 = eiπx2, is the causal propagator in coordinate space, and now the four-
dimensional Fourier representation is assumed for Φ(q), which for relativistic Gaussian wave
packet [2] reads as

Φ(q) =
∫

d4re−i(qr)φ(r), Φ(q) �→ e−(qA−1q)/4, φ(r) �→ |A|1/2

π2
e−(rAr). (19)

Here, again A−1 ∼ σ2
x in terms of Gaussian coordinate width for any positively deˇned

quadratic form of momentum q in Minkowski space: ζ = (qA−1q) > 0. Then, for σ2
x → 0

one has A → ∞, Φ(q) �→ 1, φ(r) �→ δ4(r), whence iJ(R) �→ m2h
(
i0 − m2R2

)
, that is

reasonable from physical viewpoint.
Repeating now all the previous steps (4)Ä(8) for the second expression (16) of J(R), with

the so approximated propagator (18), for arbitrary Φ(q) (19) and ημ = Rμ/
√

R2, l = i|l|,
|l| =

√
R2, with

ma = ml

[
1 +

2i(ηr)
l

− r2

l2

]1/2

≈ m

[
l + i(ηr) +

(ηr)2 − r2

2l
+ . . .

]
, (20)

one obtains

J(R) ≈ m2

i

√
π

2
e−ml

(ml)3/2

{
1 +

3(η∂q)
2l

+
m

2l

[
(η∂q)2 − ∂2

q

]}
Φ(q)

∣∣∣∣
q=mη

, (21)

that for the relativistic Gaussian wave packet from (19), with α(η) =
(
ηA−1η

)
, α2(η) =(

ηA−2η
)
, analogously gives

J(R) ≈ m2

i

√
π

2
e−ml e−m2α(η)/4

(ml)3/2
×

×
{

1 − m

4l

[
4α(η) − Tr {A−1}

]
− m3

8l

[
α2(η) − (α(η))2

]}
. (22)

Such, at ˇrst sight, rough calculations are exactly conˇrmed again by saddle-point method.
Indeed, by exponentiating like (3) the denominator of the ˇrst expression (16) with m = 2m
and representation-dependent g �→ gμν or δμ

ν , by means of Gaussian integration clariˇed in
Appendix, one has instead of (9)Ä(11):

J(R) =
1
i

∞∫
0

dt|K(t)|1/2 exp {−iF(t)} , K(t) =
[
A−1 − itg

]−1
, (23)

−iF(t) = −it
(
m2 − i0

)
− (RK(t)R) , −iF ′′(t) = 2

(
RK3(t)R

)
, (24)

−iF ′(t) = −i
[
m2 − i0 +

(
RK2(t)R

)]
�→ 0, t0 = |l|/m − iα(η) + ε, (25)

t0 is again the saddle point as asymptotical solution of Eq. (25) for |l| → ∞ up to ε =
O(m/|l|). It is obtained now by diagonalization in Minkowski space as A = ξ(j)(A)jnξ(n)
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onto the eigenvalues (A)jn = gjna(j) ordered [4] as 0 < gjja(j) = gjj/αj < ∞, with

determinant |A| = |Aμν | = |(A)jn|, by using a suitable Lorentz transformation as 
j =
ξ
(j)
μ Rμ with 
j = gjj


j = gjk
k, 
2 = R2, and due to Eq. (25) deˇnes again F(t0) and
|K(t0)| up to O(ε2). Along the path deformed according to α(η) > 0, instead of (12) one
ˇnds

J(R) ≈ 1
i
|K(t0)|1/2

[
e−iπ/2 2π

| − iF ′′(t0)|

]1/2

e−iF(t0) =
√

mπ

i

e−iB(R)e−m2α(η)

l3/2
, (26)

−iB(R) = −2ml − m
2l

[
4α(η) − Tr {A−1}

]
− m3

l

[
α2(η) − (α(η))2

]
, (27)

that for

Tr {A−1} = (A−1)λ
λ =

3∑
j=0

αj , |Aμν | =
3∏

j=0

gjja(j) > 0, (28)

αn(η) =
3∑

j=0

(αj)ngjj


2
j


2
=

(
ηA−nη

)
, gμν , gjk = diag {1,−1,−1,−1}, (29)

exactly coincides with Eq. (22) with the same precision.
The true parameters of expansion appear again as the following products of the two

dimensionless parameters, that are now mσx and σx/|l|:

(mσx)
σx

|l| 	 1, and (mσx)3
σx

|l| 	 1, (30)

and they have the same order for (mσx) � 1.
It is easy to see that both conditions for the three- and four-dimensional cases are practi-

cally the same. Indeed, Eq. (17) implies that

v =
κ

Eκ
=

R
T

, whence R2 = |l|2 =
R2

κ2
m2 =

T 2

E2
κ

m2. (31)

Since for ultrarelativistic neutrino T ≈ |R| and Eκ ≈ κ = |κ|, conditions (30) may be
rewritten as

(κσx)
σx

|R| = (Eκσx)
σx

T
≈ (Eκσx)

σx

|R| 	 1, (32)

and
(mσx)2(κσx)

σx

|R| ≈ (mσx)2(Eκσx)
σx

|R| 	 1. (33)

Thus, for (mσx) � 1 these both conditions are the same as the ˇrst one in the three-
dimensional case (15). Moreover, the same dimensionless parameter (32) deˇnes in fact the
asymptotical solutions of both saddle-point equations (11) and (25). Note, that exact values
of the ˇrst and second square brackets in (13) and/or (27), respectively, may be different,
and their determination in terms of σx for the four-dimensional case [2] (27)Ä(29) is different
from that for the three-dimensional case (13), (14).

Acknowledgements. The authors thank V.Naumov, D.Naumov, E.Akhmedov, S. Lovtsov,
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APPENDIX

In order to strictly calculate a standard Gaussian integral over the Minowski space [2]:∫
d4y e−(yAy)+2(By), (34)

where the quadratic form (yAy) = yμAμνyν is symmetric and positive deˇnite, the following
solution of the eigenvalue problem may be used:

Aξ(n) = a(n)ξ
(n), (ξ(n))2 = gnn, Aμν = ξ(l)

μ (A)lnξ(n)
ν , (A)ln = glna(n). (35)

In spite of ambiguity ([5, § 94]) of diagonalization procedure for symmetric tensor in Min-
kowski space, the positive deˇniteness of A leaves the used type of its diagonalization

only, leading to eigenvectors ξ(n), n = 0−3 (35), whose components ξ
(n)
ν deˇne Lorentz

transformation diagonalizing the form. Then, with the substitutions Y n = ξ
(n)
ν yν transforming

(yAy) = (Y AY ), bm = Bμξ
(m)
μ , (By) = (bY ) = bmgmnY n, integration (34) factorizes to∫

d4Y e−(Y AY )+2(bY ) ≡
3∏

n=0

⎧⎨
⎩

∞∫
−∞

dY ne−(Y n)2gnna(n)+2bngnnY n

⎫⎬
⎭ =

=

√
π4

|(A)ln|
exp

(
b
(
A

)−1
b
)

=

√
π4

|Aμν |
exp

(
BA−1B

)
, (36)

where Aμν

(
A−1

)νλ = δμ
λ, and |Aμν | = |(A)ln| is deˇned by (28).

Nevertheless, it is instructive to obtain the same result without reference to diagonalization
by using the direct integration over space and time variables separately. Since for the
n-dimensional Minkowski space with signature metric gμν = diag {1,−1,−1, . . . ,−1} in any
given orthogonal basis the symmetric tensor A is represented by the block matrix Aμν = Aij

for i, j, μ, ν = 0÷n−1, with the rightmost bottom block Aij = Aij = Aji, for i, j = 1÷n−1:

Aμν =
(

A00 A0j

Ai0 Aij

)
, (37)

integral (34) with d4y �→ dny may be rewritten as
∞∫

−∞

dy0e−y0A00y0+2(B0y0)

∫
dn−1y exp

[
−ylAlkyk − 2

(
y0A0k − Bk

)
yk

]
.

The both integrals are over Euclidian space now, so they are evaluated to√
πn

α|Aij |
exp

{[
Bl

(
A−1

)lk
Bk

]
+

1
α

[
B0 − Bl

(
A−1

)lk
Ak0

]2
}

, (38)

if α ≡ A00 − A0l

(
A−1

)lk
Ak0 > 0. The expression is simpliˇed by Laplace expansion of

the determinant |Aμν |, where M
(
i1
j1

i2
j2

...

...

)
means the minor of the matrix Aμν , whose rows
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i1, i2, . . . and columns j1, j2, . . . are deleted:

|Aμν | ≡
n−1∑
k=0

(−1)kA0kM
(
0
k

)
= A00M

(
0
0

)
−

n−1∑
k=1

(−1)k+1A0kM
(
0
k

)
=

= A00M
(
0
0

)
−

n−1∑
k=1

(−1)k+1A0k

n−1∑
i=1

Ai0(−1)i+1M
(
0
0

i
k

)
=

= |Alj |
[
A00 − A0k

(
A−1

)ki
Ai0

]
= α|Alj |. (39)

Thus, α > 0 due to positivity condition of form (37) implying that |Aμν |, |Alj | > 0. Further-
more, if for any symmetric block matrix A:

AA−1 ≡ AB =
(

P11 a12

a�
12 A22

)(
H11 b12

b�
12 B22

)
=

(
I11 012

0�
12 I22

)
≡ I,

then

B22 =
(
A22 − a�

12P
−1
11 a12

)−1
= A−1

22 + A−1
22 a�

12

(
P11 − a12A−1

22 a�
12

)−1
a12A−1

22 ,

whence the rightmost bottom block of the inverse to (37) is expressed for i, k, l, j = 1÷n−1
as (

A−1
)ik

= (B22)
ik =

(
A−1

)ik
+

1
α

(
A−1

)il
Al0A0j

(
A−1

)jk
, (40)

and since (
A−1

)ik
=

(−1)i+kM
(
0
0

i
k

)
|Alj |

,
(
A−1

)l0
=

(−1)l

|Aμν |
M

(
0
l

)
,

the argument of the exponential in (38) is also reduced to expression (36):

1
α

B2
0 − 2

α
B0Bl

(
A−1

)li
Ai + Bl

[(
A−1

)lk
+

1
α

(
A−1

)li
Ai0A0j

(
A−1

)jk
]

Bk =

= Bμ

(
A−1

)μν
Bν =

(
BA−1B

)
.

A generalization of integral (34) with arbitrary polynomial or smooth function similar to the
well-known approximations for Euclidian case [6] here is also straightforward.
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