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The ground-state binding energies of the light symmetric closed-shell nuclei, i.e., 4He, 12C, 16O
and 40Ca, and the heavy asymmetric ones, i.e., 48Ca, 90Zr and 120Sn, are calculated in the harmonic
oscillator (HOS) basis, by imposing the relative Fermi momentum cutoff of two point-like interacting
nucleons on the density-dependent average effective interactions (DDAEI). The DDAEI are generated
through the lowest order constrained variational (LOCV) method calculations for the asymmetric nuclear
matter with the operator and the channel-dependent-type bare nucleonÄnucleon potentials, such as the
Argonne Avjmax=2

18 and the Reid soft core, Reid68, interactions. In the framework of the harmonic
oscillator shell model, the cutoff is imposed by deˇning the maximum value of the relative quantum
numbers (RQNmax) in two ways: (1) the RQNmax of the last shell and (2) the RQNmax of each shell,
in the ground state of the nucleus. It is shown that present results on the binding energies and the
root-mean-square radius are closer to the corresponding experimental data than our previous works with
the same DDAEI potentials, but without the cutoff constraint. However, for the light symmetric nuclei,
the second scheme gives less binding energy and larger root-mean-square radius compared to the ˇrst
one, while the situation is reversed for the heavier nuclei.
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INTRODUCTION

Nowadays, as many decades ago, the main task in the nuclear structure physics is to
perform the microscopic many-body calculations to understand the properties, e.g., the binding
energies, the root-mean-square radius, etc., of nuclei with A interacting nucleons. It is well
known that there is a strong compensation between the nucleonÄnucleon (NN) attraction at
the intermediate distances � 1.5 fm and the signiˇcantly stronger repulsion at short distances
� 0.5 fm, which leads to the binding energy per nucleon, that is much smaller than both the
average kinetic and potential energies [1]. However, the highly complicated nature of NN
force and, especially, the presence of a very strong repulsion force at the short distances have
made the solution of the nuclear structure problems a difˇcult task, for the nuclear physics
community. To overcome this complication, one of the successful approaches is to use
the traditional shell-model approximation with the two-nucleon effective interactions derived
from the bare NN potential as its input. However, the two-nucleon effective interaction
carries the high-momentum components associated with the strong short-range repulsion,
and this momentum is substantially larger than Fermi momentum characteristic of the given
nucleus [2, 3]. In these regards, by using the lowest order constrained variational (LOCV)
method [4Ä6] and the basic local density Brueckner G-matrix idea [7Ä9], the density-dependent
average effective interaction (DDAEI) as well as the channel- and density-dependent effective
interaction (CDDEI) were generated with both the old phenomenological bare NN potentials,
i.e., Reid68, �−Reid68 and Reid68Day [10,11], and the modern ones, i.e., Avjmax=2,5

18 [12],
and applied to the binding energy calculations of some light, moderate and heavy closed-shell
nuclei [13Ä17]. Although the results were not good in the DDAEI case, in particular for light
nuclei, they were good in the CDDEI approaches with respect to our past works as well as
others reports [18,19] (see Tables 5, 4 and 8 of references [13,14] and [15], respectively).

Recently, starting from a realistic NN potential and integrating out, in the sense of
the renormalization group, the high-momentum components of NN , a low-momentum
potential, Vlow-k, was constructed which preserves the physics of the original NN potential
up to a certain cutoff momentum Λ [20,21]. To calculate the ground-state properties of some
light nuclei in the Vlow-k technique, the cutoff momentum is related to the dimension of the
conˇguration space in the coordinate representation [22]. It seems to be a good approximation
to consider a cutoff Fermi momentum of the two interacting nucleons through the value of
their shell quantum numbers corresponding to the nucleon conˇgurations in each nucleus.
In this way, the relative Fermi momenta larger than the cutoff ones are removed from the
calculation of DDAEI according to their energy level in the shell model. As will be explained
in Sec. 1 of this work, this can be done in two schemes: ˇrst, according to the maximum
value of relative quantum number (RQN) of the two nucleons in the last shell in the ground
state of the nucleus (kmaxLS

c ) and, second, in terms of the maximum value of RQN of two
nucleons in the each shell (kmaxES

c ). The harmonic oscillator (HOS) parameter is considered
as the varying parameter to calculate the ground-state nucleus binding energy. In Sec. 2, the
calculated results for symmetric light closed-shell nuclei and asymmetric moderate and heavy
ones are presented with DDAEI for both the Avjmax=2

18 and the Reid68 potentials, which
are known as the modern and old phenomenological NN potentials. It is shown that the
present results are improved, with respect to our previous calculations [8Ä12] and regarding
the corresponding experimental data.



The Effect of Fermi Momentum Cutoff on the Binding Energy of Closed-Shell Nuclei 403

1. THE BINDING ENERGY WITH THE CUTOFF FERMI MOMENTUM

Similar to our previous works [13Ä17], the ground-state binding energy of a closed-shell
nucleus is calculated in the HOS basis, |ni, li, ji, γ〉, where ni, li, and ji are the familiar,
principle and orbital and total angular momentum quantum numbers of the nucleons. Again,
the HOS parameter γ =

√
Mω/� is left as a single variational parameter to ˇx the root-mean-

square (rms) radius of the speciˇc nucleus. The nucleon conˇgurations of the closed-shell
nuclei, i.e., 4He, 12C, 16O, 40Ca , 48Ca, 90Zr and 120Sn, are chosen similar to our past repots.
The calculations are done at the center of mass of the nuclei, and the (average) binding
energies per nucleon for the foregoing closed-shell nuclei are written as follows:

BE

A
= (T1 − T A

cm) + E2, (1)

where

T1 =
∑ (

2ni + li +
3
2

)
�ω

2A
(2)

is the one-body kinetic energy per nucleon,

T A
cm =

3
4

�ω (3)

is the energy contribution from the center-of-mass motion and, ˇnally, E2 is the energy
contribution from the DDAEI, as follows:

E2 =
1
2

∑
ij

〈ij; γ|V eff(1, 2)|ij; γ〉a = T 2eff + V 2eff . (4)

The two-body DDAEI operator, V eff(1, 2) [8,10], has the following form:

V eff(1, 2) =
−�

2

2m
[F (1, 2), [∇2

12, F (1, 2)]] + F (1, 2)V (12)F (1, 2), (5)

where F (1, 2) and V (12) are the two-body average correlation function [8, 10] and the
phenomenological NN potential, respectively. As before, the DDAEI, V eff(1, 2), are divided
into the two-body effective kinetic and potential portions to consider the behavior of DDAEI
in detail (see Eqs. (4) and (5)). In order to speed up our numerical calculations, the local
density approximation (LDA) [7Ä9, 13Ä17] is assumed. According to Eqs. (24) and (25) of
reference [13] or Eqs. (A.33) and (A.34) of reference [15], both the effective state averaged
two-body potential and the correlation function depend on the relative distance of the two
nucleons and their density. Thus, our DDAEI depends through the well-known relation, to
the Fermi momentum, as follows:

ρ =
ν

6π2
k3

F , (6)

where ν, the spin and the isospin degeneracy of the nucleon, is equal to 4. Now, we are ready
to impose the cutoff constraint on the relative Fermi momentum of two nucleons, according
to their energy in the corresponding shell model:

Ec =
�

2k2
c

M
, (7)
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and then,

kc =

√
Nc +

3
2
γ, (8)

where kc and Nc are the cutoff relative Fermi momentum and the cutoff RQN of the corre-
sponding shell. As mentioned before, kc can be ˇxed in two ways. First, Ec is limited to the
maximum value of the RQN of the last shell in each nucleus, i.e., kmaxLS

c . In this case, Nc

is deˇned as
NmaxLS

c = 2nmax + lmax, (9)

where nmax and lmax are the maximum values of the relative principle and the angular
momentum of the nucleons in the last shell of the speciˇc nucleus. Thus, for the ground state
of each nucleus, NmaxLS

c can be calculated through its shell model structure, and one ˇnds
only one value for NmaxLS

c or kmaxLS
c for each nucleus. However, it should be noted that

for the asymmetric nuclei, NmaxLS
c is different for the protons and the neutrons, and we ˇnd

two values, i.e., NmaxLS
cp

and NmaxLS
cn

(see Sec. 2 for their corresponding values).
In the second scheme, Ec is limited up to the maximum values of RQN in each shell, i.e.,

EmaxES
c . In this case in each shell, due to energy conservation, the maximum value of n and

l can be derived from the familiar relation: 2n1 + l1 + 2n2 + l2 = 2n + l + 2N + L, in which
N and L are the center-of-mass principle and angular momentum quantum numbers of the
two nucleons, respectively. Thus, EmaxES

c is calculated in each shell as follows:

EmaxES
c = 2(n1 + n2) + l1 + l2. (10)

So, in this case, we ˇnd several kmaxES
c for each nucleus (see Sec. 2 for their values and the

related discussions).

2. RESULTS AND DISCUSSION

Table 1 shows the values of NmaxLS
c for the different closed-shell nuclei, considered in this

work. The corresponding kmaxLS
c for each nucleus and the Avjmax=2

18 (A) and Reid68 (R)
potentials are given in the second column of Table 2. As one expects, the kmaxLS

c are
increasing as the atomic mass number is increased. On the other hand, their values are

Table 1. The maximum values of RQN of
two nucleons in the last shell, Nmax LS

c , of
some closed-shell symmetric and asymmetric
nuclei (see the text for more explanations)

Symmetric

Nucleus 4He 12C 16O 40Ca
Nmax LS

c 0 2 2 4

Asymmetric

Nucleus 48Ca 90Zr 120Sn
Nmax LS

cp
4 6 8

Nmax LS
cn

6 8 8

different for each potential, since the calculated
saturation points are different for the two poten-
tials in each nucleus (see Eq. (8)). The kmaxLS

c

values of the asymmetric nuclei are written in the
parenthesis for the neutron and the proton con-
ˇgurations, respectively. Obviously, the kmaxLS

c

values for neutrons are larger than for protons
in the case of asymmetric nuclei. In the third
column the values of kmaxES

c are given for vari-
ous nuclei, but only for the Avjmax=2

18 interaction.
Since there is not much difference between the
kmaxES

cp
and kmaxES

cn
values, the latter are given.

For 4He there is not any difference between the
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Table 2. The Fermi momenta cutoff of the 4He, 12C, 16O, 40Ca, 48Ca, 90Zr and 120Sn nuclei. Note
that the values of kmax LS

c (fm−1) and kmax ES
c (fm−1) are calculated in the saturation points of each

nucleus, according to Avjmax=2
18 and Reid68 potentials which are assigned ®A¯ and ®R¯, respectively.

The values of kmax ES
c are sorted by increasing the amounts of Nc. The kmax LS

c values of asymmetric
nuclei are written in parenthesis for neutron and proton conˇgurations. Since there is not much
difference between kmax ES

cn
and kmax ES

cp
in each shell, the values of kmax ES

cn
are presented

Nucleus kmax LS
c kmax ES

c

4He(A) 0.75 0.75
4He(R) 0.72 0.72
12C(A) 1.03 0.66, 0.85, 1.01
12C(R) 1.03 0.64, 0.82, 0.97
16O(A) 1.14 0.70, 0.90, 1.07
16O(R) 1.12 0.68, 0.88, 1.05
40Ca(A) 1.36 0.71, 0.92, 1.08, 1.23, 1.36
40Ca(R) 1.31 0.68, 0.88, 1.05, 1.19, 1.31
48Ca(A) (1.424, 1.219) 0.698, 0.901, 1.067, 1.209, 1.337, 1.454, 1.561
48Ca(R) (1.452, 1.242) 0.686, 0.886, 1.048, 1.188, 1.314, 1.428, 1.534
90Zr(A) (1.573, 1.395) 0.674, 0.870, 1.029, 1.167, 1.290, 1.403, 1.507, 1.604, 1.696
90Zr(R) (1.541, 1.368) 0.649, 0.838, 0.992, 1.124, 1.243, 1.351, 1.452, 1.547, 1.634

120Sn(A,R) (1.449, 1.448) 0.576, 0.743, 0.879, 0.997, 1.102, 1.198, 1.287, 1.370, 1.449

kmaxLS
c and kmaxES

c values, so their numerical values are the same. As the atomic mass
increases, the number of shells also increases, and we get more numeric values for kmaxES

c .
On the other hand, the kmaxES

c values increase as one moves to the higher shells in each
nucleus. Note that these cutoff values are calculated at the saturation point of each nucleus
(γ) and the values of γ are different in the two schemes, although the potential is the same.

In Fig. 1, the DDAEI of LOCV calculations, with the Avjmax=2
18 (Reid68) potential, are

plotted for three different values of cutoff Fermi momenta: kmaxLS
c = 0.75 (0.72), 1.14 (1.12)

and 1.34 (1.31) fm−1, corresponding to the maximum values of the RQN of two nucleons
in the last shell for the ground state of 4He, 16O and 40Ca nuclei, respectively. The larger
variations with respect to kmaxLS

c are observed in the case of Reid68. Similarly, in Fig. 2, the
same comparisons have been made for one of the asymmetric nuclei for different proton and
neutron cutoff Fermi momenta, i.e., 48Ca, with the magnitudes of kmaxLS

cp
= 1.22 (1.24) fm−1

and kmaxLS
cn

= 1.42 (1.45) fm−1, respectively. As in our previous works [14, 16], the data
of ˇgures come from the LOCV code for the asymmetric nuclear matter with the asymmetric
parameter (� = ρp/ρn), which is � = 1.00 for the symmetric nuclei, in Fig. 1, and � = 0.71
for the asymmetric nuclei, in Fig. 2, corresponding to the proton-to-neutron ratio of 48Ca and
120Sn (see also Table 2). The DDAEI are more repulsive for Reid68 potential with respect
to the Avjmax=2

18 interaction. But the cutoff Fermi momentum values are approximately the
same (see Table 2 for their values which correspond to the above ˇgures). On the other
hand, according to Fig. 1, the repulsive part of the potential of the two nucleons decreases as
the cutoff Fermi momentum is increased for both of the phenomenological interactions. This
situation is reversed in the attraction portion of DDAEI potentials. Therefore, it is expected
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Fig. 1. The DDAEI (MeV) versus the NN relative distance (fm) for the different cutoff Fermi

momentum. The heavy solid (solid) curves are for the Avjmax=2
18 (Reid68). The results are produced

by using the asymmetric nuclear matter LOCV code with asymmetric parameters equal to 1

that two nucleons repulse each other in light nuclei much more than in heavier ones. Unlike,
the two nucleons are a little more repulsive (attractive) through Reid68 (Av18) interaction
than through Av18 (Reid68) potential. Although the asymmetric parameter is reduced about
thirty percent with respect to the symmetric ones, Fig. 2 shows the same situation as Fig. 1
and differences are not very signiˇcant. Thus, it seems that the interaction energies of the
heavier asymmetric nuclei are not different from those of the symmetric ones with respect to
the DDAEI graphs.

The variational binding energies per nucleon (MeV) of the symmetric closed-shell nuclei
by using the DDAEI with the Avjmax=2

18 and the Reid68 potentials are given in Table 3.
The ˇrst column shows the different nuclei in which the letters ®A¯ and ®R¯ stand for the
Avjmax=2

18 and the Reid68 potentials, respectively. The next two columns show the values
of the saturation oscillator parameter γ (fm−1) and the calculated saturation rms radius (fm).
The forth up to seventh columns stand for the differences between the single particle and
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Fig. 2. The same as Fig. 1, but with different proton and neutron cutoff Fermi momenta and the

asymmetric parameters equal to 0.71

the center-of-mass kinetic energies, the two-body effective kinetic and two-body effective
potential energies and the saturation binding energies (MeV). The columns labeled by stars
present the binding energy and rms radius of the symmetric nuclei from our previous works,
references [15] and [13], respectively, without the inclusion of the cutoff. Finally, the last two
columns show the experimental binding energy (MeV) and the rms radius (fm). This table
demonstrates that the momentum cutoff increases (decreases) the binding energies (rms) of
light closed-shell symmetric nuclei by about 2 MeV (10%) with respect to the same calculation
but without the cutoff constraint (the star numbers). Especially, we get very good agreement
with the experimental data for the 40Ca nucleus. In the present calculation, while the addition
of the one- (especially because of the reduction of the rms radius) and two-body kinetic
energies increases by about 20%, there is more than 35% increase in the two-body potential
energy (e.g., see Table 1 of reference [15]). So, as one would expect, on average the cutoff
constraint forces the nucleons to attract each other more than in the unconstrained case.
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Table 3. The variational binding energies (MeV) from the ˇrst consideration for the symmetric
closed-shell nuclei by using the DDAEI with Av18(jmax = 2) (speciˇed by ®A¯) and Reid68 (speciˇed
by ®R¯). Data characterized by ∗ comes from [15] and [13] corresponding to the Avjmax=2

18 and
Reid68 potentials, respectively. See the text for explanation for different columns

Nucleus γ rrms
T1 − T A

cm

A

T 2eff

A

V 2eff

A

BE

A

BE∗

A
r∗rms

BEexp

A
rexp

4He(A) 0.61 2.01 8.68 6.02 Ä17.30 Ä2.60 Ä0.71 2.66 Ä7.08 1.63
4He(R) 0.59 2.08 8.12 6.76 Ä17.30 Ä2.42 Ä0.79 2.66
12C(A) 0.55 3.15 12.80 7.35 Ä22.34 Ä2.19 Ä1.03 2.94 Ä7.68 2.47
12C(R) 0.55 3.15 12.80 8.89 Ä23.79 Ä2.09 Ä0.98 2.94
16O(A) 0.62 2.42 17.19 12.36 Ä35.47 Ä5.92 Ä2.80 2.73 Ä7.98 2.65
16O(R) 0.61 2.46 16.64 14.37 Ä36.69 Ä5.69 Ä2.77 2.83
40Ca(A) 0.58 2.99 20.66 15.72 Ä45.10 Ä8.71 Ä5.96 3.21 Ä8.55 3.39
40Ca(R) 0.56 3.09 19.26 17.40 Ä45.06 Ä8.39 Ä5.77 3.33

Table 4. The same as Table 3, but for the asymmetric closed-shell nuclei. The binding energies
accounting for the cutoff are characterized by ®cut¯. See the text for more explanation

Nucleus γ rn
rms rp

rms
T1 − T A

cm

A

T 2eff

A

V 2eff

A

BE

A

BEexp

A
rexp

48Ca(A) 0.54 3.43 3.21 19.46 13.30 Ä38.34 Ä5.59 Ä8.67 3.53
48Cacut(A) 0.52 3.56 3.27 18.04 12.34 Ä36.71 Ä6.32

48Ca(R) 0.51 3.63 3.40 17.36 13.94 Ä36.73 Ä5.44
48Cacut(R) 0.53 3.49 3.21 18.75 15.52 Ä40.55 Ä6.29

90Zr(A) 0.52 3.89 3.70 22.02 16.17 Ä46.43 Ä8.24 Ä8.71 4.27
90Zrcut(A) 0.51 3.96 3.77 21.18 15.65 Ä45.78 Ä8.95

90Zr(R) 0.48 4.20 4.02 18.76 16.09 Ä42.75 Ä7.89
90Zrcut(R) 0.50 4.04 3.84 20.36 17.93 Ä47.01 Ä8.71
120Sn(A) 0.47 4.43 4.28 19.79 14.37 Ä42.97 Ä8.82 Ä8.50 4.65

120Sncut(A) 0.47 4.43 4.28 19.79 14.54 Ä43.87 Ä9.54
120Sn(R) 0.47 4.43 4.28 19.79 17.25 Ä45.79 Ä8.74

120Sncut(R) 0.47 4.43 4.28 19.79 17.46 Ä46.77 Ä9.52

Table 4 is the same as Table 3, but for the asymmetric closed-shell nuclei. The third
and the fourth columns show the calculated saturation points of the proton and the neutron
rms radius (fm), respectively. Since we have not calculated the binding energies of the
asymmetric nuclei with DDAEI in our previous works, these results are presented for both
cases, i.e., with (labeled by ®cut¯) and without the cutoff. This table shows that, while for the
closed-shell asymmetric nuclei the imposition of the momentum cutoff increases the binding
energy of each nucleus by less than an MeV, the rms radius approximately remains the same
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Table 5. The same as Table 3 but corresponding to the second consideration. See the text for more
explanation

Nucleus γ rrms
T1 − T A

cm

A

T 2eff

A

V 2eff

A

BE

A

BEexp

A
rexp

4He(A) 0.61 2.01 8.68 6.02 Ä17.30 Ä2.60 Ä7.08 1.63
4He(R) 0.59 2.08 8.12 6.76 Ä17.30 Ä2.42
12C(A) 0.54 3.21 12.34 6.91 Ä20.96 Ä1.70 Ä7.68 2.47
12C(R) 0.52 3.33 11.45 7.62 Ä20.67 Ä1.60
16O(A) 0.57 2.63 14.53 9.75 Ä28.51 Ä4.24 Ä7.98 2.65
16O(R) 0.56 2.68 14.02 11.30 Ä29.41 Ä4.10
40Ca(A) 0.58 2.99 20.66 15.75 Ä45.33 Ä8.91 Ä8.55 3.39
40Ca(R) 0.56 3.09 19.26 17.44 Ä45.28 Ä8.57

Table 6. The same as Table 3 but corresponding to the second consideration. See the text for more
explanation

Nucleus γ rn
rms rp

rms
T1 − T A

cm

A

T 2eff

A

V 2eff

A

BE

A

BEexp

A
rexp

48Ca(A) 0.57 3.25 3.04 21.68 15.80 Ä45.81 Ä8.33 Ä8.67 3.53
48Ca(R) 0.56 3.31 3.09 20.93 18.23 Ä47.24 Ä8.08
90Zr(A) 0.55 3.68 3.52 24.63 19.46 Ä56.35 Ä12.25 Ä8.71 4.27
90Zr(R) 0.53 3.81 3.65 22.87 21.45 Ä56.11 Ä11.78
120Sn(A) 0.47 4.43 4.28 19.79 15.13 Ä46.93 Ä12.02 Ä8.50 4.65
120Sn(R) 0.47 4.43 4.28 19.79 18.18 Ä50.09 Ä12.13

as in the un-cutoff case and on average the new results are in better agreement with the
experimental data.

Tables 5 and 6 are similar to the previous tables, 3 and 4, but by imposing the second
scheme, i.e., the kmaxES

c cutoff values from Table 2. The binding energies increase more
than in the ˇrst scheme and especially for the asymmetric closed-shell nuclei such as 90Zr
and 120Sn and we get up to 3 MeV over binding. On the other hand, the rms radii do not
approximately change.

In conclusion, the ground-state binding energies of the light symmetric and the heavy
asymmetric closed-shell nuclei, such as 4He, 12C, 16O, 40Ca 48Ca, 90Zr and 120Sn, were
calculated in the harmonic oscillator basis, by imposing the relative Fermi momentum cutoff
of the two interacting nucleons on the density-dependent average effective interactions. The
density-dependent average effective interactions were generated through the lowest order
constrained variational (LOCV) method calculations for the asymmetric nuclear matter with
the operator and the channel-dependent type bare nucleonÄnucleon potentials, such as the
Argonne Avjmax=2

18 and the Reid soft core, Reid68, interactions. In the framework of the
harmonic oscillator shell model, the cutoff was imposed by deˇning the maximum value of
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the relative quantum numbers in two ways: (i) the maximum value of the relative quantum
numbers of the last shell and (ii) the maximum value of the relative quantum numbers of each
shell, in the ground state of the nucleus. It was shown that on average the present results
on the binding energies, and approximately the root-mean-square radius, are closer to the
corresponding experimental data with respect to our previous works with the same DDAEI
potentials, but without imposing the cutoff constraint. However, for the light symmetric
nuclei, the second scheme gives less binding energy and larger root-means-square radius
compared to the ˇrst one, while the situation is reversed for the heavier nuclei. As one should
expect, it seems that the ˇrst scheme is more sensible and suitable, since it is the ®last shell¯
that dictates the ®Fermi momentum¯.

It is expected that one can achieve better results for lighter nuclei, if (1) the truncation
on the channel- and density-dependent effective nucleonÄnucleon potential is made instead of
the average one and (2) all of the interactions Hamiltonian matrix elements [12] are taken
into account. On the other hand, one should not ignore the effect of three-body interactions,
especially for the light nuclei.
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