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Pion dissociation by the Mott effect in quark plasma is described within the generalized BethÄ
Uhlenbeck approach on the basis of the PNJL model, which allows for a uniˇed description of bound,
resonant and scattering states. As a ˇrst approximation, we utilize the BreitÄWigner ansatz for the
spectral function and clarify its relation to the complex mass pole solution of the pion BetheÄSalpeter
equation. Application of the Levinson theorem proves that describing the pion Mott dissociation solely
by means of spectral broadening of the pion bound state beyond TMott leaves out a signiˇcant aspect.
Thus, we acknowledge the importance of the continuum of scattering states and show its role for the
thermodynamics of pion dissociation.
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INTRODUCTION

We investigate the thermodynamics of mesonic bound states in hot medium consisting of
a nonideal quark plasma with correlations in the pion and sigma meson interaction channels.
A special emphasis is put on a correct description of the bound states' dissociation in the
vicinity of and beyond the Mott temperature. To this end, we utilize the Polyakov-loop-
extended NambuÄJona-Lasinio model at ˇnite temperature.

The model has two order parameters: the chiral condensate, determining the value of the
dynamically generated quark mass m(T ) related to the chiral symmetry breaking/restoration
transition, and the Polyakov-loop variable Φ(T ) which is an order parameter for deconˇne-
ment. Their values are obtained from self-consistent solutions of the coupled gap equations
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for these parameters which correspond to the location of the minimum of the thermodynam-
ical potential Ω(m, Φ; T ) in the mean-ˇeld approximation (MFA). Going beyond the MFA,
we evaluate the contributions from pion and sigma meson 
uctuations within the Gaussian
approximation to the path-integral representation of the thermodynamic potential. Above the
Mott temperature, one observes the spectral broadening of bound states leading to the appear-
ance of complex mass poles in the mesonic propagators. A proper analysis leads to coupled
BetheÄSalpeter equations from which meson masses and corresponding spectral widths are
obtained. Next, the equation of state for the quarkÄmeson system is obtained in the form of
a generalized BethÄUhlenbeck equation [1] which describes the effects that chiral symmetry
restoration and deconˇnement have on the contributions from pions and sigma mesons and
allows for an adequate description of bound, resonant and scattering states on equal footing.
The spectral functions in the mesonic channels are evaluated from the complex-valued polar-
ization loop integrals. An examination of the Levinson theorem [2] proves that in order to
correctly describe the Mott effect, the continuum of mesonic correlations (scattering states)
has to be taken into account. As a result of this analysis, we obtain a description of pion
dissociation where the effect of the vanishing bound state is exactly compensated by the
occurrence of a resonance in the continuum of scattering states.

The present work improves on previous works within the NJL model [3, 4], where un-
physical quark degrees of freedom appeared in the hadronic phase due to the lack of the
coupling to the Polyakov loop and the StefanÄBoltzmann limit was not obtained due to a
misplaced momentum cutoff. We also improve the recent work [5] by properly discussing the
role of Levinson's theorem in the PNJL model approach to the generalized BethÄUhlenbeck
equation of state for the quarkÄmeson plasma, see also recent developments in this direction in
Refs. [6,7]. The model presented joins both exact limits of ˇnite-temperature QCD Å the pion
gas at low temperatures and the quarkÄgluon StefanÄBoltzmann limit at high temperatures Å
within a microscopic chiral quark model approach.

1. QUARKS AND LIGHT MESONS IN THE PNJL MODEL

The deˇnition of the NambuÄJona-Lasinio model [8Ä14] with Polyakov loop [15Ä19] is
given in the Appendix A. Here we start from the expansion of the thermodynamic potential

Ω (T, μ) = −T

V
lnZ [T, V, μ] (1)

around homogeneous mean-ˇeld values, which leads to the decomposition of the auxiliary
ˇelds σ′ and π′ into their mean-ˇeld and 
uctuation parts:

σ′ = σMF + σ, π′ = π (πMF = 0). (2)

Utilizing the decomposed ˇelds results in the factorization of the partition function into the
respective parts describing mean-ˇeld and 
uctuation contributions:

ZMF[T, V, μ] = exp
{
−V

T

(
σ2

MF

4GS
+ U(Φ, Φ; T )

)
+ Tr ln

[
βS−1

MF[m]
]}

, (3)
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ZFL[T, V, μ] =
∫

DσDπ exp

{
−
[ β∫

0

dτ

∫
V

d3x
2σσMF + σ2 + π2

4GS

]
+

+ Tr ln
[
1 − SMF[m] (σ + iγ5τπ)

]}
. (4)

Here the mean-ˇeld inverse propagator is

S−1
MF = γ0(iωn − μ + A0) − γ · p − m0 − σMF = γ0(iωn − μ + A0) − γ · p − m. (5)

The thermodynamic potential in the mean-ˇeld approximation of the PNJL model is evaluated
to be given by the following expression [19]:

ΩMF =
σ2

MF

4GS
+U(Φ, Φ; T )−2Nf

∫
d3p

(2π)3
{
NcEp + T

[
ln N−

Φ (Ep) + lnN+
Φ (Ep)

]}
, (6)

where factors Nf , Nc originate from performing the trace operation and are a consequence of

isospin and color symmetry. The quark energy is given by Ep =
√

p2 + m2, E∓
p are deˇned

as E∓
p = Ep ∓ μ, and

N−
Φ (Ep) =

[
1 + 3

(
Φ + Φ e−βE−

p

)
e−βE−

p + e−3βE−
p

]
, (7)

N+
Φ (Ep) =

[
1 + 3

(
Φ + Φ e−βE+

p

)
e−βE+

p + e−3βE+
p

]
. (8)

In the mean-ˇeld approximation of the PNJL model, the values of the constituent quark
mass m and the Polyakov-loop variable Φ, along with its complex conjugate Φ, are obtained
from the condition that the thermodynamic potential should be minimized with respect to
these parameters, which is augmented by the stability conditions. For μ = 0, we have Φ = Φ
and thus the minimizing conditions are given by

∂ΩMF

∂σMF
= 0,

∂ΩMF

∂Φ
= 0. (9)

These conditions are equivalent to a set of coupled gap equations [17,19]. For the mass gap
equation we get

m = m0 + 4NfNcGS

Λ∫
d3p

(2π)3
m

Ep

[
1 − f−

Φ (Ep) − f+
Φ (Ep)

]
, (10)

where

f∓
Φ (Ep) =

Φ e−β(Ep∓μ) + 2Φ e−2β(Ep∓μ) + e−3β(Ep∓μ)

N∓
Φ (Ep)

(11)

are the so-called generalized Fermi functions, characteristic for the PNJL model. One should
note that if Φ → 1, the expression (11) reduces to the standard NJL-model Fermi functions.
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For PNJL calculations we should additionally ˇnd the values of Φ from corresponding gap
equation [19] at given T and μ.

In order to solve (10), a set of model parameters has to be determined: the cutoff
parameter Λ, the current quark mass m0 (in the chiral limit m0 = 0), and the coupling
constant GS . These parameters are ˇtted at T = 0 to reproduce physical quantities: the pion
mass Mπ = 135 MeV, the pion decay constant Fπ = 92.4 MeV, and the quark condensate
〈qq〉1/3 = −240.772 MeV. The used parameters [20] are shown in Table 1.

Table 1. The set of model parameters reproducing observable quantities (in brackets) and 〈qq〉1/3 =

−240.772 MeV [20]

m0, MeV Λ, MeV GSΛ2 Fπ , MeV Mπ , MeV

5.495 602.472 2.318 (92.4) (135)

Since NJL-type models are non-renormalizable, it is necessary to introduce a regulariza-
tion, e.g., by a cutoff Λ in the momentum integration. Following [19], in this study, in case of
thermodynamic quantities, we use the three-dimensional momentum cutoff for vacuum terms
and extend the integration till inˇnity for ˇnite temperatures. A comprehensive study of the
differences between the two regularization procedures (with and without cutoff on the quark
momentum states at ˇnite temperature) has been performed in [21].

Solutions of the gap equation (10) and the corresponding gap equation for the Polyakov-
loop variable Φ at zero chemical potential and nonzero T are presented in Fig. 1. Above the
critical temperature, which is equal to Tc = 237 MeV in the chiral limit and Tc = 251 MeV
for a ˇnite current quark mass, one observes chiral symmetry restoration indicated by the rapid
decrease of the constituent quark mass and the Polyakov-loop variable becoming close to 1.
The corresponding mean-ˇeld contribution to the pressure, given by P = −ΩMF, is shown
in Fig. 6 (scaled by a factor T 4) in Sect. 4. One observes that, in opposition to classical NJL
models (e.g., [3, 4]), quark degrees of freedom are suppressed below the critical temperature

Fig. 1. Temperature dependence of the quark masses m(T ) and Polyakov-loop variable Φ(T ) at μ = 0.
Results for quark mass are scaled by m(0) = 367.5 MeV
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in the PNJL model. Moreover, above the critical temperature, the gluonic degrees of freedom
are accounted for correctly.

The contribution to the thermodynamics stemming from the 
uctuations described by (4)
is evaluated in a scheme where we expand the logarithm up to the second (Gaussian) order
according to

ln (1 − x) = −
∞∑

k=1

xk

k
= −x − 1

2
x2 + . . . , |x| < 1, (12)

to get

Z(2)
FL [T, V, μ] =

∫
DσDπ exp

{
−
[ β∫

0

dτ

∫
V

d3x
σ2 + π2

4GS

]
−

− 1
2
Tr (SMF[m]Σ[σ, π]SMF[m]Σ[σ, π])

}
, (13)

where we have introduced Σ[σ, π] = σ + iγ5τπ.
Performing the calculation leads to the subsequent factorization of the thermodynamic

potential into parts describing the contribution from mesonic correlations corresponding to σ
and π channels of interaction

Z(2)
FL [T, V, μ] =

[
det

(
1

2GS
− Πσ(q0,q)

)]−1/2 [
det

(
1

2GS
− Ππ(q0,q)

)]−3/2

(14)

with the polarization loop ΠM (q0,q) given explicitly by

ΠM (q0,q) = −NcNf

∑
s,s′=±1

∫
d3p

(2π)3
1 − f−

Φ (−s′Ek) − f+
Φ (sEp)

q0 + s′Ek − sEp
×

×
(

1 − ss′
p · (p − q) ∓ m2

EpEp−q

)
. (15)

One easily obtains the thermodynamic potential corresponding to the chosen meson part of
the partition function up to the Gaussian order given by

Ω(2)
M (T, μ) =

dM

2
T

V
Tr ln S−1

M , (16)

where the degeneracy factor dM equals 1 for sigma mesons and 2 for pions.
From the point of view of the polarization operators, the pseudoscalar and scalar meson

masses can be deˇned by the condition that for q2 = M2
M the corresponding polarization

operator ΠM (M2
M ) leads to a bound-state pole in the meson correlation function [19]. For

mesons at rest (q = 0) these conditions correspond to the BetheÄSalpeter equations

1 + 4GNcNf

∫
d3p

(2π)3
4Ep

M2
π − 4E2

p

(1 − f−
Φ − f+

Φ ) = 0, (17)

1 + 4GNcNf

∫
d3p

(2π)3
p2

E2
p

4Ep

M2
σ − 4E2

p

(1 − f−
Φ − f+

Φ ) = 0. (18)

Solutions of the two BetheÄSalpeter equations (17) and (18) constitute the set of meson
masses and are presented in Fig. 2, a. The Mott temperature, which is deˇned by the condition



Pion Dissociation and Levinson's Theorem in Hot PNJL Quark Matter 1089

Fig. 2. Temperature dependence of the meson masses MM (a) and meson pressure for π (solid lines)

and σ (dotted lines) (b)

Mπ(TMott) = 2mq(TMott), is for given parameters TMott � 231 MeV in the chiral limit and
TMott � 256 MeV away from it. The modiˇcation of quasiparticle properties is clearly
visible: up to the Mott temperature TMott, the σ mass practically follows the behaviour of
2mq(T ), with a drop towards the pion mass, signalling chiral symmetry restoration (in the
chiral limit the σ mass exactly coincides with twice the quark mass up to TMott). In the
same region, the pion mass remains practically constant (and equals zero in the chiral limit).
At T � TMott, however, the masses of chiral partners become approximately degenerate,
Mσ ≈ Mπ, and then both masses increase linearly with temperature.

The corresponding meson pressure is shown in Fig. 2, b.

2. GENERALIZED BETHÄUHLENBECK APPROACH
TO THE QUARKÄMESON PLASMA

Deriving the thermodynamic equation of state for a quarkÄmeson system in the Beth and
Uhlenbeck form reduces to the introduction of scattering phase shifts into the formula for the
thermodynamic potential. This requires that we analytically continue the propagator into the
complex plane.

In a ˇrst step, we introduce meson spectral functions Ag
M (ω,q) by utilizing the integral

representation of the logarithm in (16), followed by the usual expression of the propagator by
means of Ag

M (ω,q) [22], i.e.,

ln S−1
M = −

GS∫
0

dg
1

2g2

1
1
2g

− ΠM (q0,q)
= −

+∞∫
−∞

dω

2π

1
q0 − ω

GS∫
0

dg

2g2
Ag

M (ω,q). (19)

Using the fact that the spectral density is given by the discontinuity of the propagator at the
real axis, we arrive at

GS∫
0

dg

2g2
Ag

M (ω,q) = −i

GS∫
0

dg

2g2

(
Sg

M (ω + iη,q) − Sg
M (ω − iη,q)

)
=

= −i ln
(

1 − 2GSΠM (ω − iη,q)
1 − 2GSΠM (ω + iη,q)

)
, (20)
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where the argument of the logarithm is by deˇnition the scattering matrix �M (ω,q) in the
Jost representation [3]. This normalized complex function can also be represented by means
of a scattering phase shift �M (ω,q) = exp[2iΦM (ω,q)], which allows us to identify

GS∫
0

dg

2g2
Ag

M (ω,q) = −i ln �M (ω,q) = 2ΦM (ω,q). (21)

Utilizing the above identity leads, after performing the trace operation, to the following result:

Ω(2)
M (T, μ) = −NM

2

∫
d3q

(2π)3

( +∞∫
0

dω

π

[
ω + 2T ln

(
1 − e−βω

)]dΦM (ω,q)
dω

)
=

= −NM

2

∫
d3q

(2π)3

( +∞∫
−q2

ds

π

[√
q2 + s + 2T ln

(
1 − e−β

√
q2+s

)]dΦM (s)
ds

)
=

= −NM

2

∫
d3q

(2π)3

( +∞∫
−q2

ds

[√
q2 + s + 2T ln

(
1 − e−β

√
q2+s

)]
DM (s)

)
, (22)

where DM (s) is a generalized mass distribution (density of states) containing all the dynamics
of the system. The above expression is the so-called generalized BethÄUhlenbeck form of the
thermodynamic potential. The connection to the original BethÄUhlenbeck expression for the
second virial coefˇcient can be found in [3] in detail.

For an analysis of meson masses and corresponding widths, necessary to obtain a descrip-
tion of mesonic correlations as bound states dissolving into resonant states above the Mott
temperature, one splits the polarization function ΠM (q0,q) according to

ΠM (q0,0) = 4NcNf I1 − 2NcNfPM I2(q0) = Ĩ1 − PM Ĩ2(q0), (23)

where, in the limit q = 0 that we utilize, the integrals I1 and I2 are given by

I1 =
∫

d3p

(2π)3

[
1

2Ep

(
1 − f−

Φ (Ep) − f+
Φ (Ep)

)]
, (24)

I2(q0) =
∫

d3p

(2π)3
1

4E2
p

[
1 − f−

Φ (Ep) − f+
Φ (Ep)

2Ep − q0
+

1 − f−
Φ (Ep) − f+

Φ (Ep)
2Ep + q0

]
, (25)

with PM = −q2
0 for pions and PM = −q2

0 + 4m2 for sigma mesons. By identifying
q0 = MM − i(1/2)ΓM , one can perform the complex mass pole analysis leading to

PM = −

1
4NcNfGS

− 2I1∣∣∣∣I2

(
q0 = MM − i

1
2
ΓM

)∣∣∣∣2
(Re I2(MM ) − i Im I2(MM )), (26)



Pion Dissociation and Levinson's Theorem in Hot PNJL Quark Matter 1091

which decomposes into coupled BetheÄSalpeter equations for meson mass and meson spectral
width.

In the ˇrst departure beyond the pole approximation (Appendix B), it is justiˇed above
TMott to consider DM (s) to be described by a BreitÄWigner type function

AR(s, T ) = aR
MMΓM(

s − M2
M

)2 + (MMΓM )2
, (27)

where MM is the meson pole mass, ΓM is the corresponding meson width, and aR is a
normalization factor. Below TMott, where the spectral broadening Γ(T ) of the states vanishes,
the above expression becomes the delta function typical for the spectral function of a mesonic
bound state. The meson phase shift ΦM corresponding to (27) should be of the form

ΦM (s) ≈ φR(s) =
π

π

2
− arctan

(
4m2 − M2

M

MMΓM

)×

×
(

arctan
[
s − M2

M

MMΓM

]
− arctan

[
4m2 − M2

M

MMΓM

])
, (28)

where, by introducing the notation φR(s), we acknowledge the fact that the above phase shift
is connected with resonant properties of the mesonic correlations.

3. LEVINSON'S THEOREM FOR QUARKÄMESON THERMODYNAMICS

In order to inspect the validity of the approach so far presented, in our analysis we consider
the Levinson theorem

+∞∫
4m2

ds
dΦM

ds
= nπ, (29)

where n denotes the number of bound states below the threshold 4m2. Indeed, it is easy to
check that the resonant phase shift φR(s) alone does not fulˇll (29). This implies that the
scattering phase shift should be composed of at least two parts. In fact, as was demonstrated
in [4], it is appropriate to decompose the scattering phase shift ΦM into a part corresponding
to the mesonic correlation and a part describing quarkÄantiquark scattering,

ΦM = φR + φsc. (30)

Namely, using (21), we can represent the total scattering phase shift ΦM as

ΦM =
i

2
ln

1 − 2GSΠM (ω + iη,q)
1 − 2GSΠM (ω − iη,q)

. (31)

Then it is straightforward, using (23) and the relation between logarithm and arctan functions,
to show that

ΦM = − arctan
[

2GSPM Im Ĩ2

1 − 2GS Ĩ1 + 2GSPM Re Ĩ2

]
(32)
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and, by several more consecutive steps, to obtain

ΦM = − arctan

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Im Ĩ2

Re Ĩ2

− 1 − 2GS Ĩ1

2GS |Ĩ2|2
Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

1 +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Im Ĩ2

2

PM Re Ĩ2 +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (33)

At this point it is enough to recognize the above expression as the sum of arctans to ˇnally
obtain

ΦM = − arctan

(
Im Ĩ2

Re Ĩ2

)
arctan

⎛⎜⎜⎜⎝1 − 2GS Ĩ1

2GS|Ĩ2|2
Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS|Ĩ2|2
Re Ĩ2

⎞⎟⎟⎟⎠ , (34)

which proves the formula (30), where

φsc = − arctan

(
Im Ĩ2

Re Ĩ2

)
(35)

and

φR = arctan

⎛⎜⎜⎜⎝1 − 2GS Ĩ1

2GS |Ĩ2|2
Im Ĩ2

PM +
1 − 2GS Ĩ1

2GS |Ĩ2|2
Re Ĩ2

⎞⎟⎟⎟⎠ . (36)

Using the conditions (26), in the above equation the masses and widths could be identiˇed in
accordance with (28).

As the ˇrst part of this decomposition is independent of mesonic properties, we presume
that it is connected with the scattering states' input to the thermodynamics. On the other
hand, the second part of (34) describes solely the behavior of dissolving mesons. Thus, we
are assured that the correct description of mesonic correlations accounts not only for bound
and resonant states' contribution, but also for the input from the scattering states.

In our analysis we will use a combined approach, where the scattering part of the phase
shift ΦM is deˇned according to (34) and the resonant part is given by a delta function below
TMott and by the BreitÄWigner ansatz (27) beyond it. Explicitly, we take

DM (s) =
1
π

dφM (s)
ds

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(s − M2

M ) +
1
π

d

ds
φsc(s), T < TMott,

aR

π

ΓMMM

(s − M2
M )2 + Γ2

MM2
M

+
1
π

d

ds
φsc(s), T > TMott.

(37)

We will, in the following, regard the states for positive real s � 4m2 only.
Finally, the scattering states' contribution to the density of states is normalized and exactly

compensates the contribution from the resonance (or the bound state, resp.). This accordance
with the Levinson theorem conˇrms the validity of the presented approach.
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4. RESULTS AND DISCUSSION

The above-described complex mass pole analysis leads to the results for the meson
masses MM and widths ΓM as presented in Fig. 3. We observe that the sigma-meson width
is nonzero for all the temperatures considered, although below TMott it is not signiˇcant

Fig. 3. Temperature dependence of meson masses

MM and corresponding spectral widths ΓM

and therefore allows us to consider sigma
to be a quasi-bound state. Above the
Mott temperature, pion and sigma masses
quickly become equal and so do their spec-
tral widths. This is the imprint of the chiral
symmetry restoration where the σ and π
mesons, being chiral partners, become de-
generate.

In what follows, we will concentrate
on the discussion of the π meson, because
it undergoes the Mott transition from the
bound state to the resonant correlation in
the continuum, accompanied by a jump of
the scattering phase shift at threshold from
π to 0 in accordance with the Levinson
theorem.

Fig. 4. Dependence of phase
shift Φ = φR + φsc and its

components φR and φsc in the

pion channel on the center-of-
mass energy
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Fig. 5. Temperature dependence of the pion pressure in the approximated GBU approach

Fig. 6. Comparison of the pion pressure obtained with the input from the MFA approximation to

thermodynamic potential

In Fig. 4 we show the phase shift ΦM (panel c) in the decomposition (30) into its resonant
(panel a) and scattering continuum (panel b) parts, obtained from the solution of Eqs. (35)
and (36).

The pion pressure resulting from utilizing the BreitÄWigner spectral function alone and
together with the input from the scattering states is shown in Fig. 5 along with the pressure of
the massive pion gas. Figure 6 shows the pion pressure as compared with the quark pressure
obtained from the mean-ˇeld approximation of the PNJL thermodynamic potential. We notice
that including the description of the scattering states results in a correct description of pion
thermodynamics in the vicinity of and beyond the Mott temperature.

CONCLUSIONS

Pion dissociation by the Mott effect in quark plasma was described within the generalized
BethÄUhlenbeck approach on the basis of a PNJL model whereby a uniˇed description of
bound, resonant and scattering states was given. As a ˇrst approximation, we utilized the
BreitÄWigner ansatz for the spectral function and clariˇed its relation to the complex mass
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pole solution of the pion BetheÄSalpeter equation. It has been demonstrated that a description
of the pion Mott dissociation solely by a spectral broadening of the pion bound state when
it enters the continuum of unbound states for temperatures beyond TMott necessarily entails
a violation of Levinson's theorem. In order to solve this problem, we have extended the
approach beyond the complex mass pole approximation and solved the scattering phases in
the pion channel of quarkÄantiquark interaction. The account for the scattering continuum in
accordance with the Levinson theorem leads to a strong reduction of the pion pressure above
the Mott dissociation temperature. We suggest that the behavior of the scatterinng phase shift
in the pion channel and its temperature dependence across the Mott transition, as obtained
in the present work, can be used to develop a generic ansatz for the behavior of hadronic
densities of states to be used in a generalized PNJL-hadron resonance gas model [23] that
embodies the Mott dissociation of hadrons.
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Appendix A
NAMBUÄJONA-LASINIO MODEL WITH POLYAKOV LOOP

Conˇnement in pure SU(Nc) gauge theory can be simulated by introducing an effective
potential for a complex Polyakov-loop ˇeld. The PNJL Lagrangian [15Ä19] is

LPNJL = q
(
iγμDμ − m0 − γ0μ

)
q +

∑
M=σ′,π′

GM (qΓMq)2 − U(Φ[A], Φ[A]; T ). (A.1)

The quark ˇelds are coupled to the gauge ˇeld Aμ through the covariant derivative Dμ =
∂μ − iAμ. The gauge ˇeld is Aμ = δμ

0 A0 = iδμ
4 A4 (the Polyakov gauge). The ˇeld Φ is

determined by the trace of the Polyakov loop L(x) [17]:

Φ[A] =
1

Nc
Trc L(x), (A.2)

where L(x) = P exp
[
−i

β∫
0

dτA4(x, τ)
]
. ΓM are the vertices for the scalar (σ′) and

pseudoscalar (π′) four-fermion interaction channels. The gauge sector of the Lagrangian
density (A.1) is described by an effective potential U(Φ[A], Φ[A]; T ) ˇtted to the lattice QCD
simulation results in pure SU(3) gauge theory at ˇnite T [17,18] with

U(Φ, Φ; T )
T 4

= −b2(T )
2

ΦΦ − b3

6
(Φ3 + Φ

3
) +

b4

4
(ΦΦ)2, (A.3)

b2 (T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (A.4)

The parameters of the effective potential (A.3) and (A.4) are summarized in Table 2.
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Table 2. Parameters of the effective potential U [A]

a0 a1 a2 a3 b3 b4

6.75 Ä1.95 2.625 Ä7.44 0.75 7.5

In general, the parameter T0 depends on the number of active 
avors and the chemical
potential. In the present work, we use T0 = 208 MeV, as has been proposed in [24].

The partition function in the path-integral representation is then given by

ZPNJL[T, V, μ] =
∫

DqDq exp

{ β∫
0

dτ

∫
V

d3x
[
q(iγμ(∂μ − iAμ) − m0 − γ0μ)q+

+ GS(qΓσ′q)2 + GS(qΓπ′q)2 − U(Φ[A], Φ[A]; T )
]}

, (A.5)

where the interaction vertices are written explicitly. By means of the HubbardÄStratonovich
transformation, we are able to integrate out the quark degrees of freedom to arrive at the
partition function written solely in terms of collective ˇelds

ZPNJL[T, V, μ] =
∫

Dσ′Dπ′×

× exp

{
−
[ β∫

0

dτ

∫
V

d3x

(
σ′2 + π′2

4GS
+ U(Φ[A]; T )

)]
+ Tr ln

[
βS−1[σ′, π′]

]}
, (A.6)

where S−1[σ′, π′] is the inverse propagator given explicitly as

S−1[σ′, π′] = γ0(iωn − μ + A0) − γ · p− m0 − σ′Γσ′ − π′Γπ′ (A.7)

and the operation Tr is taken over color, 
avor, Dirac and momentum indices of quark ˇelds.

Appendix B
THE BREITÄWIGNER ANSATZ

We introduce the following pion propagator:

SM (p2) =
1

1 − 2GΠ(p2)
. (B.1)

In the ˇrst step we expand the polarization function around the mass pole:

Π(p2) = Π(p2 = M2) + (p2 − M2)
dΠ(p2)

dp2

∣∣∣∣
(p2=M2)

+ . . . (B.2)
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and we insert this expansion into the deˇned propagator

SM (p2) =
1

1 − 2GΠ(p2 = M2)︸ ︷︷ ︸
=0 (by definition)

−2G(p2 − M2)
dΠ
dp2

∣∣∣∣
p2=M2

=

= − 1

2G(p2 − M2)
dΠ
dp2

∣∣∣∣
p2=M2

=
g2

Mqq

p2 − M2
, (B.3)

where in the last step we simply deˇned g2
Mqq . By means of the wave function renormaliza-

tion, we deˇne a normalized propagator in the following way:

SM (p2) = g2
MqqS̃M (p2). (B.4)

Now S̃M (p2) is a propagator for renormalized mass ˇelds φ̃ = gMqqφ. At this point we
consider a complex mass pole solution

p2 =
(

M ± i
Γ
2

)2

, (B.5)

where for small Γ we get p2 ≈ M2 ± iMΓ and the corresponding propagator, in a similar
way,

S̃M (p2) =
1

p2 − M2 ∓ iMΓ
=

p2 − M2 ± iMΓ
(p2 − M2)2 + (MΓ)2

. (B.6)

We introduce the spectral function by its deˇnition to get

A(s = p2) = 2i Im S̃M ∼ ± MΓ
(s − M2)2 + (MΓ)2

. (B.7)
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