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SEMICLASSICAL APPROXIMATION OF THE
DIRAC EQUATION WITH SUPERSYMMETRY
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The general scheme of the successive construction of semiclassical approximation for the classical
Dirac equation in a background YangÄMills ˇeld, where the usual Dirac operator is replaced by that
with supersymmetry, is suggested. The ˇrst two terms of the semiclassical expansion in Planck's
constant are derived in an explicit form. It is shown that supersymmetry of the initial Dirac operator
leads to appearance of new additional terms in the classical equation of motion for spin of a particle
and ipso facto requires appropriate modiˇcation for the Lagrangian of the spinning particle. The result
obtained is used for the construction of one-to-one mapping between two Lagrangians of a classical
color-charged spinning particle, one of which possesses local supersymmetry, and another one does
not. It is demonstrated that for recovery of the one-to-oneness the additional terms obtained above
in the semiclassical approximation of the Dirac operator with supersymmetry should be added to the
Lagrangian without supersymmetry.
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1. STATEMENT OF PROBLEM

In our papers [1, 2] it was suggested the following model Lagrangian describing the
interaction of a classical relativistic spinning color-charged particle with external non-Abelian
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gauge Aa
μ(x) and fermion Ψi

α(x) ˇelds:

L = L0 + Lm + Lθ + LΨ, L0 = − 1
2e

(
dxμ

dτ

dxμ

dτ

)
+

1
2i

(
dψ̄

dτ
ψ − ψ̄

dψ

dτ

)
,

Lm = −e

2
m2, Lθ = i(θ†iDijθj) − e

g

4
QaF a

μν(ψ̄σμνψ),
(1)

LΨ = − e√
2

g
{
θ†i(ψ̄αΨi

α) + (Ψ̄i
αψα)θi

}
+

+
e√
2

g

(
CF

2TF

)
Qa

{
θ†j(ta)ji(ψ̄αΨi

α) + (Ψ̄i
αψα)(ta)ijθj

}
,

where e is the one-dimensional vierbein ˇeld (we put throughout c = 1 for the speed of light)
and Dij = δij∂/∂τ + igẋμAa

μ(ta)ij is the covariant derivative along the direction of motion.
The spin degree of freedom of the particle is represented here by a commuting c Å number
Dirac spinor ψ = (ψα), α = 1, . . . , 4. The equation of motion for this spinor is

i
dψ(τ)

dτ
= − g

4m
σμνQaF a

μν(x)ψ(τ) +
(
terms with fermion ˇeld Ψi

α(x)
)
. (2)

By virtue of the fact that the background fermion ˇeld Ψi
α(x) (which within the classical

description is considered as the Grassmann-odd one) has, by deˇnition, spinor index, a
description of the spin degree of freedom of the particle in terms of the spinor ψα is very
natural and simplest in technical respect. There is some vagueness with respect to Grassmann
evenness of this spinor. In our papers [1, 3] in application to analysis of dynamics of a
spinning color particle moving in a hot quarkÄgluon plasma, the spinor ψα was thought as the
Grassmann-even one (although it is not improbable that the using simultaneously of spinors
of the different Grassmann evenness may be required for a complete classical description
of the spin dynamics in external ˇelds of different statistics, i.e., it requires introducing a
superspinor, see Summary).

An alternative approach most generally employed for the description of a spin for a
massive particle is connected with introduction into consideration of the real pseudovector
and pseudoscalar dynamical variables ξμ, μ = 1, . . . , 4, and ξ5 that are elements of the
Grassmann algebra [4Ä7]. For these variables an appropriate Lagrangian of the ˇrst-order
time derivative was deˇned as follows:

L = L0 + Lm + Lθ, L0 = − 1
2e

ẋμ ẋμ − i

2
ξμ ξ̇μ +

i

2e
χẋμξμ,

(3)
Lm = −e

2
m2 +

i

2
ξ5 ξ̇5 +

i

2
mχξ5, Lθ = iθ†iDijθj +

i

2
eg QaF a

μν ξμξν ,

where χ is the one-dimensional gravitino ˇeld. This ˇeld (as well as e) is not dynamical one.
It is well known [5Ä7] that the Lagrangian possesses local supersymmetry. The description of
the spin degree of freedom in terms of the odd pseudovector and pseudoscalar quantities is to
some extent a more fundamental one in comparison with the description in terms of the even
spinor ψα. For this reason the interesting question arises as to whether it is possible to deˇne
relation (mapping) between these variables, and, ˇnally, to construct a mapping between
Lagrangian (1) (without the interaction term LΨ) and Lagrangian (3). The construction of
such a mapping in an explicit form is very important. The reason is that counterpart of the
interaction term LΨ in Lagrangian (3) is unknown. Thus, having understood a connection
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between the Lagrangians without an external fermion ˇeld, one can deˇne an explicit form of
the interaction terms with the background Ψ-ˇelds in terms of the Grassmann pseudovector
and pseudoscalar variables ξμ and ξ5 merely by means of an appropriate replacement of the
ψα spinor by the mapping ψα = ψα(ξμ, ξ5) in (1). In works [8, 9] it was shown that such
a map can in principle be obtained if preliminarily to exclude the auxiliary variable χ in
Lagrangian (3) with the help of the equation of motion

2 ξ̇5 − mχ = 0.

In this case, instead of L0 and Lm in (3) we will have

L0 = − 1
2e

ẋμ ẋμ − i

2
ξμ ξ̇μ − i

me
ẋμξμ ξ̇5, Lm = −e

2
m2 − i

2
ξ5 ξ̇5.

The map linear in ψ and ψ̄ has the following form:

(θ̄θ)ψ = κ ξμ(γμγ5θ) + αξ5(γ5θ), (θ̄θ) ψ̄ = −κ∗(θ̄γ5γ
μ)ξμ − α∗(θ̄γ5)ξ5. (4)

Here, κ and α are unknown coefˇcient functions, θ = (θα) is an auxiliary Grassmann-odd
Dirac spinor and the symbol * is a complex conjugation sign. Inverse mapping has the
following form:

ξμ =
1
2

{
β(θ̄γμγ5ψ) − β∗(ψ̄γ5γμθ)

}
, ξ5 =

1
2

{
β̃(θ̄γ5ψ) − β̃∗(ψ̄γ5θ)

}
, (5)

where β and β̃ are some new unknown coefˇcient functions. The explicit form of the
coefˇcient functions was considered in [8, 9].

Our initial Lagrangian (1) written down in terms of the commutative variable ψα, is devoid
of any supersymmetry. Therefore, it can be only mapped into the other nonsupersymmetric
Lagrangian. The terms containing the fermion counterpart χ to the vierbein ˇeld e, namely

i

2e
χẋμξμ,

im

2
χξ5, (6)

cannot appear under any map. These terms are important for the local supersymmetry of
Lagrangian (3) and its counterparts a priori must be contained in the initial Lagrangian (1).
In this notice we would like to show how the terms of this kind may really appear in (1).

2. SEMICLASSICAL APPROXIMATION

The main idea in determining such terms is to use an extended Hamiltonian or super-
Hamiltonian in the construction of the ®spinning¯ equation (2). Hamiltonians of this type
have been considered in a few papers for different reasons. Thus, in the papers by Borisov,
Kulish [10] and Fradkin, Gitman [11] they were used in the construction of the Green's
function of a Dirac particle in background non-Abelian gauge ˇeld. Within the framework of
operator formalism this superHamiltonian has the form

−2mĤSUSY =
(
D̂μD̂μ +

1
2

gσ̂μνF aμν T̂ a − m2
)
+ iχ

(
γ̂μD̂μ + m

)
. (7)
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All quantities with hats above represent operators acting in appropriate spaces of representa-
tions of the spinor, color and coordinate algebras; χ is an odd variable. Analog of introducing
such a superHamiltonian in the massless limit can be also found in the work by Friedan and
Windey [12] in the construction of the superheat kernel. The latter has been used in calculating
the chiral anomaly. In the monograph by Thaller [13] within the supersymmetric quantum
mechanics a notion of the Dirac operator with supersymmetry has been deˇned in the most
general abstract form. The expression (7) is just its special case.

Before studying the general case of the Dirac operator with supersymmetry it is necessary
to recall brie	y the fundamental points of deriving the equation of motion for the commuting
spinor ψα, Eq. (2). In quantum electrodynamics this equation arises when we analyze the
connection of the relativistic quantum mechanics with the relativistic classical mechanics ˇrst
performed by W. Pauli [14] within the so-called ˇrst-order formalism for fermions. In the
book by Akhiezer and Beresteskii [15] this analysis has been performed on the basis of the
second-order formalism [16]. Here, we will follow the second line.

In the second-order formalism the initial QCD Dirac equation for the wave function Ψ is
replaced by its quadratic form

−2mĤΦ =
(
DμDμ +

1
2

gσμνFμν − m2
)
Φ = 0, (8)

where a new spinor Φ is connected with the initial one by the relation

Ψ =
1
m

(
γμDμ + m

)
Φ.

In what follows we restore Planck's constant � in all formulae. Since we are interested in
the interaction of the spin degree of freedom of a particle with an external gauge ˇeld most,
then for the sake of simplicity we will consider Eq. (8) for the case of the interaction with an
Abelian background ˇeld (with the replacement of the strong coupling g by electric charge q).
The presence of the color degree of freedom can result in qualitatively new features, one of
them is appearing a mixed spinÄcolor degree of freedom [17]. In this respect our initial model
Lagrangian (1) is the simpliˇed one and it corresponds to perfect factorization of the spin
and color degrees of freedom of the particle. The non-Abelian case also requires appreciable
complication of the usual WKB-method in the analysis of Eq. (8) that is beyond the scope of
our work (see, for example, [18,19]).

A solution of Eq. (8) in the semiclassical limit is deˇned as a series in powers of �:

Φ = eiS/�(f0 + �f1 + �
2f2 + . . . ), (9)

where S, f0, f1, . . . are some functions of coordinates and time. Substituting this series
into (8) and collecting the terms of the same power of �, we obtain the following equations
correct to the ˇrst order in �:

�
0 :

(
∂S

∂xμ
+ qAμ

)2

− m2 = 0, (10)

�
1 :

[
1
i

∂

∂xμ

(
∂S

∂xμ
+ qAμ

)]
f0 +

2
i

(
∂S

∂xμ
+ qAμ

)
∂f0

∂xμ
+

q

2
σμνFμνf0 = 0. (11)
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Furthermore, we introduce into consideration a 	ux fermion density

sμ ≡ Ψ̄0γμΨ0, (12)

where as Ψ0 we take the following expression:

Ψ0 =
1
m

(
γμDμ − m

)
f0 eiS/� � 1

m
eiS/�

[
πμγμ − m

]
f0,

πμ ≡ ∂S(x, α)
∂xμ

+ qAμ(x).

Here, α designates three arbitrary constants deˇning a solution for the action S, Eq. (10). In
terms of the spinor f0 the 	ux density (12) has the form

sμ =
2

m2
πμ

[
f̄0(γνπν − m)f0

]
and by virtue of Eqs. (10) and (11) it satisˇes the equation of continuity

∂sμ

∂xμ
= 0.

Equation (2) (without the terms with the external fermion ˇeld) arises from an analysis of
the equation for the spinor f0 (11). The latter in terms of the function πμ can be written in a
more compact form

∂πμ

∂xμ
f0 + 2πμ

∂f0

∂xμ
+

iq

2
σμνFμνf0 = 0. (13)

At this point we introduce a new variable

η ≡ 2
m2

[
f̄0(γνπν − m)f0

]
,

such that sμ = πμη. Owing to the continuity equation we have an important relation for the
η function

∂πμ

∂xμ
η = −πμ

∂η

∂xμ
. (14)

At the ˇnal stage we substitute f0 =
√

ηϕ0 into Eq. (13). With allowance for (14) this
equation takes the following form for a new spinor function ϕ0:

πμ
∂ϕ0

∂xμ
= − iq

4
σμνFμνϕ0.

In book [15] a solution of the equation derived just above was expressed in terms of the
solution of the Schréodinger equation for the wave function ψα(τ), Eq. (2). The latter describes
the motion of a spin in a given gauge ˇeld Fμν(x). This ˇeld is deˇned along the trajectory
of the particle xμ = xμ(τ, α, β) which in turn is deˇned from a solution of the equation

m
dxμ

dτ
= πμ(x, α)

with the initial value given by a vector β.
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3. EXTENSION OF THE SEMICLASSICAL APPROXIMATION

Let us now consider the question of a modiˇcation of the expressions obtained above in
the case when instead of the usual Hamilton operator in Eq. (8) one takes its supersymmetric
extension

−2mĤSUSYΦ ≡
{(

DμDμ +
q�

2
σμνFμν − m2

)
+ iχ

(
γμγ5D

μ + mγ5

)}
Φ = 0. (15)

Here, in the second expression following [11] in parentheses we have introduced the γ5

matrix into the deˇnition of the linear Dirac operator. This operator
(
γμγ5D

μ +mγ5

)
should

be believed as an odd function. We will seek a solution of Eq. (15) also in the form of a
power series (9) only on condition that the function S is considered as a usual commuting
function, whereas the spinor functions f0, f1, . . . should be considered as those containing
both Grassmann even and odd parts. Equations (10) and (11) are modiˇed as follows:

�
0 :

(
π2 − m2

)
f0 + iχ

(
πμγμγ5 + mγ5

)
f0 = 0,

�
1 :

(
π2 − m2

)
f1 + iχ

(
πμγμγ5 + mγ5

)
f1 +

+
[
1
i

∂πμ

∂xμ
f0 +

2
i

πμ
∂f0

∂xμ
+

q

2
σμνFμνf0

]
+ χγμγ5

∂f0

∂xμ
= 0.

The next step is to present the spinors f0 and f1 as a sum of even and odd parts{
f0 = f

(0)
0 + χf

(1)
0 ,

f1 = f
(0)
1 + χf

(1)
1 .

(16)

In the decomposition of (16) we believe the functions (f (0)
0 , f

(0)
1 ) to be the even ones, and

(f (1)
0 , f

(1)
1 ) to be the odd ones. The opposite case of partition into Grassmann evenness will

be mentioned at the end of the paper. By using (16) the equation of the zeroth order in � is
decomposed into two equations

(
π2 − m2

)
f

(0)
0 = 0,(

π2 − m2
)
f

(1)
0 + i

(
πμγμγ5 + mγ5

)
f

(0)
0 = 0,

the ˇrst of which deˇnes the HamiltonÄJacobi equation for the action S, Eq. (10), and the

second one is reduced to the matrix algebraic equation for the spinor f
(0)
0(

πμγμγ5 + mγ5

)
f

(0)
0 = 0.

Furthermore, the equation of the ˇrst order in � is also decomposed into two equations
which with the use of (10) take the form

1
i

(
∂πμ

∂xμ

)
f

(0)
0 +

2
i

πμ
∂f

(0)
0

∂xμ
+

q

2
σμνFμνf

(0)
0 = 0,

(17)
1
i

(
∂πμ

∂xμ

)
f

(1)
0 +

2
i

πμ
∂f

(1)
0

∂xμ
+

q

2
σμνFμνf

(1)
0 + γμγ5

∂f
(0)
0

∂xμ
=

(
πμγμγ5 + mγ5

)
f

(0)
1 .
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Notice that the term on the right-hand side of Eq. (17) represents the contribution of a quantum

correction in contrast to the other terms. The ˇrst equation for the even spinor f
(0)
0 is analyzed

similar to Eq. (13) by the replacement

f
(0)
0 =

√
ηϕ

(0)
0 , η ≡ 2

m2

[
f̄

(0)
0 (γμπμ − m)f (0)

0

]
. (18)

For the odd spinor f
(1)
0 we deˇne a similar replacement introducing a new odd spinor θ

(1)
0

by the rule

f
(1)
0 =

√
η θ

(1)
0 , (19)

with the same scalar function η as it was deˇned in (18). Taking into account the continuity
equation in the form (14) and the replacement (19), we obtain instead of (17)

πμ
∂θ

(1)
0

∂xμ
+

iq

4
σμνFμνθ

(1)
0 + iγμγ5

1
2
√

η

∂
√

ηϕ
(0)
0

∂xμ
=

1
2

(
πμγμγ5 + mγ5

)
ϕ

(0)
1 , (20)

where on the right-hand side we also have set f
(0)
1 ≡ √

ηϕ
(0)
1 . The equation obtained can

be connected with the equation of motion for a spin in external gauge ˇeld in the form (2),

but instead of the even spinor ψα(τ), here we have the odd spinor θ
(1)
0α (τ). The latter can be

identiˇed with the auxiliary Grassmann spinor θα(τ) we have introduced into mapping (4).

Further, the spinor ϕ
(0)
1 on the left-hand side of (20) is the even one and it can be related to

our commuting spinor ψα by setting

ϕ
(0)
1 ≡ mψ.

The expression in parentheses on the right-hand side of (20) should be considered as the
Grassmann odd one by virtue of oddness of the initial operator expression which correlates
with it (see the text after formula (15)). The oddness of this expression can be displayed
explicitly if we reintroduce the Grassmann scalar χ as a multiplier. Taking into account all
the above-mentioned and also the relation ẋμ = πμ/m, we obtain the ˇnal expression of
equation for the odd spinor θα:

1
i

dθ

dτ
+

q

4m
σμνFμνθ + . . . =

m

2i
χẋμ

(
γμγ5ψ

)
+

m

2i
χ
(
γ5ψ

)
. (21)

Here, the dots denote the contribution of the last term on the left-hand side of Eq. (20). Its
physical meaning is not clear. The terms on the right-hand side of (21) can be obtained by
varying with respect to θ̄ from the following terms, which must be added to Lagrangian (1):

L = . . . +
{(

im

2
χẋμ

(
θ̄γμγ5ψ

)
+

im

2
χ
(
θ̄γ5ψ

))
+ (conj. part)

}
. (22)

Finally, in turn, under the mapping of Lagrangian (1) into (3) the expressions in braces in (22)
should be identiˇed with the Grassmann pseudovector ξμ and pseudoscalar ξ5 by the rule (the
inverse mapping (5))

ξμ ∼
(
θ̄γμγ5ψ

)
+ (conj. part),

ξ5 ∼
(
θ̄γ5ψ

)
+ (conj. part),
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and, thereby, we can obtain the missing terms (6) in our map. Although we have obtained
here, the equation of motion for the odd spinor θα, Eq. (21), a similar equation can be obtained

for the even spinor ψα by changing the Grassmann evenness of the spinors (f (0)
0 , f

(0)
1 ) and

(f (1)
0 , f

(1)
1 ) in the decomposition of (16) to the opposite one.

4. SUMMARY

In this notice it was shown that to construct the map into a complete supersymmetric
Lagrangian (3), the initial Lagrangian (1) also has to possess a supersymmetry. To accomplish
these ends, we must add the terms (22) in an explicit form containing auxiliary anticommuting
classical spinor θα to the initial expression (1). Furthermore, the obtained Eq. (21) for the
odd spinor serves as a hint that the spinor should generally be considered as an independent
dynamical variable subject to own dynamical equation similar to the equation for ψα. This
odd spinor θα should be related to its superpartner: the even spinor ψα, and thus we have to
consider a single superspinor

Θα = θα + ηψα,

as was done, for instance, in paper [20]. Here, η is a real odd scalar.

Acknowledgements. This work was supported by the Russian Foundation for Basic
Research (project No. 09-02-00749) and ®Research and Training Specialists in Innovative
Russia, 2009Ä2013¯, contracts 14.B37.21.0910, 16.740.11.0154.

REFERENCES

1. Markov Yu. A., Markova M. A. Nonlinear Dynamics of Soft Fermion Excitations in Hot QCD
Plasma II: Soft-Quark-Hard Particle Scattering and Energy Losses // Nucl. Phys. A. 2007. V. 784.
P. 443.

2. Markov Yu. A., Markova M. A., Shishmarev A. A. The Equations of Motion for a Classical Color
Particle in Background Non-Abelian Bosonic and Fermionic Fields // J. Phys. G. 2010. V. 37.
P. 105001(25).

3. Markov Yu. A., Markova M. A., Vall A. N. Nonlinear Dynamics of Soft Fermion Excitations in Hot
QCD Plasma: Soft-Quark Bremsstrahlung and Energy Losses // Intern. J. Mod. Phys. A. 2010.
V. 25. P. 685.

4. Berezin F. A., Marinov M. S. Classical Spin and Grassmann Algebra // JETP Lett. 1975. V. 21.
P. 678;
Berezin F. A., Marinov M. S. Particle Spin Dynamics as the Grassmann Variant of Classical
Mechanics // Ann. Phys. (NY). 1977. V. 104. P. 336.

5. Barducci A., Casalbuoni R., Lusanna L. Supersymmetries and the Pseudoclassical Relativistic
Electron // Nuovo Cim. A. 1976. V. 35. P. 377;
Barducci A., Casalbuoni R., Lusanna L. Classical Scalar and Spinning Particles Interacting with
External YangÄMills Fields // Nucl. Phys. B. 1977. V. 124. P. 93.

6. Brink L. et al. Local Supersymmetry for Spinning Particles // Phys. Lett. B. 1976. V. 64. P. 435;
Brink L., Di Vecchia P., Howe P. S. A Lagrangian Formulation of the Classical and Quantum
Dynamics of Spinning Particles // Nucl. Phys. B. 1977. V. 118. P. 76.



Semiclassical Approximation of the Dirac Equation with Supersymmetry 1023

7. Balachandran A. P. et al. Classical Description of a Particle Interacting with a Non-Abelian Gauge
Field // Phys. Rev. D. 1977. V. 15. P. 2308.

8. Markov Yu. A. et al. Equations of Motion for a Classical Color Particle in Background Non-Abelian
Fermionic and Bosonic Fields: Inclusion of Pseudoclassical Spin. hep-th/1112.2056.

9. Markov Yu. A. et al. Correspondence between Classical and Pseudoclassical Descriptions of Spin
Degree of Freedom of Relativistic Particle in External Fields // Russ. Phys. J. 2012. V. 55.

10. Borisov N. V., Kulish P. P. Path Integral in Superspace for a Relativistic Spinor Particle in an
External Gauge Field // Theor. Math. Phys. 1982. V. 51. P. 535.

11. Fradkin E. S., Gitman D. M. Path-Integral Representation for the Relativistic Particle Propagators
and BFV Quantization // Phys. Rev. D. 1991. V. 44. P. 3230.

12. Friedan D., Windey P. Supersymmetric Derivation of the AtiyahÄSinger Index and the Chiral
Anomaly // Nucl. Phys. B. 1984. V. 235. P. 395.

13. Thaller B. The Dirac Equation. Berlin; Heidelberg: Springer-Verlag, 1992.

14. Pauli W. Diracs Wellengleichung des Elektrons und geometrische Optik // Helv. Phys. Acta. 1932.
V. 5. P. 179.

15. Akhiezer A. I., Beresteskii V. B. Quantum Electrodynamics. M.: Nauka, 1969.

16. Morgan A. G. Second-Order Femions in Gauge Theories // Phys. Lett. B. 1995. V. 351. P. 249.

17. Arodz H. Colored, Spinning Classical Particle in an External Non-Abelian Gauge Field // Phys.
Lett. B. 1982. V. 116. P. 251.

18. Arodz H. A Remark on the Classical Mechanics of Colored Particles // Ibid. P. 255;
Arodz H. Limitation of the Concept of the Classical Colored Particle // Acta Phys. Polonica B.
1983. V. 14. P. 13.

19. Belov V. V., Kondrat'eva M. F. ®Classical¯ Equations of Motion in Quantum Mechanics with Gauge
Fields // Theor. Math. Phys. 1992. V. 92. P. 722.

20. Sorokin D. P. et al. From the Superparticle Siegel Symmetry to the Spinning Particle Proper-Time

Supersymmetry // Phys. Lett. B. 1989. V. 216. P. 302.

Received on December 14, 2012.


