РЕЖИМ РАБОТЫ ТОНКОСТЕННЫХ ДРЕЙФОВЫХ ТРУБОК ВЫСОКОГО ДАВЛЕНИЯ С ВЫСОКИМ ПРОСТРАНСТВЕННЫМ РАЗРЕШЕНИЕМ

К. И. Давков, В. В. Мялковский, В. Д. Пешехонов, В. Д. Чолаков

Объединенный институт ядерных исследований, Дубна

В работе представлены результаты изучения режима работы тонкостенных дрейфовых трубок (строу) при их продуве газовой смесью высокого давления, в котором ранее было получено экстремально высокое пространственное разрешение для детекторов на основе строу. Приведены результаты исследования радиационного старения строу, работающих в этом режиме.

This article presents results of studying the operating mode of thin-walled drift tubes (straws) with the use of a high pressure gas mixture in which an extremely high spatial resolution for straw-based detectors was obtained in previous studies. Results of research of radiation aging straws operating in this mode are given.

PACS: 07.07.Df

введение

Тонкостенные дрейфовые трубки (ТДТ, или строу) широко используются в экспериментах на ускорителях как детектирующие элементы трековых детекторов при регистрации заряженных частиц, что определяется, главным образом, их малой радиационной толщиной и хорошей радиационной стойкостью. Примерами эффективного их использования служат: детектор переходного излучения — трекер внутреннего детектора АТЛАС, трековые детекторы установок COMPASS, LHCb и др. [1–3]. Строу-детекторы могут обладать большой чувствительной площадью, высокой газовой герметичностью и способны работать при продуве их газовой смесью с давлением до 5 бар.

Координатные детекторы на основе строу высокого давления способны работать как в пропорциональном, ограниченно пропорциональном режимах, так и в самогасящемся стримерном режиме. При регистрации заряженных частиц с минимальными ионизационными потерями в токовом режиме их детектирования на ускорителе SPS ЦЕРН было ранее получено пространственное разрешение лучше 40 мкм при давлении газовой смеси в диапазоне 3–4 бар [4,5]. В работе представлены результаты изучения этого режима работы строу, а также исследования их радиационного старения в этом режиме.

1. РЕЖИМ РАБОТЫ СТРОУ ВЫСОКОГО ДАВЛЕНИЯ

1.1. Стендовая установка. ТДТ с внутренним диаметром 9,53 мм были намотаны двумя каптоновыми лентами. Для внутренней ленты использовалась пленка с графитовым наполнением толщиной 40 мкм типа XC-160, для наружной ленты — пленка типа HN50 толщиной 12,5 мкм с Al-покрытием толщиной около 0,2 мкм. Толщина стенки строу составляет ~ 60 мкм. В качестве анода использовалась золоченая вольфрамовая проволока диаметром 30 мкм с сопротивлением 70 Ом/м.

Режим работы строу изучался в стендовых условиях при облучении их γ -квантами с энергией 5,9 кэВ от источника Fe-55 и электронами с энергией 3,55 МэВ от источника Ru-106. Строу продувались газовой смесью ArCO₂ (80/20) при абсолютном давлении газового наполнения 3 бар.

Усилители на основе микросхемы MSD-2 с усилением 35 мВ/мкА и временем нарастания фронта 4 нс, идентичные применяемым при измерении радиальных координат [5, 6], были использованы для регистрации анодных сигналов. Импульсы с выхода усилителя поступали в аналого-цифровой преобразователь устройства DRS-4 [7], оцифровывающего входной сигнал со скоростью 5 ГГц, запоминающего амплитуду и форму сигнала, и передавались далее в ПК для обработки амплитудных спектров. При регистрации высокоэнергетических электронов источника Ru-106 отбор событий осуществлялся по совпадению сигналов со строу и сцинтилляционного счетчика. Схема установки приведена на рис. 1.

Рис. 1. Блок-схема экспериментальной установки дли изучения режима работы строу: Строу — исследуемая тонкостенная дрейфовая трубка; А — поглотитель низкоэнергетических электронов источника Ru-106; СЦ — сцинтилляционный счетчик с двумя фотоумножителями (ФЭУ); СС — схема совпадений; УС быстрый токовый усилитель; R_s — последовательный резистор для согласования строу с усилителем; DRS-4 — аналого-цифровой преобразователь

1.2. Исследования режима работы строу. Режимы работы строу изучались при давлении 3 бар в диапазоне анодного напряжения от 2,6 до 3,2 кВ, при котором пространственное разрешение σ с увеличением напряжения улучшалось от ~ 60 до менее чем 40 мкм [5].

Известно, что с увеличением давления газовой смеси в дрейфовых детекторах возрастает вероятность образования сильнотокового режима, способного развиваться в так называемый самогасящийся стримерный режим (СГС) [8], тогда как при нормальном давлении, диаметре анодной проволоки 30 мкм и используемой газовой смеси в дрейфовых трубках СГС режим практически отсутствует до максимально возможного анодного напряжения. **1.3.** Регистрация γ -квантов источника Fe-55. Спектры сигналов от гамма-квантов источника Fe-55 при давлении газового наполнения строу 3 бар и анодном напряжении в диапазоне от 2,6 до 3,2 кВ показаны на рис. 2. При напряжении 2,6 кВ (энергетическое разрешение строу около 33 %) и 2,65 кВ видны пик полного поглощения (5,9 кэВ) и пик вылета (2,95 кэВ), что указывает на работу строу в режиме пропорционального усиления. При напряжениях от 2,7 до 2,8 кВ пик вылета начинает сливаться с пиком полного поглощения, что указывает на переход от режима ограниченной пропорциональности в режим насыщенных сигналов. При напряжении около 2,9 кВ начинают появляться сильното-ковые сигналы, количество которых с увеличением напряжения до 3,05 кВ становится преобладающим, а при 3,2 кВ строу практически полностью переходит в сильнотоковый режим. Показанные на рис. 2 спектры хорошо согласуются со спектрами работы [8].

Рис. 2. Спектры сигналов от источника Fe-55 при различных анодных напряжениях. Давление газового наполнения — 3 бар

Зависимость амплитуд сигналов γ -квантов от анодного напряжения представлена на рис. 3. Кривая I показывает величины сигналов в пропорциональном (до напряжения $\sim 2,85$ кВ) и далее до $\sim 3,2$ кВ в ограниченно-пропорциональном/насыщенном режимах. Переходной режим от слаботоковых к сильнотоковым сигналам наблюдается в диапазоне $\sim 2,9-3,2$ кВ, далее наблюдаются сигналы в режиме СГС (кривая 2). Амплитуды сигналов при этом возрастают относительно сигналов в пропорциональном режиме с фактором до 10.

Изменение количественного соотношения слабо- и сильнотоковых сигналов (кривые 1 и 2 соответственно), а также величины тока в строу с ростом анодного напряжения (кривая 3) показано на рис. 4. Начиная с анодного напряжения $\sim 2,8$ кВ появляются в количестве нескольких процентов сильнотоковые сигналы, входящие при напряжении $\sim 3,2$ кВ в насыщение и приводящие к появлению в зоне облучения объемного заряда,

Рис. 3. Величины сигналов в разных режимах регистрации γ-квантов источника Fe-55 в зависимости от анодного напряжения. Газовая смесь — ArCO₂ (80/20) при давлении 3 бар

Рис. 4. Соотношение сигналов в разных режимах их регистрации в строу в зависимости от анодного напряжения. l — сигналы от γ -квантов в пропорциональном или ограниченно-пропорциональном режиме; 2 — сигналы в сильнотоковом режиме; 3 — ток в строу в зависимости от напряжения. Источник — Fe-55, газовая смесь — ArCO₂ (80/20) при давлении 3 бар

влияющего на локальную эффективность строу. Кривая 3 показывает среднюю величину тока в строу в зависимости от анодного напряжения. Видно, что в диапазоне напряжения 2,6–3,2 кВ величина среднего тока при фиксированном потоке γ -квантов увеличивается в 35 раз, возрастая от ~ 4 до ~ 140 нА. При напряжении 3,05 кВ возрастание тока относительно напряжения 2,8 кВ не более 10, что согласуется с соотношением амплитуд сигналов на рис. 3. Отношение слаботоковых к сильнотоковым сигналам при напряжении 3,05 кВ составляет 20/80.

1.4. Регистрация электронов источника Ru-106. Зависимости, аналогичные полученным при регистрации гамма-квантов, были получены при регистрации высокоэнергетических электронов от источника Ru-106. Зависимости амплитуд сигналов при регистрации электронов с энергией 3,55 МэВ от анодного напряжения представлены на рис. 5. Видно, что переходной режим от слаботоковых к сильнотоковым сигналам (кривые 1 и 2 соответственно) начинается с анодного напряжения на 100 В более высокого, чем при регистрации γ -квантов.

Рис. 5. Величины сигналов от источника Ru-106 в зависимости от анодного напряжения. Газовая смесь — ArCO₂ (80/20), давление — 3 бар. *1* — сигналы в пропорциональном или ограниченно-пропорциональном режиме; *2* — сигналы в сильнотоковом режиме

Рис. 6. Соотношение сигналов в разных режимах их регистрации в строу в зависимости от анодного напряжения. Источник — Ru-106, газовая смесь — ArCO₂ (80/20) при давлении 3 бар. 1 — сигналы от высокоэнергетических электронов в пропорциональном или ограниченно-пропорциональном режиме; 2 — сигналы в сильнотоковом режиме; 3 — ток в строу в зависимости от анодного напряжения

Изменение количественного соотношения слабо- и сильнотоковых сигналов (кривые 1 и 2 соответственно), как и изменение величины тока (кривая 3) в строу, с ростом анодного напряжения при регистрации электронов показаны на рис. 6. Начиная с анодного напряжения $\sim 2,9$ кВ наблюдается увеличение сильнотоковых сигналов, количество которых достигает $\sim 60\%$ при напряжении 3,15 кВ (рис. 6). При напряжении 3,05 кВ отношение слаботоковых к сильнотоковым сигналам составляет 30/70. При регистрации квантов от источника Fe-55 это же соотношение наблюдается для анодного напряжения 3,05 кВ кбривая 3 на рис. 6 показывает среднюю величину тока, приходящегося на одно регистрируемое событие, в зависимости от анодного напряжения. При напряжении 3,05 кВ эта величина составляет 50 нА, но является завышенной более чем в два раза, так как в нее входит средний ток от нерегистрируемых электроникой низкоэнергетических электронов с энергией 39,2 кэВ, излучаемых источником.

Основной вывод. Для газовой смеси $ArCO_2$ (80/20) в диапазоне ее давления ~ 3-4 бар возможна работа строу в переходном режиме от ограниченно-пропорционального (насыщенного) к сильнотоковому режиму. При этом регистрируются сигналы обоих видов в

стабильном их соотношении, зависящем от анодного напряжения. Пространственное разрешение строу в этом режиме работы детектора может быть повышено до ~ 40 мкм [5]. При этом фактор увеличения тока в строу не более 10.

Следует отметить, что при регистрации γ -квантов и заряженных частиц при близких величинах их энергетических потерь вход строу в переходной режим наблюдается для квантов при более низком значении анодного напряжения.

2. ИССЛЕДОВАНИЯ СТАРЕНИЯ СТРОУ

2.1. Стендовая установка. Существенным фактором, влияющим на работоспособность детекторов, является их радиационное старение. Рабочее вещество дрейфовых трубок постоянно обновляется, поэтому эффекты старения газонаполненных детекторов, определяемые, главным образом, величиной аккумулированного в них заряда, происходят из-за полимеризации загрязнений на аноде и/или катоде в результате возможных химических реакций с участием активных радикалов, что приводит к изменению параметров детекторов.

Для проверки возможности долговременной работы строу в исследованном выше переходном режиме были проведены исследования радиационной стойкости при рентгеновском облучении их в стендовых условиях.

На стенде (рис. 7) располагались исследуемый и мониторный прототипы, содержащие идентичные описанным выше строу длиной 11,3 см. Строу одного прототипа облучалась по всей ее длине однородным по интенсивности пучком γ-квантов от рентгеновской трубки (РТ) с медным анодом при напряжении 9 кВ. Строу другого прототипа являлась мониторным детектором (МД) и использовалась для получения сравнительных амплитудных характеристик с облучаемой рентгеновским излучением строу при ее тестировании. Мониторная строу с постоянно расположенным в ее центре коллимированным источником Fe-55 облучалась при загрузке ~ 100 Гц на 1 см длины анода, что исключало возможность возникновения в ней эффектов старения. Обе строу располагались в не-

Рис. 7. Блок-схема экспериментального стенда: *1* — исследуемая строу; *2* — мониторный счетчик; РТ — рентгеновская трубка; УС — быстрый токовый усилитель; АЦП — амплитудно-цифровой преобразователь; ПК — компьютер

посредственной близости и продувались последовательно газовой смесью ArCO₂ (80/20) со скоростью $\sim 20 \text{ см}^3/4$ при абсолютном давлении газовой смеси ($3 \pm 0,02$) бар, что исключало возможность различия величины их газового усиления из-за изменений парциального давления составляющих смеси и внешних параметров — температуры и давления окружающей среды.

Анодное напряжение строу при ее облучении РТ было 3,05 кВ, средний ток составлял ~ 3 мкА при средней загрузке ~ 340 кГц (30 кГц/см длины анода).

2.2. Результаты исследования. Перед началом исследований при давлении газовой смеси 1 бар был установлен режим тестирования облучаемой строу при газовом усилении $\sim 2 \cdot 10^4$. При этом амплитуда усиленных сигналов от квантов источника Fe-55 по всей длине строу обоих прототипов составляла 100 мВ. Затем проверялась однородность облучения исследуемой строу по длине анода сканированием квантами от РТ через щелевой коллиматор. Разница интенсивности облучения в середине и на концах строу не превышала 15 %.

После аккумулирования в облучаемой строу каждых ~ 0.5 Кл/см заряда проводилось ее тестирование, при этом измерялись амплитуды сигналов и энергетическое разрешение по длине анода и проводилось сравнение этих величин с параметрами мониторной строу.

За ~ 2600 ч облучения средняя величина выделенного заряда на 1 см длины строу составила 4,2 Кл. Результаты сканирования мониторной и облученной строу представлены на рис. 8 кривыми 1 и 2 соответственно. Виден слабый эффект радиационного старения, заключающийся в уменьшении амплитуды сигналов до ~ 8 % вдоль облученной строу по направлению ее продува газовой смесью. Ухудшения энергетического разрешения не было обнаружено.

Газовая смесь в облучаемой строу (объемом ~ $8,1 \text{ см}^3$) при скорости продува 20 см³/ч, полностью сменялась через 24 мин, т. е. облучение входящего в строу слоя газа в ортогональном к аноду срезе толщиной 1 мм увеличивается к моменту его выхода в ~ 10^3 раз. Это указывает на возможность повышенной полимеризации вдоль строу из-за низкой скорости продува при облучении строу по всей длине. Кроме того, можно отметить, что в нашем случае токи переходного режима при регистрации γ -квантов выше, чем при регистрации заряженных частиц с минимальными ионизационными потерями, как показано выше.

Рис. 8. Амплитуды сигналов по длине строу мониторного (кривая I) и облученного (кривая 2) прототипов. Давление — 1 бар, газовое усиление ~ $2 \cdot 10^4$. Средняя величина накопленного заряда на сантиметр длины строу ~ 4,2 Кл. Стрелкой показано направление продува строу

438 Давков К.И. и др.

Таким образом, результаты радиационного тестирования облучением γ -квантами с энергией 8 кэВ показали возможность долговременной работы строу высокого давления в переходном режиме.

ЗАКЛЮЧЕНИЕ

Исследование переходного режима от слаботокового к сильнотоковому для строу с газовым наполнением $ArCO_2$ при давлении 3 бар показало возможность его применения для высокоточной регистрации заряженных частиц. Переходной режим работы строу в этом диапазоне давления и при аноде диаметром 30 мкм или менее не развивается в самогасящийся стримерный режим, обладает высокой стабильностью и достаточно хорошей радиационной стойкостью.

Авторы благодарны В.И. Давкову за участие в проведении исследований по радиационному старению.

СПИСОК ЛИТЕРАТУРЫ

- 1. Abat E. et al. The ATLAS TRT End-Cap Detectors // JINST. 2008. V.3. P. 10003.
- 2. Bychkov V. N. et al. The Large Size Straw Drift Chambers of the COMPASS Experiment // Nucl. Instr. Meth. A. 2006. V. 556. P. 66–79.
- 3. Alves A. Augusto et al. The LHCb Detector at the LHC // JINST. 2008. V. 3. P. S08005.
- 4. *Peshekhonov V. D.* New Capabilities of Coordinate Detectors on the Basis of Straws // PoS (ICHEP 2010), 2010. P. 508.
- Davkov V. I. et al. Spatial Resolution of Thin-Walled High-Pressure Drift Tubes // Nucl. Instr. Meth. A. 2011. V. 634. P. 5–7.
- Bazylev S. N. et al. A Prototype Coordinate Detector Based on Granulated Thin-Walled Drift Tubes // Ibid. V. 632. P. 75–80.
- 7. Paul Scherrer Institut. DRS4 Evaluation Board User's Manual. http://drs.web.psi.ch/datasheets.
- Алексеев Г. Д. и др. Самогасящийся стримерный разряд в проволочной камере // ЭЧАЯ. 1982. Т. 13, № 3. С. 703–748.

Получено 26 августа 2013 г.