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We review evolution equations for the truncated Mellin moments of the parton distributions and
some their applications in QCD analysis. The main ˇnding of the presented approach is that the nth
truncated moment of the parton distribution obeys also the DGLAP equation but with a rescaled splitting
function P ′(z) = znP (z). This allows one to avoid the problem of dealing with the experimentally
unexplored Bjorken-x region. The evolution equations for truncated moments are universal Å they
are valid in each order of perturbation expansion and can be a useful additional tool in analysis of
unpolarized as well as polarized nucleon structure functions.
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INTRODUCTION

Understanding the details of the Bjorken-x and Q2 dependence of the nucleon structure
functions is one of the most important challenges in high-energy physics. Perturbative QCD
provides a comprehensive framework for describing deep-inelastic leptonÄhadron scattering
(DIS) and hadronÄhadron collisions (HÄH) in current and planned experiments. In this frame-
work, where the high-energy collisions proceed via partonic constituents of the hadron, a key
role is played by universal parton distribution functions (PDFs). According to the factor-
ization theorem, DIS or HÄH cross section is a convolution of a short-distance interaction,

1E-mail: d.strozik-kotlorz@po.opole.pl
2E-mail: a.kotlorz@po.opole.pl



Evolution of the Truncated Mellin Moments of the Parton Distributions in QCD Analysis 569

described by the partonic cross section σ̂f and a long-distance structure described by the
parton distribution qf .

Particularly interesting is a study of polarized processes which provides knowledge of the
spin structure of the nucleon. Though the recent experimental data and NLO analyses suggest
that valence quarks carry the expected fraction of the nucleon spin, the main questions are
still open: how the nucleon spin is distributed among its constituents Å quarks (particularly
sea quarks with negative helicity) and gluons, and how the dynamics of these constituent
interactions depends on spin. New experimental data in the resonance region from Jefferson
Lab together with complementary data from HERMES, COMPASS and RHIC, are a crucial
step towards better understanding of not only the 	avor decomposition and gluon contributions
to the nucleon spin but also the quarkÄhadron duality. The main goal of present polarized
experiments is to determine the nucleon spin structure functions g1(x, Q2), g2(x, Q2) and their
moments which are essential in testing QCD sum rules. The theoretical approach usually used
in the description of these experimental results is the QCD evolution equations for the parton
densities which change with Q2 according to the well-known DGLAP equations [1Ä4]. This
standard DGLAP approach operates on the parton densities q; hence their moments, which
are, e.g., the contributions to the proton spin and other sum rules, can be obtained by the
integration of the parton densities q over Bjorken-x.

Alternatively, one can directly study the Q2 evolution of the Mellin moments of the parton
densities. The moments provide a natural framework in QCD analysis, as they originate
from OPE Å the basic formalism of quantum ˇeld theory. The idea of truncated Mellin
moments (TMM) of the parton densities in QCD analysis was introduced and developed in
the late 1990s [5Ä8]. The authors obtained the nondiagonal differential evolution equations
in which the nth truncated moment coupled to all higher ones. The evolution equations
for TMM within the ln2 x approximation were found in [9], and ˇnally DGLAP-type diagonal
integro-differential evolution equations for the single- and double-truncated moments of the
parton distribution functions were derived in [10, 11] and [12]. Evolution equations for
double-truncated moments and their application to study the quarkÄhadron duality were also
discussed in [13].

The main ˇnding of the truncated moments approach is that the nth moment of the
parton distribution obeys also the DGLAP equation but with a rescaled splitting function
P ′(z) = znP (z) [10]. This approach allows one to restrict the analysis to the experimentally
available Bjorken-x region. The evolution equations for TMM are universal Å they are valid
in each order of perturbation expansion (then Wilson coefˇcients rescale in the same way as
the splitting functions) and can be an additional tool in QCD analysis of unpolarized as well
as polarized nucleon structure functions.

In this paper, we review our main results on the truncated moments approach. In the
next section, we present the evolution equations for the truncated moments of the parton
distributions. Section 2 contains relations between the truncated and untruncated Mellin
moments, useful for solving evolution equations. Section 3 describes determination of the
parton densities from their truncated moments. Implications of the TMM approach for analysis
of the polarized structure functions g1 and g2 are presented in Secs. 4 and 5, respectively. We
show the evolution of TMM of g1 together with the predictions for the Bjorken sum rule.
Then, we present the WandzuraÄWilczek relation and sum rules in terms of the truncated
moments. We also give the evolution equations. Finally, in Summary, we highlight possible
future applications of the truncated moments approach in QCD analysis.
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1. THE EVOLUTION EQUATIONS
FOR THE TRUNCATED MELLIN MOMENTS OF THE PARTON DISTRIBUTIONS

The structure functions of the nucleon can be expressed in terms of the parton distributions.
These depend on two kinematic variables: the Bjorken-x and Q2 = −q2 with q being the
four-momentum transfer in the deep-inelastic leptonÄnucleon scattering (DIS). The scaling
variable is deˇned as x = Q2/(2pq), where p is the nucleon four-momentum. The strong
interactions between quarks and gluons cause changes in the parton densities. For medium and
large x, the Q2 evolution of the parton distributions is described by the standard DokshitzerÄ
GribovÄLipatovÄAltarelliÄParisi (DGLAP) equations [1Ä4]:

dq(x, Q2)
d ln Q2

=
αs(Q2)

2π
(P ⊗ q)(x, Q2), (1)

where αs(Q2) is the running coupling, ⊗ denotes the Mellin convolution

(A ⊗ B)(x) ≡
1∫

x

dz

z
A

(x

z

)
B(z), (2)

and P (z) is the splitting function, which can be expanded in a power series of αs(Q2).
In the DGLAP approach, the main role is played by the PDFs and in our TMM approach

we study directly the Q2 evolution of the truncated moments of the PDFs. In [10], we found
that the single-truncated moments of the parton distributions q(x, Q2), deˇned as

q̄n(x0, Q
2) =

1∫
x0

dxxn−1 q(x, Q2), (3)

obey the DGLAP-type equation

dq̄n(x0, Q
2)

d ln Q2
=

αs(Q2)
2π

(P ′ ⊗ q̄n)(x0, Q
2). (4)

A role of the splitting function is played here by P ′(n, z):

P ′(n, z) = zn P (z). (5)

Since the experimental data cover only a limited range of x, except very small x → 0 as well
as large x → 1, it is very natural and convenient to deal with the double-truncated moments.
Truncation at large x is less important in comparison to the small-x limit because of the rapid
decrease of the parton densities as x → 1; nevertheless, a comprehensive theoretical analysis
requires an equal treatment of both truncated limits.

The double-truncated moment

q̄n(xmin, xmax, Q
2) =

xmax∫
xmin

dxxn−1 q(x, Q2), (6)
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as it is a subtraction of two single-truncated ones, also satisˇes the DGLAP-type evolution
equation (4) [11Ä13]:

dq̄n(xmin, xmax, Q
2)

d ln Q2
=

αs(Q2)
2π

1∫
xmin

dz

z
P ′(n, z) q̄n

(xmin

z
,
xmax

z
, Q2

)
(7)

with P ′ given again by Eq. (5).
Our approach, Eqs. (4)Ä(7), is valid for the coupled DGLAP equations for quarks and

gluons and for any approximation (LO, NLO, NNLO, etc.). For clarity, we present here
only the nonsinglet and leading order part. In higher order analysis (e.g., NLO), truncated
moments of the structure functions assume the form

ḡn
1 (x, Q2) =

1
2

∑
q

e2
q×

×
[
Δq̄n(x, Q2) +

αs(Q2)
2π

(
C′

q(n) ⊗ Δq̄n + C′
G(n) ⊗ ΔḠn

)
(x, Q2)

]
, (8)

where the Wilson coefˇcients rescale in the same way as the splitting functions

C′
i(n, x) = xn Ci(x). (9)

Let us emphasize that the evolution equations for the double-truncated moments, Eq. (7), are
in fact a valuable generalization of those for the single-truncated and untruncated ones. Setting
xmin = x0 or xmin = 0 and xmax = 1, one obtains Eq. (4) or the well-known renorm-group
equation for the moments

dq̄n(Q2)
d ln Q2

=
αs(Q2)

2π
γn(Q2) q̄n(Q2), (10)

respectively.
In the next section, we present relations between truncated and untruncated moments

which are useful for solving the evolution equations.

2. RELATIONS BETWEEN TRUNCATED AND UNTRUNCATED MOMENTS

The evolution equations for the truncated moments, Eq. (4), are very similar to those for
the PDFs. In both cases, one deals with functions of two variables x and Q2 (with additionally
ˇxed index n for moments), which obey the integro-differential Volterra-like equations. The
only difference lies in the splitting function, which for moments has the rescaled form Eq. (5).
This similarity allows one to solve the equations for truncated moments with the use of
standard methods of solving the DGLAP equations. Analysis of the evolution performed in
moment space, when applied to the truncated moments, implies dealing with such an exotic
structure as ®Moment of Moment¯. Let us discuss this in detail and introduce some useful
relations involving untruncated and truncated Mellin moments.

There are in literature several methods for the solution of the integro-differential DGLAP
equations. They are based on either the polynomial expansion or the Mellin transformation Å
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for review see, e.g., [14]. In our previous studies on the evolution of the truncated moments
we used the Chebyshev polynomial technique [15], earlier widely applied by Jan Kwieci
nski
in many QCD treatments Å for details see, e.g., Appendix of [16]. Using this method, one ob-
tains the system of linear differential equations instead of the original integro-differential ones.
The Chebyshev expansion provides a robust method of discretising a continuous problem.

An alternative approach is based on the Mellin transformation and the moment factoriza-
tion. Taking the sth moment of the evolution equation (4), one obtains

dM s, n(Q2)
d ln Q2

=
αs(Q2)

2π
γs+n(Q2)M s, n(Q2), (11)

where M s, n denotes here the sth (untruncated) moment of the nth (truncated) moment of the
parton density

M s, n(Q2) =

1∫
0

dxxs−1 q̄n(x, Q2). (12)

Analogically to the well-known solutions for the PDFs, we can immediately write down
solutions for the truncated moments

M s, n(Q2) = M s, n(Q2
0)

[
αs(Q2

0)
αs(Q2)

] b γs+n

(13)

and

q̄n(x, Q2) =
1

2πi

c+i∞∫
c−i∞

ds x−s M s, n(Q2). (14)

The quantity M s, n, which is rather exotic and has no physical meaning, can be replaced by
the usual truncated moment q̄. In [12], we found useful relations between the truncated and
untruncated moments, namely,

M s, n =
1
s

1∫
0

dz zs+n−1q(z) =
1
s

q̄s+n, (15)

q̄n(x, Q2) =
1

2πi

c+i∞∫
c−i∞

ds
x−s

s
q̄s+n(Q2) (16)

and

q̄s(Q2) = (s − n)M s−n, n(Q2) = (s − n)

1∫
0

dxxs−n−1 q̄n(x, Q2). (17)

Equations (15), (16) and (17) have a large practical meaning in solving the evolution equations
of TMM. Particularly, Eq. (16) seems to be helpful when the untruncated moments are known,
e.g., from lattice calculations.

In the next sections we will discuss some implications of our approach for QCD analysis.
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3. DETERMINATION OF THE PARTON DISTRIBUTIONS FROM THEIR TMM

The TMM approach, which refers to the physical values Å moments (not to the parton
densities), allows one to study directly their evolution and the scaling violation. The solutions
for truncated moments can also be used in the determination of the parton distribution functions
via differentiation

q(x, Q2) = −x1−n ∂q̄n(x, Q2)
∂x

. (18)

In order to reconstruct initial parton densities at scale Q2
0 from their truncated moments, given,

e.g., by experimental data at scale Q2, we evolve moments between these two scales down
(from Q2 to Q2

0) and then perform the ˇnal ˇt of free parameters Å for details see [11].
We proceed with the following steps:
1. Preparing available experimental data for moments q̄n(x0, Q

2
1) as a function of xmin �

x0 � 1 at the same scale Q2
1.

2. Interpolation of the given data points into the points that are Chebyshev nodes. This
allows us to use the Chebyshev polynomial technique for solving the evolution equations.

3. Evolution of the truncated moments from Q2
1 to Q2

2, according to (1), for different
xmin � x0 � 1.

4. Reconstruction of the parton density q(x, Q2
2) from its truncated moment at the same

scale Q2
2 by applying the minimizing algorithm to ˇt free parameters.

In [11], we tested this method on the nonsinglet function parameterized in the general
form

q(x, Q2
0) = N(α, β, γ)xα(1 − x)β(1 + γx), (19)

and also on the original ˇts for HERMES [17] and COMPASS [18] data. In Figs. 1 and 2,
we show the spin-dependent valence quark distributions reconstructed from HERMES [17]
and COMPASS [18] data. From these plots one can see satisfactory agreement between the

Fig. 1. Initial spin-dependent valence quark dis-
tributions x(Δuv − Δdv), xΔuv and xΔdv at

Q2
0 = 4 GeV2: dashed Å reconstructed from

HERMES data for the ˇrst truncated moment of
the nonsinglet polarized function gNS

1 at Q2 =

5 GeV2 [17], solid Å original BB ˇt [19]. Plots
for x(Δuv − Δdv) overlap each other

Fig. 2. Initial spin-dependent valence quark
distributions x(Δuv + Δdv), xΔuv and xΔdv

at Q2
0 = 0.5 GeV2: dashed Å reconstructed

from COMPASS data for the ˇrst truncated mo-
ment of the function Δuv + Δdv at Q2 =

10 GeV2 [18], solid Å original DNS ˇt [20].
Plots for x(Δuv + Δdv) overlap each other
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reconstructed ˇts and experimental data. The reconstructed combined functions x(Δuv−Δdv)
and x(Δuv + Δdv) overlap HERMES and COMPASS results, respectively. For the extracted
valence quark densities alone the agreement is worse but still acceptable. We have found,
however, that these ˇts are not unique and an equally good agreement with the data can be
obtained with the use of other (not only BB and DNS, respectively) sets of free parameters.
When the number of adjustable parameters is large (> 3) and there are no experimental points
from the low-x region x < 0.001, one cannot distinguish which ˇt is the best one. Only
an additional constraint for small-x behaviour of the parton densities makes the ˇt procedure
more reliable. Let us also mention that due to its large-x sensitivity, the second moment can
be helpful in the precise ˇnal reconstruction of the parton density [11]. Concluding, even
for the large number of adjustable parameters (6 for HERMES and 8 for COMPASS data),
the presented method of reconstruction can be a hopeful tool for determining parton densities
from experimental results for their truncated moments.

4. TMM IN ANALYSIS OF THE SPIN STRUCTURE FUNCTION g1

For a complete description of the nucleon spin, one needs two polarized structure func-
tions: g1 and g2. Recently, a new generation of experiments with high polarized luminosity
performed at the Jefferson Lab allows a more precise study of the polarized structure func-
tions and their moments. This is crucial in our understanding of the QCD spin sum rules,
higher-twist effects and quarkÄhadron duality.

The function g1 has a simple interpretation in the parton model:

g1(x) =
1
2

∑
i

ei Δqi(x). (20)

Powerful tools to study the internal spin structure of the nucleon are sum rules. One of
them is the Bjorken sum rule (BSR) [21], which refers to the ˇrst moment of the nonsinglet
spin-dependent structure function gNS

1 (x, Q2):

Γp−n
1 =

1∫
0

dx gNS
1 (x, Q2) =

1∫
0

dx (gp
1 − gn

1 ). (21)

Due to SUf (2) 	avour symmetry, BSR is regarded as exact. Thus, all of estimations of
polarized parton distributions should be performed under the assumption that the BSR is
valid. In the limit of the inˇnite momentum transfer Q2, BSR has the form

Γp−n
1 =

1∫
0

dx gNS
1 (x, Q2) =

1
6

∣∣∣∣gA

gV

∣∣∣∣ , (22)

where |gA/gV | is the neutron β-decay constant

∣∣∣∣gA

gV

∣∣∣∣ = F + D = 1.28. (23)
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With the next perturbative orders and higher twists corrections, the BSR reads

Γp−n
1 (Q2) =

1
6

∣∣∣∣ gA

gV

∣∣∣∣
[
1 − αs

π
− 3.58

α2
s

π2
− 20.21

α3
s

π3
+ . . .

]
︸ ︷︷ ︸

leading twist

+
∞∑

i=2

μ2i(Q2)
Q2i−2︸ ︷︷ ︸

higher twists

. (24)

Since experimental data cover only a restricted region of the Bjorken-x variable and, in fact,
provide knowledge on truncated moments of the structure functions, it is very natural to use
the TMM approach in analysis of these data. The TMM approach allows for a direct study
of the contributions to the BSR. In Figs. 3Ä5 and in the Table, we present the results for the
evolution of the ˇrst truncated moment of gNS

1 , namely,

Γp−n
1 (x0, 1, Q2) =

1∫
x0

gNS
1 (x, Q2) dx. (25)

Figure 3 shows Γp−n
1 (x0, 1, Q2) as a function of the truncation point x0 for different

scales Q2. Figure 4 presents the Q2 evolution of Γp−n
1 (x0, 1, Q2) for different x0. In Fig. 5

Fig. 3. First truncated moment of gp−n
1 vs. trun-

cation point x0 for different Q2: 1 GeV2 (solid),

10 GeV2 (dashed) and 100 GeV2 (dotted). We

assume Regge input: gp−n
1 (x,Q2

0) = N(1 − x)3

Fig. 4. First truncated moment of gp−n
1 vs. evo-

lution scale Q2 for different truncation points
x0: 0.001 (solid), 0.01 (dashed) and 0.1 (dotted).

Regge input parameterization gp−n
1 (x,Q2

0) =

N(1 − x)3

Theoretical predictions for truncated contributions to the BSR for different small-x behaviour of
gNS
1 . Comparison with the HERMES and COMPASS data

Input x range Q2, GeV2 ΓNS
1 EXP ΓNS

1

(1 − x)3 0.161 HERMES

x−0.2(1 − x)3 0.021Ä0.9 5 0.149 0.1479 ± 0.0055 ± 0.0142

x−0.4(1 − x)3 0.131

(1 − x)3 0.177 COMPASS

x−0.2(1 − x)3 0.004Ä0.7 3 0.173 0.175 ± 0.009 ± 0.015

x−0.4(1 − x)3 0.163
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Fig. 5. First truncated moment of gp−n
1 vs. truncation point x0 at evolution scale Q2 = 3 GeV2

for different small-x behaviour of the input parameterization gp−n
1 (x, Q2

0) = N xα(1 − x)3: α = 0

(solid), −0.2 (dashed) and −0.4 (dotted). Comparison with COMPASS data [22]

we compare our predictions for different input parameterization of the nonsinglet structure
function gNS

1 (x, Q2
0) at the initial scale Q2

0 = 1 GeV2:

gNS
1 (x, Q2

0) = Nxα(1 − x)β , (26)

with experimental COMPASS data [22]. Here, we take into account the ˇrst perturbative
correction to the BSR: −αs/π. In the Table we present truncated contributions to the Bjorken
sum rule obtained for different small-x behaviour of the input parameterizations of gNS

1 (x, Q2
0).

Our predictions are compared with experimental HERMES [17] and COMPASS [22] data.

5. TMM IN ANALYSIS OF THE SPIN STRUCTURE FUNCTION g2

Unlikely g1, the structure function g2 has no simple interpretation in the parton model. Due
to the technical difˇculties of obtaining transversely polarized targets, the structure function g2

has not been a topic of investigations for a long time. Recently, new experimental data at
low- and intermediate-momentum transfers have made g2 also a valuable and hopeful tool to
study the spin structure of the nucleon. The function g2 provides knowledge on higher-twist
effects which are a re	ection of the quarkÄgluon correlations in the nucleon.

The experimental value of the function g2, measured in the small-to-intermediate Q2

region, consists of two parts Å the twist-2 (leading) and the higher-twist term:

g2(x, Q2) = gLT
2 (x, Q2) + gHT

2 (x, Q2). (27)

The leading-twist term gLT
2 can be determined from the structure function g1 via the WandzuraÄ

Wilczek relation [23]:

gLT
2 (x, Q2) = gWW

2 (x, Q2) = −g1(x, Q2) +

1∫
x

dy

y
g1(y, Q2). (28)
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Then, from the measurements of g1 and g2, using the WandzuraÄWilczek approximation,
Eq. (28), one is able to extract the higher-twist term gHT

2 . In [12], we found a generalization
of the WandzuraÄWilczek relation in terms of the truncated moments:

ḡn
2 (x0, Q

2) =
1 − n

n
ḡn
1 (x0, Q

2) − xn
0

n
ḡ0
1(x0, Q

2), (29)

where

ḡn
1,2(Q

2) =

1∫
0

dxxn−1 g1,2(x, Q2), (30)

ḡn
1,2(x0, Q

2) =

1∫
x0

dxxn−1 g1,2(x, Q2), (31)

and

ḡ0
1(x0, Q

2) =

1∫
x0

dx

x
g1(x, Q2). (32)

It is easy to see that for the untruncated moments, Eq. (29) takes the well-known form

ḡn
2 (Q2) =

1 − n

n
ḡn
1 (Q2). (33)

From Eq. (29), setting n = 1 and x0 → 0, one can automatically obtain the BurkhardtÄ
Cottingham sum rule (BC) [24] for gWW

2 :

1∫
0

dx g2(x, Q2) = 0. (34)

Using the generalization of the WandzuraÄWilczek relation, Eq. (29), for n = 1 at two
different points of the truncation, and applying the BC sum rule, Eq. (34), we obtain an
interesting relation

x2∫
x1

dx gWW
2 (x, Q2) = (x2 − x1)

1∫
x2

dx

x
g1(x, Q2) − x1

x2∫
x1

dx

x
g1(x, Q2), (35)

which can be very useful in determination of the partial twist-2 contribution to the BC sum
rule. Namely, setting x1 = 0 and x2 = x0, when x0 → 0, one can get the small-x contribution
to the BC sum rule

x0∫
0

dx gWW
2 (x, Q2) = x0

1∫
x0

dx

x
g1(x, Q2). (36)

Now we would like to discuss the problem of the Q2 evolution of g2 [12]. While a general
DGLAP-type equation for g2 does not exist, for the twist-3 component of g2 suitable evolution
equation is known (see, e.g., [25]). In the leading twist-2 approximation, the Q2 evolution
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of g2 is governed by the evolution of g1, according to the WandzuraÄWilczek relation. Since
the second term on the r.h.s. of Eq. (28) is the n = 0th truncated moment of the function g1,
Eq. (32), we can rewrite the WandzuraÄWilczek relation in the form

gWW
2 (x, Q2) = −g1(z, Q2) + ḡ0

1(z, Q2) (37)

and obtain the evolution equation for gWW
2 :

dgWW
2 (x, Q2)
d ln Q2

= −dg1(x, Q2)
d ln Q2

+
dḡ0

1(x, Q2)
d ln Q2

. (38)

It is worth noting that according to Eqs. (4) and (5), the n = 0th truncated moment of the
parton distribution q evolves in the same way as q itself (P ′(0, z) = P (z)). Taking this into
account, in the case of g1 we obtain from Eqs. (38) and (37) the evolution equation

dgWW
2 (x, Q2)
d ln Q2

=
αs(Q2)

2π

1∫
x

dz

z
P

(x

z

) [
ḡ0
1(z, Q2) − g1(z, Q2)

]
, (39)

or ˇnally

dgWW
2 (x, Q2)
d ln Q2

=
αs(Q2)

2π

1∫
x

dz

z
P

(x

z

)
gWW
2 (z, Q2). (40)

The above formula shows that the twist-2 component of the function g2 obeys the standard
DGLAP evolution with the same evolution kernel as g1. In this way, we obtained a system
of evolution equations for

g2 = gexp
2 = gWW

2 + gtwist-3
2 , (41)

namely,

d
[
gexp
2 (x, Q2) − gWW

2 (x, Q2)
]

d ln Q2
=

=
αs(Q2)

2π

1∫
x

dz

z
P twist-3

(x

z

) [
gexp
2 (z, Q2) − gWW

2 (z, Q2)
]
, (42)

dgWW
2 (x, Q2)
d ln Q2

=
αs(Q2)

2π

1∫
x

dz

z
P

(x

z

)
gWW
2 (z, Q2). (43)

In Figs. 6 and 7, we present numerical solutions of Eq. (40) calculated in LO, for different
low-x behaviour of gNS

1 ∼ xα and for different Q2. Figure 6 shows the predictions for xgNS
2

vs. x for different scales of Q2: 1, 10 and 100 GeV2. In the input parameterization of
gNS
1 ∼ xα we assume at the scale Q2

0 α = −0.4. Note that xgNS
2 is positive for low-x, at
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Fig. 6. The nonsinglet LO contributions to the

polarized structure function xgNS
2 (x, Q2) as a

function of x for different Q2: 1 GeV2 (solid),
10 GeV2 (dashed) and 100 GeV2 (dotted). Low-x

behaviour of gNS
1 ∼ x−0.4

Fig. 7. The nonsinglet LO contributions to the

polarized structure function xgNS
2 (x,Q2) at Q2 =

10 GeV2 vs. x for different low-x behaviour of
gNS
1 ∼ xα: α = 0 (solid), α = −0.4 (dashed)

and α = −0.8 (dotted)

about x = 0.1−0.2 it changes sign and becomes negative for larger x. This is in agreement
with the BC sum rule. One can also see that with increasing Q2, an x-intercept of gNS

2 occurs
at smaller values of x. In Fig. 7, we compare the predictions for gNS

2 for different small-x
behaviour of the gNS

1 parameterization: α = 0, −0.4, −0.8. We ˇnd that more singular
small-x behaviour of g1 implies smaller value of the x-intercept of g2.

6. SUMMARY

This paper is a review of our studies on the truncated Mellin moments of the parton
distributions. We presented the evolution equations for the single- and double-truncated nth
moments and useful relations between the truncated and untruncated moments. We gave
examples of application of our approach to the determination of the PDFs and to QCD
analysis of the spin-dependent structure functions g1 and g2. We presented the WandzuraÄ
Wilczek relation in terms of the truncated moments, which implies the truncated sum rules.
We also discussed the system of the DGLAP evolution equations for g2. We presented the
numerical predictions for the evolution of the truncated moments of gNS

1 and the contributions
to the BSR. We tested different small-x behaviour of the initial parameterization of gNS

1 and
compared our results with COMPASS data.

The method of the truncated moments enables one direct, efˇcient study of the evolution
of the moments (and hence sum rules) for nonspin as well as for spin-dependent parton
distributions and can be used in all orders of perturbative theory. The adaptation of the
evolution equations for the available experimentally x-region provides a new, additional tool
for analysis of the nucleon structure functions.

Finally, let us list possible future applications of the TMM approach:
• Study of the fundamental properties of the nucleon structure, concerning moments of F1,

F2 and g1. These are: the momentum fraction carried by quarks, quark helicities contributions
to the spin of nucleon and, what is particularly important, estimation of the polarized gluon
contribution ΔG from COMPASS and RHIC data.



580 Kotlorz D., Kotlorz A.

• Determination of Higher-Twist (HT) effects from the moments of g2 in the restricted
x-region, which will be measured at JLab and can provide information on the quarkÄhadron
duality.

• Test of BurkhardtÄCottingham and EfremovÄLeaderÄTeryaev sum rules [26], also for
their truncated contributions together with comparison to experimental data.

• Predictions for the generalized parton distributions (GPDs). Moments of the GPDs can
be related to the total angular momentum (spin and orbital) carried by various quark 	avors.
Measurements of DVCS, sensitive to GPDs, will be carried out at JLab. This would be an
important step towards a full understanding of the nucleon spin.

Concluding, in light of the recent progress in experimental program, theoretical efforts in
improving our knowledge of the nucleon structure functions and their moments are of great
importance.
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