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ANALYSIS OF THE B0(+) → J/ψD0(+) DECAYS
M. Sayahi1, H.Mehraban2

Physics Department, Semnan University, Semnan, Iran

We analyze B0(+) → J/ψD0(+) decays by considering the contributions of annihilation diagrams.
For each diagram, we calculate the branching ratios for various parameters XA, which have played a
signiˇcant role in our results. These parameters have been concluded from the divergence integrals in
hard-scattering kernels. Here, we have considered three effective variables, including: Λ(225, 500 MeV),
ρA(0, 1, 1/2), and ϕA. It is found that the most of the obtained data are placed in the experimental
range at Λ = 225 MeV and Λ = 500 MeV for B+ → J/ψD+ and B0 → J/ψD0, respectively.

�·μ¢μ¤¨É¸Ö  ´ ²¨§ · ¸¶ ¤μ¢ B0(+) → J/ψD0(+) ¶·¨ ÊÎ¥É¥ ¢±² ¤μ¢  ´´¨£¨²ÖÍ¨μ´´ÒÌ ¤¨ -
£· ³³. „²Ö ± ¦¤μ° ¨§ ¤¨ £· ³³ ¶·¨¢μ¤ÖÉ¸Ö ¸μμÉ´μÏ¥´¨Ö ¡·¥´Î¨´£  ¤²Ö · §²¨Î´ÒÌ ¶¥·¥³¥´´ÒÌ
XA, ±μÉμ·Ò¥ ¨£· ÕÉ ¢ ¦´ÊÕ ·μ²Ó ¶·¨ ¶μ²ÊÎ¥´¨¨ ¶·¨¢μ¤¨³ÒÌ ·¥§Ê²ÓÉ Éμ¢. �μ¤μ¡´Ò¥ ¶ · ³¥-
É·Ò ³μ¦´μ ¶μ²ÊÎ¨ÉÓ ¨§ · ¸Ìμ¤ÖÐ¨Ì¸Ö ¨´É¥£· ²μ¢ ¢ ¶·μÍ¥¸¸ Ì ¦¥¸É±μ£μ · ¸¸¥Ö´¨Ö Ö¤¥·. 	Ò²¨
¨¸¸²¥¤μ¢ ´Ò É·¨ ¸²¥¤ÊÕÐ¨¥ ÔËË¥±É¨¢´Ò¥ ¶¥·¥³¥´´Ò¥: Λ(225, 500 ŒÔ‚), ρA(0, 1, 1/2) ¨ ϕA. �μ-
± § ´μ, ÎÉμ ¡μ²ÓÏ Ö Î ¸ÉÓ ¶μ²ÊÎ¥´´ÒÌ ¤ ´´ÒÌ ´ Ìμ¤¨É¸Ö ¢ Ô±¸¶¥·¨³¥´É ²Ó´μ° μ¡² ¸É¨, ¥¸²¨ ¢§ÖÉÓ
Λ = 225 ŒÔ‚ ¨ Λ = 500 ŒÔ‚ ¤²Ö B+ → J/ψD+ ¨ B0 → J/ψD0 ¸μμÉ¢¥É¸É¢¥´´μ.

PACS: 13.25.Hw; 12.38.Bx

INTRODUCTION

The nonleptonic charmless decay channels B → M1M2 provide some information about
CP violation and strong interactions. There are some ways to obtain decay rates and CP
asymmetries with QCD effects. The task is simpliˇed by the use of soft collinear effec-
tive theory (SCET), QCD factorization (QCDF), and perturbative QCD (pQCD) to calculate
hadronic-decay amplitudes. The factorization theorems for B → M1M2 amplitudes were
derived with an expansion in Λ/Q, where Λ is a hadronic scale and Q ∼ mb [1]. The
annihilation amplitudes are power suppressed by order ΛQCD/mb. In the QCD factorization
method, the annihilation contributions do not appear. It is because of the endpoint diver-
gence. But in some of B-meson decays, these contributions are numerically important. Weak
annihilation effects are not similar to hard spectator interactions. Since they have endpoint
singularities at twist-2 order in the light-cone expansion for the ˇnal-state mesons and by ig-
noring the soft endpoint divergence, the annihilation contributions have been written in terms
of convolutions of hard-scattering kernels with light-cone distribution amplitudes, including
the chirally enhanced twist-3 projections [2]. In this paper, we have studied B+ → J/ψD+

and B0 → J/ψD0 decays by considering the contributions of annihilation diagrams. For the
last decay, B0 → J/ψD0, the branching ratio is calculated in pQCD approach which is given
to be (3.45+1.22

−1.46 ± 1.51 ± 0.32) · 10−6 [3].
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1. THE ANNIHILATION CONTRIBUTIONS FOR B → V P DECAYS

1.1. B0(+) → J/ψD0(+) Decays. The effective Hamiltonian for B → M1M2 decays can
be written generally as

Heff =
GF√

2

∑
p=u,c

λD
p

(
C1O

p
1 + C2O

p
2 +

10∑
i=3

CiOi

)
+ h.c., (1)

where λD
p = VpbV

∗
pD (D = d, s) are the products of CKM elements and Cis are the Wilson

coefˇcients in NDR scheme. GF is the Fermi constant. The matrix elements of the weak
effective Hamiltonian can be written as

〈M1M2|Heff |B〉 =
GF√

2

∑
p=u,c

λp〈M1M2|Tp + Tann|B〉. (2)

The matrix elements of the operators in Tp are factorized into two currents, which are form
factor and decay constant including the coefˇcients ai in factorization approach. The other
term, e.g., Tann, is the weak annihilation contribution and introduces a set of coefˇcients bi.
The decay amplitude of weak annihilation effects is given by

Aann =
GF√

2
λp〈M1M2|Tann|B〉 =

GF√
2

fBfM1fM2b
p
i (M1M2), (3)

where fB, fM1 , and fM2 are decay constants of mesons in decay. We consider only diagrams
proportional to αs and use the convention that M1 contains an antiquark from the weak
vertex with longitudinal momentum fraction ȳ. For nonsinglet annihilation, M2 contains a
quark from the weak vertex with momentum fraction x [4]. There are four weak annihilation
diagrams in Fig. 1. Weak annihilation is parameterized by a set of coefˇcients bp

i (V P ):

b1 =
CF

N2
c

C1A
i
1,

b2 =
CF

N2
c

C2A
i
1,

bp
3 =

CF

N2
c

[C3A
i
1 + C5(Ai

3 + Af
3 ) + NcC6A

f
3 ],

bp
4 =

CF

N2
c

[C4A
i
3 + C6A

i
2],

bp
3,EW =

CF

N2
c

[C9A
i
1 + C7(Ai

3 + Af
3 ) + NcC8A

f
3 ],

bp
4,EW =

CF

N2
c

[C10A
i
1 + C8A

i
2].

(4)

The superscripts i, f refer to gluon emission from the initial- and ˇnal-state quarks, respec-
tively, and they refer to Dirac structures. (b1, b2), (b3, b4), and (b3,ew, b4,ew) are related to
the currentÄcurrent, the penguin and the electroweak penguin annihilation structures.

We can take the inˇnite mass limit of b quark in which mb goes to inˇnity while mJ/ψ is
ˇxed (mJ/ψ/mb → 0). So, we assume that J/ψ behaves as a light meson, due to its size, and
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Fig. 1. The annihilation diagrams for B → M1M2

we can describe light-cone distribution amplitude for J/ψ. Also, we treat the charm quark as
light compared to the large scale provided by the mass of the decaying b quark (mc � mb

and mc ˇxed as mb → ∞), and we use a light-cone projection similar to that of light mesons
also for the D meson. In addition, we assume that mc is still large compared to ΛQCD. Then
we have used annihilation formula for B → M1M2 decay, where M2 is a vector meson and
M1 is a pseudoscalar. Then we have

Ai
1 = παs

1∫
0

dx dy

[
φV (x)φP (y)

[
1

y(1 − x̄y)
+

1
yx̄2

]
+ rV

χ rP
χ φv(x)φp(y)

2
yx̄

]
,

Ai
2 = −παs

1∫
0

dx dy

[
φV (x)φP (y)

[
1

x̄(1 − ȳx)
+

1
y2x̄

]
− rV

χ rP
χ φv(x)φp(y)

2
yx̄

]
,

Ai
3 = παs

1∫
0

dx dy

[
rP
χ φV (x)φp(y)

2ȳ

yx̄(1 − ȳx)
− rV

χ φP (y)φv(x)
2x

yx̄(1 − ȳx)

]
,

Af
3 = παs

1∫
0

dx dy

[
rP
χ φV (x)φp(y)

2(1 + x̄)
yx̄2

+ rV
χ φP (y)φv(x)

2(1 + y)
y2x̄2

]
,

(5)

and Af
1 = Af

2 = 0. φV (x) and φP (y) are 2-twist distribution amplitudes, and φv(x) and
φp(y) are 3-twist distribution amplitudes for vector and pseudoscalar mesons, respectively.
All the terms proportional to rM

χ are suppressed by power of ΛQCD/mb in the heavy-quark
limit. For pseudoscalar, the ratio rP

χ is 2m2
P /mb(μ)(mq + m ´̄q)(μ) and for vector meson it is

2mV f⊥
V (μ)/mb(μ)fV . The f⊥

V (μ) is a tensor decay constant and it is scale dependence [4].
We implement this by using a highly asymmetric D-meson wave function, which is strongly
peaked at a light-quark momentum fraction of order ΛQCD/mD. Hence, we have

φD(y) = 6yȳ

[
1 +

∞∑
n=1

αn(μ)C3/2
n (y − ȳ)

]
,
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where αD
1 = 0.8 and αD

2 = 0.4 (αD
i = 0, i > 2); also, C

3/2
1 (y − ȳ) = 3(y − ȳ) and

C
3/2
2 (y − ȳ) = 15/2(y − ȳ)2 − 3/2. In other words, J/ψ is small in the heavy-quark limit,

but its Bohr radius is larger than 1/mb. On the other hand, in the limit mc/mb → 0, the J/ψ
treats as a light meson relative to the B meson which asymptotic distribution amplitudes have
been considered for it in leading twist, i.e., φ(x) = φ‖(x) = 6xx̄. The 3-twist distribution
amplitudes are φp(y) = 1 for pseudoscalar meson (D) and φv(x) = 3(x − x̄) for vector
meson (J/ψ).

In heavy-quark effective theory (HQET), below the mc scale, the vector and tensor cur-
rents have the same anomalous dimensions; that is, f⊥

J/ψ and fJ/ψmc scale as the same power.

Up to the mb scale, f⊥
J/ψ changes its scale with a factor [αs(mb)/αs(mc)]4/3β and mc Å

with [αs(mb)/αs(mc)]4/β . Then the ratio f⊥
J/ψ/fJ/ψ becomes [αs(mb)/αs(mc)]8/(3β)×

×2mc(mb)/mJ/ψ, where β = (11Nc − 2nf)/3 and mc(mb) is the running mass for charmed

quark at scale mb. However, the scale factor [αs(mb)/αs(mc)]8/(3β) is small and can be
ignored [5]. We have (μ = mb)

rJ/ψ
χ = 4

mc

mb
, (6)

for J/ψ meson, and

rD
χ =

2m2
D

mb
, (7)

for D meson. Also, there are some logarithmic endpoint divergences in weak annihilation
kernels. This effect has been parameterized in terms of the divergent integral XA which
models these quantities by using the parameterizations [6]∫

du

u
→ XA. (8)

The magnitude of XA is universal for ˇnal states:

XA = ln
(

mB

ΛQCD

)
[1 + ρA exp(−iΦA)], (9)

where ρA � 1, and ΦA is an arbitrary strong interaction phase, which may be caused by
soft rescattering; this quantity is treated as phenomenological parameter. We have con-
sidered two parameters for ΛQCD, e.g., 225 and 500 MeV, which are the QCD scale pa-
rameters. For B+ → J/ψD+ and B0 → J/ψD0 decays, we ˇrst have extracted the
contribution of the coefˇcients in the annihilation amplitudes. The coefˇcients of an-
nihilation contributions have only been contributed. Hence, in Fig. 2, we have shown
the Feynman diagrams for B+ → J/ψD+ decay, which include the b1 and b2 coefˇ-
cients, and for B0 → J/ψD0 decay, where the b1 coefˇcient is participated in decay
amplitude. In these decays, there is not penguin annihilation contribution. So, we have

A(B+ → J/ψD+) =
GF√

2
fBfDfJ/ψ[VudV

∗
cbb1 + VcdV

∗
udb2],

A(B0 → J/ψD0) =
GF√

2
fBfDfJ/ψ[VudV

∗
cbb1].

(10)
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Fig. 2. The Feynman diagrams for B+ → J/ψD+ (a, b) and B0 → J/ψD0 (c) decays

The branching ratios are given by

BR(B → J/ψD) =
P 3

c τB

8πm2
J/ψ

∣∣∣∣A(B → J/ψD)
ε · PB

∣∣∣∣
2

, (11)

where τB , A(B → J/ψD), and ε are the life time of B meson, decay amplitude, and
polarization vector for J/ψ, respectively. Also, Pc is the centre-of-mass momentum of
mesons

Pc =

√
[m2

B − (mD + mJ/ψ)2][m2
B − (mD − mJ/ψ)2]

2mB
.

1.2. Input Parameters. Here, we have introduced the essential input quantities:

mb(μ = mb) = 4.4 GeV, mc = 1.45 GeV, mB = 5.28 GeV,

mD = 1.867 GeV, mJ/ψ = 3.1 GeV, αs(μ = mb) = 0.22,

fJ/ψ = 405 MeV, fB = 190 MeV, fD = 222 MeV,

Nc = 3, CF =
N2 − 1

2N
, GF = 1.166 · 10−5.

Also, we have used the next-to-leading Wilson coefˇcients calculated in the naive dimensional
regularization (NDR) scheme and at mb scale. It is given by [7]

C1 = 1.082, C2 = −0.185, C3 = 0.014, C4 = −0.035, C5 = 0.009, C6 = −0.041,

C7/α = −0.002, C8/α = 0.054, C9/α = −1.292, C10/α = 0.263,

where α = 1/129. We also have used the Wolfenstein parameterization for CKM matrix
elements [8]:⎛

⎝Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

⎞
⎠ =

⎛
⎝ 1 − λ2/2 λ Aλ3(ρ − iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ − iη) −Aλ2 1

⎞
⎠ ,
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where |Vcb| = 0.0413, λ = 0.22, η̄ = 0.33 and

ρ̄ = ρ

(
1 − λ2

2

)
, η̄ = η

(
1 − λ2

2

)
,

and the experimental life times for B0 and B± are [9]

τB± = (1.638 ± 0.011) · 10−12S,

τB0 = (1.525 ± 0.009) · 10−12S.

2. DISCUSSION

In this paper, we have computed branching ratios for B+ → J/ψD+ and B0 → J/ψD0

decays. These decays have only annihilation contributions. The annihilation amplitudes for
each decay are studied in the different hadronic scales. On the other hand, they have been
calculated in the different parameters of XA, which play a signiˇcant role in our results.

Fig. 3. The obtained data correspond to B+ → J/ψD+ for ρA = 1 (a), ρA = 1/2 (b) (squares Å for

Λ = 225 MeV, crosses Å for Λ = 500 MeV, the solid line Å for experimental data < 1.2 · 10−4)

Fig. 4. The obtained data correspond to B0 → J/ψD0 for ρA = 1 (a), ρA = 1/2 (b) (squares Å for
Λ = 225 MeV, crosses Å for Λ = 500 MeV, the solid line Å for experimental data < 1.3 · 10−5)
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Table 1. Branching ratios for B+ → J/ψD+

(Λ = 225 MeV)

ρ ΦA, ◦ BR, 10−4

0 0 ∼ 360 0.05+0.003
−0.002

1

0 1.11+0.01
−0.002

30 0.97+0.01
−0.003

240 0.87+0.004
−0.002

250 1.41+0.01
−0.0001

1

2

83 1.28+0.002
−0.001

90 1.06+0.001
−0.001

270 1.06+0.01
−0.001

280 1.37+0.01
−0.001

Exp. < 1.2

Table 2. Branching ratios for B+ → J/ψD+

(Λ = 500 MeV)

ρ ΦA, ◦ BR, 10−4

0 0 ∼ 360 0.547+0.002
−0.002

1

110 1.39+0.05
−0.1

120 0.68+0.04
−0.06

240 0.86+0.03
−0.05

250 1.39+0.01
−0.02

1

2

83 1.26+0.02
−0.02

95 0.91+0.01
−0.02

260 0.78+0.01
−0.01

280 1.36+0.01
−0.007

Exp. < 1.3

Table 3. Branching ratios for B0 → J/ψD0

(Λ = 225 MeV)

ρ ΦA, ◦ BR, 10−5

0 0 ∼ 360 0.547+0.002
−0.002

1

110 1.39+0.05
−0.1

120 0.68+0.04
−0.06

240 0.86+0.03
−0.05

250 1.39+0.01
−0.02

1

2

83 1.26+0.02
−0.02

95 0.91+0.01
−0.02

260 0.78+0.01
−0.01

280 1.36+0.01
−0.007

Exp. < 1.3

Table 4. Branching ratios for B0 → J/ψD0

(Λ = 500 MeV)

ρ ΦA, ◦ BR, 10−5

0 0 ∼ 360 0.135+0.001
−0.001

1

83 1.17+0.001
−0.02

95 0.82+0.001
−0.002

270 0.96+0.01
−0.002

280 1.2+0.01
−0.004

1

2

0 0.96+0.004
−0.007

30 0.86+0.005
−0.001

280 0.39+0.001
−0.02

290 0.50+0.003
−0.006

Exp. < 1.3

The XA has been concluded from the divergence integrals in hard-scattering kernels and
appeared in Eq. (10) which can be changed in deˇnite intervals. Here, we have changed three
effective variables in XA, including: Λ, ρA, and ϕA. We have chosen arbitrary phases for ϕA

and ρA in this parameter, which have the better results for our calculations. By considering
that Λ = 225 and 500 MeV, our results are given in Tables 1Ä4 for B+ → J/ψD+ and
B0 → J/ψD0 which are the best results in below the upper bound data of these decays.
These data are plotted in Figs. 3 and 4. We have tried to decrease the discrepancy between
theoretical results and experimental data. It has shown, we could ˇnd that the most of the
obtained branching ratios for B+ → J/ψD+ and B0 → J/ψD0 are placed in the experimental
range for Λ = 225 MeV and Λ = 500 MeV. In [3], the branching ratio is calculated in pQCD
approach, which is given to be (3.45+1.22

−1.46±1.51±0.32) ·10−6 for B0 → J/ψD0. The upper
bounds of experimental data on B+ → J/ψD+ and B0 → J/ψD0 decays are 1.2 · 10−4 and
1.3 · 10−5, respectively [9].
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