ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ И АТОМНОГО ЯДРА. ЭКСПЕРИМЕНТ

УПРУГОЕ $np \rightarrow np(pn)$ -РАССЕЯНИЕ ПРИ ПРОМЕЖУТОЧНЫХ ЭНЕРГИЯХ

Ю. А. Троян, М. Х. Аникина, А. В. Беляев,

А. П. Иерусалимов, А. Ю. Троян¹

Объединенный институт ядерных исследований, Дубна

Реакция упругого $np \rightarrow np(pn)$ -рассеяния изучалась при импульсах налетающих квазимонохроматических нейтронов $P_0 = 1,43; 2,23$ и 5,20 ГэВ/с. Анализируются экспериментальные дифференциальные сечения процессов упругого np-рассеяния как без перезарядки ($\cos \theta_p^* < 0$), так и с перезарядкой ($\cos \theta_p^* > 0$). Проведено сравнение полученных результатов с данными других экспериментов.

Предложена полюсная модель, учитывающая обмен заряженными и нейтральными бозонами (π - и ρ -мезонами) и дополнительно включающая периферический обменный механизм. Модель хорошо описывает характеристики упругого np-рассеяния в диапазоне энергий 1–10 ГэВ.

The study of the elastic $np \rightarrow np(pn)$ scattering was carried out at the momenta of incident quasimonochromatic neutrons $P_0 = 1.43, 2.23$ and 5.20 GeV/c. The differential cross-sections of the processes of elastic np-scattering, both without $(\cos \theta_p^* < 0)$ and with charge-exchange $(\cos \theta_p^* > 0)$ of nucleons, are analyzed. The obtained results are compared with the data of other experiments.

The suggested pole model includes exchange by π -meson, ρ -meson and in addition allows for the peripheral exchange mechanism. This model permits one to get a good description of the data of elastic *np*-scattering at the energy region 1–10 GeV.

PACS: 13.75.Cs

введение

Исследованию процессов упругого np-рассеяния посвящено большое количество как теоретических, так и экспериментальных работ [1–7 и ссылки в них]. В работах приведены как экспериментальные данные в виде таблиц дифференциальных сечений упругого рассеяния в зависимости от разных кинематических переменных, так и сравнение с существующими моделями. Амплитуды обменных процессов упругого рассеяния могут быть представлены разными способами. Один из подходов к проблеме состоит в том, чтобы рассматривать возникновение сил между нуклонами как результат обмена заряженными или нейтральными виртуальными мезонами.

¹E-mail: atroyan@jinr.ru

Попытка описать процесс упругого *np*-рассеяния обменом одним пионом была удовлетворительной лишь при начальных энергиях до 100 МэВ, когда дифференциальное сечение от косинуса угла рассеяния в с. ц. м. симметрично [7]. При больших энергиях в распределениях все более резко нарастает асимметрия, и модель однопионного обмена уже не описывает экспериментальные данные.

Упругое рассеяние без перезарядки при начальных энергиях, превышающих 10 ГэВ, и угле рассеяния, близком к нулю, принято представлять как процесс обмена помероном, имеющим квантовые числа вакуума. Однако при более низких энергиях и больших углах теоретики предлагают учитывать вклад других, более тяжелых мезонов [1]. Так, в работе [3] предлагается учитывать до пяти полюсов: обмен пионом, ρ -мезоном и другими, более тяжелыми мезонами.

В диапазоне энергий от 1 до 10 ГэВ экспериментального материала немного, и этот диапазон практически не рассматривается в обзорах.

В данной работе анализируются экспериментальные дифференциальные сечения процессов упругого *np*-рассеяния как без перезарядки ($\cos \theta_p^* < 0$), так и с перезарядкой ($\cos \theta_p^* > 0$) в реакции $np \to np(pn)$ при начальных импульсах нейтронов $P_0 = 1,43;2,23$ и 5,20 ГэВ/с. θ_p^* — угол вылета вторичного протона в с. ц. м. реакции.

На основе этого анализа предложена полюсная модель, учитывающая обмен заряженными и нейтральными бозонами (π - и ρ -мезонами) и дополнительно включающая периферический обменный механизм типа померонного обмена. Модель позволяет вычислять дифференциальные сечения упругого np-взаимодействия в зависимости от \sqrt{s} в диапазоне энергий $\approx 1-10$ ГэВ, а также определять сечения и другие параметры упругого np-рассеяния.

1. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

1.1. Условия получения экспериментального материала. ЛФВЭ ОИЯИ — единственная лаборатория, в которой есть данные np-взаимодействий при нескольких импульсах нейтронного пучка в интервале 1–5 ГэВ/с. Эти данные получены при облучении 1-м водородной пузырьковой камеры ЛВЭ ОИЯИ (HBC) [8] пучками квазимонохроматических нейтронов. Нейтронный пучок образовывался при стриппинге ускоренных дейтронов на 1-см алюминиевой мишени, размещавшейся внутри вакуумной камеры синхрофазотрона ОИЯИ. Нейтроны вылетали из ускорителя под углом 0° к направлению пучка дейтронов. Нейтронный пучок проходил в магнитном поле ускорителя около 12 м, что позволяло очистить его от заряженных частиц. На расстоянии ~ 130 м от алюминиевой мишени располагалась HBC, помещенная в магнитное поле напряженностью 1,7 Тл. Пучок нейтронов формировался коллиматорами и входил в камеру с параметрами $\Delta P_n/P_n \sim 2,5\%$, $\Delta \Omega_n = 10^{-7}$ ср без примесей заряженных частиц и γ -квантов. Подробное описание нейтронного канала и условий облучения опубликовано в [9–11].

Параметры пучка нейтронов в каждом сеансе облучения определялись с использованием трех- и пятилучевых звезд, из которых выбирались события без нейтральных частиц. Процедура отбора описана в [9–11]. Определенные таким способом значения импульсов падающих нейтронов в дальнейшем использовались при выделении различных каналов реакций *пp*-взаимодействий. 188 Троян Ю.А. и др.

В нескольких сеансах облучения накоплено более 1,5 млн событий при разных импульсах падающих нейтронов. Точность измерения импульсов частиц в камере составила 2-3%, углы измерялись с точностью $0,5^\circ$.

В результате величины квадратов переданных импульсов определяются с точностью 3–4 %.

С использованием процедуры, основанной на анализе величины χ^2 для каждого события, выделялись реакции без нейтральных частиц и с одной нейтральной частицей. Дополнительно использовалась визуальная оценка ионизации для идентификации треков положительно заряженных частиц, отбор событий по критерию $\Delta P_0/P_0 \leq 3\%$, где P_0 — суммарный импульс всех заряженных частиц, ΔP_0 — ошибка суммарного импульса [9–13].

1.2. Отбор событий упругого *пр*-взаимодействия. Однолучевые события при импульсах падающих нейтронов 1,43 и 2,23 ГэВ/*с* отбирались на всех имеющихся фотокадрах в эффективном объеме HBC.

На фотографиях, полученных при облучении с импульсом 5,20 ГэВ/с, при последовательном их просмотре тоже отбирались однолучевые звезды, возникающие во всем эффективном объеме НВС. После набора некоторой статистики и ее анализа было принято решение производить отбор только звезд, возникающих в угле 20° к направлению нейтронного пучка. В этом угле сосредоточены события, относящиеся к упругому взаимодействию с перезарядкой (реакция $np \rightarrow pn$). Добавленная таким образом статистика позволила точнее определить параметры упругого взаимодействия с перезарядкой.

Реакция упругого взаимодействия выделялась методом χ^2 [13] с одной степенью свободы (1С-фит) с $\chi^2 < 30$, что превышает 99,9%-й доверительный уровень. Отобранные события отнесены к упругим *пр*-взаимодействиям (группа «EL»), остальные, включающие различные неупругие каналы, — к группе «INEL». Распределения недостающих масс для отобранных событий при $P_0 = 1,43;2,23$ и 5,20 ГэВ/с имеют полные ширины 20, 30 и 40 МэВ/с² соответственно, максимум при массе нейтрона с точностью 0,1 МэВ/с² и симметричны относительно центрального значения (здесь и далее P_0 — импульс налетающего нейтрона). Распределение значений χ^2 для отобранных событий совпадает со стандартным распределением χ^2 с одной степенью свободы. Примеси других каналов реакций в группе «EL» при таком отборе событий практически отсутствуют.

Отделение событий, относимых к упругому каналу взаимодействия только методом «недостающих масс», применяемым в большинстве исследований, не позволяет избавиться от примеси неупругих каналов, увеличивающейся с ростом импульса первичного пучка. На рис. 1 приведены распределения недостающих масс при $P_0 = 1,43;2,23$ и 5,20 ГэВ/*с* как для событий из группы «EL», так и для событий из группы «INEL» (закрашенные бины). При вычислении недостающих масс в событиях из группы «INEL» положительные частицы, за исключением однозначно идентифицированных как π^+ -мезоны, считались протонами. Видно, что в соответствующих упругому каналу диапазонах недостающих масс имеются события из обеих групп ($\approx 5, 9$ и 14% соответственно). Наличие примеси неупругих каналов привносит ошибку в определение сечения упругого взаимодействия.

Достоинствами определенного методом χ^2 и изучаемого далее набора экспериментальных данных (группа «EL») являются:

Рис. 1. Распределения недостающих масс при $P_0 = 1,43$ (*a*); 2,23 (*b*) и 5,20 (*b*) ГэВ/*c*. Светлые бины — события, определенные кинематическим фитом как упругие; темные бины — остальные события

190 Троян Ю.А. и др.

— регистрация частиц в условиях 4π -геометрии, что позволяет в одном эксперименте рассмотреть реакции упругого *np*-взаимодействия как с перезарядкой ($\cos \theta_p^* > 0$), так и без перезарядки ($\cos \theta_p^* < 0$);

 точное знание направления вылета и импульса как заряженной, так и нейтральной частиц;

— практически полное отсутствие примесей событий других каналов реакций.

К упругому рассеянию с перезарядкой (реакция $np \rightarrow pn$) отнесены события из группы «EL», для которых рассеянный протон в с. ц. м. реакции вылетал в переднюю полусферу ($\cos \theta_n^* > 0$).

К упругому рассеянию без перезарядки (реакция $np \rightarrow np$) отнесены события из группы «EL», для которых рассеянный протон в с. ц. м. реакции вылетал в заднюю полусферу ($\cos \theta_p^* < 0$).

Обозначим через t передачу от протона-мишени к протону отдачи, а через u — передачу от налетающего (пучкового) нейтрона к протону отдачи.

Для анализа событий без перезарядки используется переменная t, а событий с перезарядкой — переменная u. Построения по двум переменным сделаны из соображений удобства обработки распределений с учетом того, что мы получили обе группы событий в одном эксперименте.

1.3. Оценка потерь событий. Особенности пузырьковой камеры проявляются в том, что есть трудности в регистрации и измерении треков протонов низких энергий,

Рис. 2. Распределение по |t| для событий упругого взаимодействия при $P_0 = 2,23$ ГэВ/с

обладающих малыми пробегами. Тем самым образуется дефицит событий с малыми переданными 4-импульсами от протонамишени к протону отдачи (t). Это отчетливо видно на рис. 2, где представлено распределение по |t| для событий упругого взаимодействия (группа «EL») при $P_0 =$ 2,23 ГэВ/с. Для определения числа потерянных событий распределения по |t| аппроксимировались функцией вида $A e^{-bt}$ в интервале 0,05 < |t| < 0,75 ГэВ/ c^2 . Экстраполяция к величине |t| = 0 позволила провести коррекцию числа данных, учитывающую потери медленных протонов.

Потери событий из группы «INEL» определялись по той же методике. При этом распределение по t для таких событий более «прижато» к 0, чем распределение для событий из группы «EL», и наклон описывающей экспоненты больше.

Суммируя потери по группам «EL» и «INEL», получаем общие потери однолучевых событий с медленными протонами, которые необходимо знать при определении сечений упругого канала. **1.4. Определение сечений процессов упругого** np-рассеяния. В данной работе определены как полные сечения упругого рассеяния, так и сечения упругих процессов с перезарядкой и без нее для реакций при $P_0 = 1,43;2,23$ и 5,20 ГэВ/с. При определении сечения упругого рассеяния $\sigma_{\rm el}$ учитываются полученные в [10] данные по топологическим сечениям $\sigma_{\rm top}$ однолучевых звезд. Сечение вычисляется по формуле

$$\sigma_{\rm el} = \left(\frac{N_{\rm el}}{N_{\rm tot}}\right) \sigma_{\rm top},$$

где $N_{\rm el}$ — число упругих событий с учетом потерь; $N_{\rm tot}$ — общее число однолучевых звезд с учетом потерь; $\sigma_{\rm top}$ — топологическое сечение однолучевых звезд.

Сечение упругого рассеяния с перезарядкой вычисляется по формуле

$$\sigma_{\rm ex} = \sigma_{\rm el} \left\{ \cos \theta_p^* > 0 \right\} = \frac{N_{\rm el} \left\{ \cos \theta_p^* > 0 \right\}}{N_{\rm el}} \sigma_{\rm el}$$

где $N_{\rm el\{\cos\theta_p^*>0\}}$ — число событий из группы «EL», для которых рассеянный протон в с.ц. м. вылетал в переднюю полусферу. В таких событиях нет медленных протонов и потери отсутствуют.

Сечение упругого рассеяния без перезарядки вычисляется по формуле

$$\sigma_{\rm in} = \sigma_{\rm el} - \sigma_{\rm ex}.$$

P_0 , ГэВ	$\sigma_{ m el},$ мб	σ_{ex} , мб	$\sigma_{ m in}$, мб
1,43	$25{,}6\pm1{,}3$	$7,9\pm0,8$	$17{,}7\pm0{,}9$
2,23	$19{,}1\pm0{,}7$	$4,5\pm0,5$	$14{,}6\pm0{,}6$
5,20	$10,7\pm0,7$	0.9 ± 0.5	$9,8\pm0,5$

Полученные значения сечений процессов упругого рассеяния при $P_0 = 1,43;2,23$ и 5,20 ГэВ/с приведены в таблице.

2. ПОЛЮСНАЯ МОДЕЛЬ УПРУГОГО *пр*-РАССЕЯНИЯ

2.1. Обменные процессы и параметры модели. Для описания и моделирования реакции упругого np-рассеяния была использована простая полюсная модель. В рамках этой модели реакция упругого $np \rightarrow np(pn)$ -взаимодействия описывается следующими диаграммами (рис. 3):

— диаграмма *a* соответствует упругому рассеянию с перезарядкой, с обменом заряженными π - и ρ -мезонами;

— диаграмма δ соответствует упругому рассеянию без перезарядки, с обменом нейтральными π^0 - и ρ^0 -мезонами, а также дополнительному периферическому обменному механизму *P*, типа померонного обмена.

Рис. 3. Диаграммы полюсной модели упругого рассеяния $np \rightarrow np(pn)$

Дифференциальное сечение реакции упругого *пр*-рассеяния записывается в следующем виде:

$$\frac{d\sigma}{dt} = \frac{1}{64\pi sq^2} \left|T\right|^2,\tag{1}$$

где s — квадрат полной энергии в с. ц. м.; q — импульс налетающей частицы в с. ц. м.; $|T|^2$ — квадрат матричного элемента реакции.

Матричный элемент для упругого рассеяния с перезарядкой записывается в виде

$$|T_{\rm ch.ex}|^2 = |T_{\pi} + T_{\rho}|^2, \tag{2}$$

а для упругого рассеяния без перезарядки в виде

$$|T_{0\,\mathrm{ex}}|^2 = \frac{1}{4} |T_{\pi} + T_{\rho}|^2 + |T_P|^2, \qquad (3)$$

где $T_{\pi} = F \frac{tA_{\pi}}{t - m_{\pi}^2} F$ соответствует обмену заряженным π -мезоном; $T_{\rho} = F \frac{A_{\rho} e^{i\varphi}}{t - m_{\rho}^2} F$ соответствует обмену заряженным ρ -мезоном; φ — угол сдвига между A_{π} и A_{ρ} , учитывающий интерференцию диаграмм π - и ρ -обмена; $T_P = A_P e^{-bt}$ соответствует дополнительному периферическому обменному механизму P.

Амплитуды рассеяния A_{π} , A_{ρ} , A_{P} , а также переменные φ и *b* зависят только от значения *s*.

Нуклонный формфактор F в каждой вершине записывается в виде

$$F(t) = \frac{\Lambda}{\Lambda + |t|} \tag{4}$$

и зависит только от соответствующей передачи t, равной $u_{\text{beam}\to p}$ или $t_{\text{targ}\to p}$. Параметр Λ взят равным квадрату массы нуклона ($\Lambda = 0,88$ ГэВ/ c^2).

При учете изотопических соотношений получаем, что вклад механизма π^{0} - и ρ^{0} обменов в сечение упругого рассеяния без перезарядки равен 1/4 от вклада механизма обмена заряженными π - и ρ -мезонами в упругое рассеяние с перезарядкой (см. (2)). Отсюда множитель 1/4 в выражении для $T_{0 \text{ ex}}$ (см. (3)).

Вклад дополнительного периферического обменного механизма в реакцию упругого рассеяния без перезарядки составляет ~ 92 % при импульсе налетающего нейтрона $P_0 = 1,43$ ГэВ/с и с ростом энергии увеличивается до ~ 98 % при $P_0 = 5,20$ ГэВ/с.

2.2. Определение параметров модели. Определение параметров модели A_{π} , A_{ρ} , φ , A_{P} и *b* проводилось одновременным фитированием распределений $\Delta N/\Delta u$ и $\Delta N/\Delta t$ при трех значениях импульсов налетающего нейтрона: $P_{0} = 1,43;2,23$ и 5,20 ГэВ/с. Результаты приведены на рис. 4.

Рис. 4. Параметры полюсной модели в зависимости от величины \sqrt{s} . Кривые — результаты аппроксимации гладкими функциями

Рис. 5. Распределения $\Delta N/\Delta u$ и $\Delta N/\Delta t$ из реакции $np \rightarrow np$ при $P_0 = 1,43$; 2,23 и 5,20 ГэВ/с. Кривые — результат расчетов по полюсной модели

194 Троян Ю.А. и др.

При дальнейших расчетах была принята следующая линейная параметризация A_{π} , A_o , φ и A_P от \sqrt{s} :

$$A_{\pi} = -111, 1 + 102, 8\sqrt{s}, \quad A_{\rho} = -34, 4 + 71, 3\sqrt{s},$$
$$\varphi = 0, 91 + 0, 44\sqrt{s}, \qquad A_{P} = -1008, 4 + 568, 0\sqrt{s},$$

а для b — параметризация более сложной функцией от \sqrt{s} :

$$b = 3,713 \left(1 - e^{-2,258 \left(\sqrt{s} - 1,792\right)}\right).$$

В результате было получено хорошее описание распределений $\Delta N/\Delta u$ для упругого *пр*-рассеяния с перезарядкой и распределений $\Delta N/\Delta t$ для упругого *пр*-рассеяния без перезарядки при $P_0 = 1,43;2,23$ и 5,20 ГэВ/с (рис. 5).

Тот факт, что для области |t| < 0.5 ГэВ/ c^2 основной вклад в упругое np-рассеяние без перезарядки вносит периферический механизм, объясняет хорошее описание экспонентой распределений по |t| для событий упругого рассеяния без перезарядки, что было использовано при оценке потерь событий.

Общая формула вычисления дифференциального сечения упругого np-взаимодействия в зависимости от \sqrt{s} с переменными и параметрами, определенными выше, записывается в виде

$$\frac{d\sigma}{dt} = \frac{1}{64\pi sq^2} \left(|T_{\pi}(u) + T_{\rho}(u)|^2 + \frac{1}{4} |T_{\pi}(t) + T_{\rho}(t)|^2 + |T_P(t)|^2 \right),\tag{5}$$

где u и t связаны соотношением $s + t + u = 4M_N^2$.

2.3. Сравнение с результатами других экспериментов. Данные по упругому npрассеянию в рассматриваемом диапазоне импульсов налетающих частиц ($\approx 1-11 \ \Gamma$ эB/c) получены много лет назад [4, 5], в основном методикой стримерных камер.

На рис. 6 показаны распределения $d\sigma/dt$ при различных энергиях.

Сплошные кривые — результат расчетов по полюсной модели (см. (5)). Очевидно, что наблюдается хорошее согласие между экспериментом и теорией. Некоторое расхождение между ними может быть объяснено различием в методах выделения событий упругого *пр*-рассеяния.

На рис. 7 приведены значения величины $d\sigma/dt|_{t=0}$, взятые из [4], и теоретическая кривая, рассчитанная по предложенной полюсной модели. Значительные расхождения, наблюдаемые для некоторых точек, можно объяснить тем, что в [4] значения определялись с помощью аппроксимации распределений $d\sigma/dt$ только функциями вида e^{-bt} без учета полюсного характера π^0 - и ρ^0 -обменов.

Что касается распределений $d\sigma/du$, то в изучаемом диапазоне импульсов налетающих частиц практически нет экспериментальных данных, кроме представленных в [11] и в настоящей работе.

На рис. 8 приведены экспериментальные значения полных сечений упругого np-рассеяния, упругого $np \rightarrow np$ -рассеяния (без перезарядки) и упругого $np \rightarrow pn$ -рассеяния (с перезарядкой), взятые из [4,5,11], и теоретические кривые зависимости хода этих сечений от импульса налетающего нейтрона, рассчитанные по полюсной модели.

Упругое $np \rightarrow np(pn)$ рассеяние при промежуточных энергиях 195

Рис. 6. Экспериментальные распределения $d\sigma/dt$ при различных энергиях. Кривые — результат расчетов по полюсной модели

Разница между экспериментальными значениями и теоретическими кривыми обусловлена применяемыми методами выделения событий упругого np-рассеяния: методом кинематического фитирования (в настоящем исследовании) и методом недостающих масс (в других, более ранних работах). Новые оценки сечений, с уточненной величиной примесей неупругих каналов, дают значения, близкие к расчетам по полюсной модели (отмечены крестиком при $P_0 = 3,83$ ГэВ/с на рис. 8).

Рис. 7. Величина $d\sigma/dt|_{t=0}$ в зависимости от импульса налетающих частиц. Точки — экспериментальные данные; кривая — результат расчетов по полюсной модели

Рис. 8. Экспериментальные значения и теоретические кривые, рассчитанные по полюсной модели, для полных сечений упругого np-рассеяния (сплошная кривая); упругого $np \rightarrow np$ -рассеяния (без перезарядки) (штриховая кривая); упругого $np \rightarrow pn$ -рассеяния (с перезарядкой) (штрихпунктирная кривая)

ЗАКЛЮЧЕНИЕ

В представленной работе исследовалась реакция упругого $np \rightarrow np(pn)$ -рассеяния при импульсах налетающих квазимонохроматических нейтронов $P_0 = 1,43;2,23$ и 5,20 ГэВ/с. Показана необходимость применения кинематического фита для отбора каналов реакций.

Использованные методы позволили тщательно выделить упругие события и провести их анализ. Полученные результаты существенно дополняют данные об упругом *пр*рассеянии, особенно для упругого рассеяния с перезарядкой.

Предложена полюсная модель с небольшим количеством параметров, включающая обмены π - и ρ -мезонами и дополнительно учитывающая периферический обменный механизм. Параметры модели определены из условия наилучшего описания эксперимен-

тальных распределений $d\sigma/dt$ и $d\sigma/du$ при трех значениях импульсов налетающих нейтронов.

Данная модель позволяет хорошо описать имеющиеся экспериментальные характеристики упругого *пр*-рассеяния в широком диапазоне импульсов (1–10 ГэВ).

- Модель может быть использована для расчета характеристик упругого *np*-рассеяния в указанном диапазоне энергий.
- Авторы выражают благодарность за обсуждения и консультации Е. А. Строковскому, В. А. Никитину, В. П. Ладыгину.

Работа выполнена в ЛФВЭ ОИЯИ в рамках темы 1087 (руководитель А.И. Малахов).

СПИСОК ЛИТЕРАТУРЫ

- 1. Иден Р. Соударения элементарных частиц при высоких энергиях. М.: Наука, 1970.
- 2. Перкинс Д. Введение в физику высоких энергий. М.: Наука, 1991.
- 3. *Тер-Мартиросян К.А.* Взаимодействие частиц при высоких энергиях. ИФВЭ СТФ 68-11-К. 1968.
- 4. Benary O., Price L., Alexander G. nn and nd Interactions (above 0.5 GeV/c) A Compilation. UCRL-20000 NN. 1970.
- 5. Beringer J. et al. Particle Data Group // Phys. Rev. D. 2012. V. 86. P. 010001.
- Strokovsky E.A. Data on Elastic (p, n) Charge Exchange: Compilation // Part. Nucl. Lett. 2004. No.2(119). P.5.
- 7. Валантэн Л. Субатомная физика: ядра и частицы. Т. 1. М.: Наука, 1986.
- Belonogov A. V. et al. A Liquid Hydrogen Bubble Chamber of Volume 950 × 350 × 300 mm // Nucl. Instr. Meth. 1963. V. 20. P. 114–115.
- 9. Гаспарян А.П. и др. Нейтронный (стриппинговый) канал Лаборатории высоких энергий ОИЯИ // ПТЭ. 1977. № 2. С. 27–42.
- Abdivaliev A. et al. Topological Cross-Section of np Interaction in the Interval of Monochromatic Neutron Momenta 1–5 GeV/c // Nucl. Phys. B. V. 99, No. 3. P. 445–450.
- Бешлиу К. и др. Сечения каналов реакций пр-взаимодействий при P_n = 1-5 ГэВ/с // ЯФ. 1986. Т. 43, № 4. С. 888.
- Мороз В. И., Никитин А. В., Троян Ю. А. Неупругие пр-взаимодействия при энергии нейтронов от 2 до 10 ГэВ // ЯФ. 1969. Т. 9, № 4. С. 792.
- 13. Berge J. P., Solmitz F. T., Taft H. D. Kinematical Analysis of Interaction Vertices from Bubble Chamber Data // Rev. Sci. Instr. 1961. V. 32, No. 5. P. 538–548.

Получено 16 апреля 2013 г.