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DETERMINATION OF IVC BREAKPOINT FOR
JOSEPHSON JUNCTION STACK.

NON-PERIODIC BOUNDARY CONDITIONS WITH γ = 1

S. I. Serdyukova 1

Joint Institute for Nuclear Research, Dubna

We prove that, in the case of non-periodic (with γ = 1) boundary conditions, the calculation of the
current-voltage characteristic (IVC) for a stack of n intrinsic Josephson junctions reduces to solving a
system of [(n+1)/2] nonlinear differential equations instead of the n original ones. The current-voltage
characteristic V (I) has the shape of a hysteresis loop. On the back branch of the loop, V (I) decreases
to zero rapidly near the breakpoint Ib. We managed to derive an algorithm determining the approximate
breakpoint location and to improve simultaneously the mixed numerical-analytical algorithm of IVC
calculation for a stack of Josephson junctions developed by us before. The efˇciency of the improved
algorithm is shown by the calculations of IVC for stacks consisting of various numbers of intrinsic
Josephson junctions.

„μ± § ´μ, ÎÉμ ¢ ¸²ÊÎ ¥ ´¥¶¥·¨μ¤¨Î¥¸±¨Ì (¸ γ = 1) £· ´¨Î´ÒÌ Ê¸²μ¢¨° ¢ÒÎ¨¸²¥´¨¥ ¢μ²ÓÉ-
 ³¶¥·´μ° Ì · ±É¥·¨¸É¨±¨ (‚�•) ¤²Ö ¸¨¸É¥³Ò n ¢´ÊÉ·¥´´¨Ì ¤¦μ§¥Ë¸μ´μ¢¸±¨Ì ¶¥·¥Ìμ¤μ¢ ¸¢μ¤¨É¸Ö
± ·¥Ï¥´¨Õ [(n+1)/2] ´¥²¨´¥°´ÒÌ ¤¨ËË¥·¥´Í¨ ²Ó´ÒÌ Ê· ¢´¥´¨° ¢³¥¸Éμ n μ·¨£¨´ ²Ó´ÒÌ. ‚μ²ÓÉ-
 ³¶¥·´ Ö Ì · ±É¥·¨¸É¨±  V (I) ¨³¥¥É ¢¨¤ ¶¥É²¨ £¨¸É¥·¥§¨¸ . �  μ¡· É´μ° ¢¥É¢¨ ¶¥É²¨ £¨¸É¥·¥§¨¸ 
§´ Î¥´¨¥ V (I) ¡Ò¸É·μ ¸¶ ¤ ¥É ± ´Ê²Õ ¢ μ±·¥¸É´μ¸É¨ ÉμÎ±¨ ¨§²μ³  Ib. � ³ Ê¤ ²μ¸Ó · §· ¡μ-
É ÉÓ  ²£μ·¨É³, μ¶·¥¤¥²ÖÕÐ¨° ¶·¨¡²¨¦¥´´μ¥ §´ Î¥´¨¥ ÉμÎ±¨ ¨§²μ³  Ĩb, ¨ μ¤´μ¢·¥³¥´´μ Ê²ÊÎÏ¨ÉÓ
· §¢¨ÉÒ° ´ ³¨ · ´¥¥ ¸³¥Ï ´´Ò° Î¨¸²¥´´μ- ´ ²¨É¨Î¥¸±¨°  ²£μ·¨É³ ¢ÒÎ¨¸²¥´¨Ö ‚�• ¤²Ö ¸¨¸É¥³
¤¦μ§¥Ë¸μ´μ¢¸±¨Ì ¶¥·¥Ìμ¤μ¢. �ËË¥±É¨¢´μ¸ÉÓ Ê²ÊÎÏ¥´´μ£μ  ²£μ·¨É³  ¶·μ¤¥³μ´¸É·¨·μ¢ ´  ´  ¶·¨-
³¥·¥ ¢ÒÎ¨¸²¥´¨Ö ‚�• ¤²Ö ¸¨¸É¥³ ¸ · §²¨Î´Ò³ Î¨¸²μ³ ¢´ÊÉ·¥´´¨Ì ¤¦μ§¥Ë¸μ´μ¢¸±¨Ì ¶¥·¥Ìμ¤μ¢.

PACS: 60.64

INTRODUCTION

A detailed investigation of the breakpoint current Ib and the breakpoint region width
gives important information concerning the occurrence of longitudional plasma waves and
the peculiarities of stacks with a ˇnite number of intrinsic Josephson junctions [1Ä3]. The
breakpoint region in the current-voltage characteristics (IVC) follows from the solution of the
system of n dynamical equations of the phase differences for a stack of n intrinsic Josephson
junctions. In this work we prove that, in the case of non-periodic (with γ = 1) boundary
conditions, the IVC calculation for a stack of n intrinsic Josephson junctions reduces to solving
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a system of [(n+1)/2] nonlinear differential equations instead of the n original ones. Solving
this system on the interval [0, Tmax] for different I , we get the current-voltage characteristic
V (I) as a hysteresis loop. First the Cauchy problem with the zero initial conditions is solved.
For each next I = Ik+1, the already found ψ(Ik, Tmax) and ψ̇(Ik, Tmax) are used as initial
data. On the back branch of the hysteresis loop, voltage V (I) decreases to zero rapidly near
the breakpoint Ib [3]. Effective numerical and analytical methods for IVC calculation were
developed in [4]. In [5] an equation determining the approximate breakpoint location in the
case of periodic and non-periodic (with γ = 0) boundary conditions was developed. Now we
report an algorithm which ˇnds the approximate breakpoint location in the more complicated
case of non-periodic (with γ = 1) boundary conditions and improves, at the same time, the
mixed numerical-analytical method proposed in [4]. The improved mixed method showed
excellent results in IVC calculation for stacks with different number of intrinsic Josephson
junctions. Moreover, the calculation time reduced by an order of magnitude. The calculations
were performed by using the REDUCE 3.8 system. As a matter of fact, this paper is a second
part of [5], where the mathematical formulation of the hysteresis calculation problem and the
system transformation was given in general form in Secs. 1 and 2, respectively. Omitting
the details reported in [5], we directly start this work from spectral data of matrix A in the
considered case of non-periodic boundary conditions with γ = 1. In Sec. 2 we prove three
lemmas. Lemmas 1 and 3 enable the reduction of the problem to the solution of [(n + 1)/2]
nonlinear differential equations instead of n original ones. Lemma 2 is a fundamental point
for the long-time ®asymptotic¯ construction, reported in Sec. 3. In Sec. 4 we present an
improved analytical method of voltage V calculation which made it possible to deˇne the
approximate breakpoint location in the considered case of non-periodic boundary conditions
with γ = 1. In Sec. 5 we discuss the results of the Josephson loop calculations for different n.

1. THE SPECTRAL DATA. THE SYSTEM TRANSFORMATION

The solution of the system

φ̈l =
n∑

l′=1

Al,l′(I − sin (φl′ ) − βφ̇l′ ), l = 1, . . ., n, (1)

for different I: I = I0 + kΔI � Imax; I = Imax − kΔI , yields the current-voltage char-
acteristics of stacks as hysteresis loops [3]. For the initial value of the current, I = I0, the
system (1) is solved with zero initial data on an interval [0, Tmax]. For each next I: I = Ik+1,
the found φl(Ik, Tmax), φ̇l(Ik, Tmax) are used as initial data.

In the case of non-periodic, with γ = 1, boundary conditions, the A matrix is three-
diagonal,

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 + 2α −α 0 . . . 0 0
−α 1 + 2α −α 0 . . . 0
0 −α 1 + 2α −α 0 . . .

. . . . . . . . . . . . . . . . . .
0 . . . 0 −α 1 + 2α −α
0 0 . . . 0 −α 1 + 2α

⎞
⎟⎟⎟⎟⎟⎟⎠

. (2)
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Matrices of such kind have been previously noticed as well [6]. The eigenvalues and eigen-
vectors of A can be written down explicitly:

λj = 1 + 2α(1 − cos (jθ)), θ =
π

n + 1
, j = 1, . . ., n;

Ej =

√
2

n + 1

⎡
⎢⎢⎢⎣

sin (jθ)
sin (2jθ)

...
sin (njθ)

⎤
⎥⎥⎥⎦ , j = 1, . . ., n. (3)

The fundamental matrices D, the columns of which are El, reduce the A-matrices to
diagonal forms [8],

D∗AD = Λ = diag (λ1, λ2, . . ., λn).

After the change of variables

φl =
n∑

l′=1

dl,l′ψl′ , Vl =
n∑

l′=1

dl,l′Wl′ ,

we get a system

ψ̈l = −λlβψ̇l + λlISl − λl

n∑
l′=1

dl′,l sin (φl′), l = 1, . . ., n,

where Sl is the sum of the El elements,

Sl =
n∑

l′=1

dl′,l.

The equations determining voltages (see (4) and (5) in [3]) result in

∂ψl

∂t
= λlWl, W̄l =

ψl(Tmax) − ψl(Tmin)
λl(Tmax − Tmin)

,

respectively, while the total voltage of the stack is given by

V =
n∑

l=1

SlW̄l =
n∑

l=1

Sl
ψl(Tmax) − ψl(Tmin)

λl(Tmax − Tmin)
. (4)

2. THREE LEMMAS

Let us remind that Sj is sum of elements of orthonormal eigenvector Ej of the matrix (2).
The following lemma holds.

Lemma 1. For odd j

Sj =

√
2

n + 1
cot

πj

2(n + 1)
=

√
2

n + 1
sin (jθ)

(1 − cos (jθ))
, j = 1, 3, . . ., 2k − 1 � n. (5)

And for even j, j = 2, 4, . . ., 2k � n, Sj = 0.
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Proof. Further on we denote cn =
√

2/(n + 1), ns is integer part of (n + 1)/2, ns =
[(n + 1)/2]. Remark that ns = n/2 for even n and ns = (n + 1)/2 for odd n. Using (5) and
the well-known formula (3.6.2) of [9],

n∑
k=1

sin (kθ) =
cos (θ/2) − cos ((n + 1/2)θ)

2 sin (θ/2)
,

after substituting in the last jθ instead of θ, we get

Sj = cn

n∑
k=1

sin (kjθ) = cn
cos (jθ/2) − cos ((n + 1/2)jθ)

2 sin (jθ/2)
=

= cn
cos (jθ/2) − cos (πj − jθ/2)

2 sin (jθ/2)
= cn

cos (jθ/2) − (−1)j cos (jθ/2)
2 sin (jθ/2)

.

Thus, Sj = 0 for even j, j = 2, 4, . . ., 2ns. And Sj = cn cot (jθ/2) for odd j, j =
1, 3, . . ., 2ns − 1. The lemma is proved.

In the derivation of long-time asymptotic, the system of nonlinear differential equations is
replaced by an equivalent system of integral equations, which is solved using simple iterations.
We succeeded in obtaining suitable asymptotic formulas based on the following result.

Lemma 2. For all m = 1, 2, . . ., n and for any n, the sums

Σm =
n∑

j=1

dm,jSj

have the same value and, hence, coincide with Σ1 = 1.

Proof. The lemma was proved in general case by induction on m with the use of simple
trigonometric relations, speciˇcally, for odd n

sm,n =
ns∑

k=1

cos (m(2k − 1)θ) = 0 (6)

and for even n

sm,n =
(−1)m+1

2
. (7)

For any m and n holds

sm,n = �exp [imθ] − exp [im(2ns + 1)θ]
1 − exp [2imθ]

.

When n is odd, 2ns = n + 1 and for any m

sm,n = �1 + (−1)m+1

−2i sin [mθ]
= 0.
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When n is even, 2ns = n and for any m

sm,n = �1 + (−1)m+1 exp [−imθ]
−2i sin [mθ]

=
(−1)m+1

2
.

The relations (6) and (7) are proved. They imply that sm,n + sm+1,n = 0 for any m and n.
Additionally, we used the relation

ns∑
k=1

sin2 ((2k − 1)θ)
1 − cos ((2k − 1)θ)

=
n + 1

2
,

which holds for any m and n. Indeed,

ns∑
k=1

sin2 ((2k − 1)θ)
1 − cos ((2k − 1)θ)

=
ns∑

k=1

1 − cos2 ((2k − 1)θ)
1 − cos ((2k − 1)θ)

= ns + s1,n.

For odd n we have ns = (n + 1)/2 and s1,n = 0, hence ns + s1,n = (n + 1)/2.
And for even n we have ns = n/2 and s1,n = 1/2, hence ns + s1,n = (n + 1)/2 again.
Suppose that the lemma holds for any m. Performing elementary trigonometric transfor-

mations, we get

Σm+1 =
n∑

l=1

dm+1,lSl =
2

n + 1

ns∑
k=1

sin ((m + 1)(2k − 1)θ) sin ((2k − 1)θ)
1 − cos ((2k − 1)θ)

=

=
2

n + 1

ns∑
k=1

(
sin (m(2k − 1)θ) cos ((2k − 1)θ) sin ((2k − 1)θ)

1 − cos ((2k − 1)θ)
+

+
cos (m(2k − 1)θ) sin2((2k − 1)θ)

1 − cos ((2k − 1)θ)

)
.

Using cos (x)/(1− cos (x)) = −1+ 1/(1− cos (x)) and sin2 (x)/(1− cos (x)) = 1 + cos (x),
we get

Σm+1 = Σm +
2

n + 1

ns∑
k=1

(cos (m(2k − 1)θ) + cos ((m + 1)(2k − 1)θ)) =

= Σm +
2

n + 1
(sm,n + sm+1,n) = Σm.

The lemma is proved.
Taking into account the trivial symmetry properties of El and the relations Sl = 0 for

even l, it is easy to conclude that the solution of the system (1) with zero initial data is
reduced to solving the following system of ns equations:

∂2ψ2l−1

∂t2
= λ2l−1

(
−β

∂ψ2l−1

∂t
+ S2l−1I −

n∑
m=1

dm,2l−1 sin (φm)

)
,

φm =
ns∑

k=1

dm,2k−1ψ2k−1, l = 1, 2, . . ., ns.

(8)
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The other equations associated with Sl = 0 have the trivial solutions ψ2l = 0; therefore, the
number of equations was halved. As the proof we present the following result.

Lemma 3. For all n, l, m and any ψj it holds that φm = φn+1−m, which implies the
relations

n∑
m=1

dm,2l sin

(
ns∑

k=1

dm,2k−1ψ2k−1

)
= 0.

The validity of this lemma follows from the trivial symmetry properties of El components:

dm,l =

√
2

(n + 1)
sin

(
πml

(n + 1)

)
, sin

(
π(n + 1 − m)l

(n + 1)

)
= (−1)l+1 sin

(
πml

(n + 1)

)
.

The sense of Lemma 3 was to show that the nonzero components ψ2j−1 with odd numbers
give no contribution to the components with even numbers.

3. NUMERICAL-ANALYTICAL METHOD FOR CALCULATING IVC

The general scheme of the suggested numerical-analytical method of the hysteresis loop
calculation is the following: the right branch of the hysteresis loop and the back branch
(not nearing some ˇnite distance to Ib) are calculated using the ®asymptotic¯ formulas. The
rest points (I, V (I)) of the hysteresis loop are calculated numerically using the fourth-order
RungeÄKutta method [7].

The numerical-analytical method was used to calculate the IVC for a stack of 19 ho-
mogeneous Josephson junctions [4]. The hysteresis loop was calculated both numerically
and with the use of the ®asymptotic¯ formulas. For each value of I , the system (8) of ten
nonlinear differential equations was ˇrst solved with zero initial data on the interval [0, Tmax]
by applying the fourth-order RungeÄKutta method. For each subsequent I , the found

ψ2l−1(Tt max),
∂ψ2l−1

∂t
(Tt max), l = 1, . . ., 10,

were used as initial data. Similar computations were performed using ®asymptotic¯ formulas,
which were calculated during the run. The voltages were calculated by formula (4).

The system (8) with initial data

ψ2l−1(0) = d1(2l − 1),
∂ψ2l−1

∂t
(0) = d2(2l − 1)

is equivalent to the system of ns integral equations (ns = 10)

ψ2l−1 = w2l−1t + d1(2l − 1) +
d2(2l − 1) − w2l−1

βλ2l−1

(
1 − exp (−βλ2l−1t)

)
−

− 1
β

t∫
0

(
1 − exp (−βλ2l−1(t − s))

) n∑
m=1

dm,2l−1 sin

(
ns∑

k=1

dm,2k−1ψ2k−1

)
ds, (9)
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where

l = 1, 2, . . ., ns and w2l−1 = S2l−1I/β.

For each I and given initial data the system (9) was solved using simple iterations starting
with zero. The result obtained after three iterations was regarded [10] as ®asymptotic¯ of the
solution of the system (8) for large t. After the ˇrst iteration step, we obtained

ψ1
2l−1 = w2l−1t + d1(2l − 1) +

d2(2l − 1) − w2l−1

βλ2l−1
= w2l−1t + A1

2l−1. (10)

Every time we rejected the exponentially small (for large t) terms.

Since w2l−1 = S2l−1I/β, Lemma 2 implies that
ns∑
l=1

dm,2l−1w2l−1 = I/β for all m. In

other words, φ1
m = (I/β)t+Bm. For brevity we use the notations w = I/β, ψ1

m = wt+Bm.
Evaluating integrals

t∫
0

(1 − exp (−β(t − s))) sin (ωs + a)ds =

=
cos (a)

ω
− β sin (ωt + a)

β2 + ω2
− β2 cos (ωt + a)

ω(β2 + ω2)
+ O(e−βt) (11)

and after some algebra, we get

ψ2
2l−1 = w2l−1t + A2

2l−1 + C2l−1 sin (wt + D2l−1), l = 1, . . ., ns. (12)

The functions sin (wt + a + c sin (wt + d)) were replaced by sin (wt + a)(1 − si2/2) +
cos (wt + a)si(1 − si2/6), where si = c sin (wt + d). It remained to transform the resulting
trigonometric polynomials into linear combinations of functions of the form sin (kwt+d) and
to calculate the integrals termwise. These ®asymptotic¯ formulas were used in [4].

4. IMPROVED NUMERICAL-ANALYTICAL METHOD FOR CALCULATING IVC.
APPROXIMATE BREAKPOINT LOCATION

The attempts to ˇnd an approximate breakpoint location by analogy with [5] were useless.
The following remark helped to overcome the difˇculty. Namely, it is sufˇcient to calculate
V (I) for different I , I = 0.5Ä0.05j, solving ®analytically¯ the system (8) with zero initial
data, until Ic, satisfying V (Ic)V (Ic + 0.05) < 0, is obtained. The obtained Ic is taken for
the approximate breakpoint location. The results obtained in this way are in good agreement
with the numerical ones. The key to the solution came from the deˇnition of an alternative
way to simplify the calculation of the voltage V . Apart from an accurate deˇnition of the
breakpoint location, the calculating time of the hysteresis loop for a stack of 19 Josephson
junctions decreased more than 9 times (against 5 obtained in [4]), as compared to the program
used in numerical calculations). Below we present the result of calculating Ĩb = 0.3 for the
stack of 19 Josephson junctions.
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vb :=
{{0.5,33.7167375273},{0.45,40.235725455},{0.4,63.5053115073},
{0.35,62.9218862448}, {0.3, - 0.0454510614144}}$

shut "D:\brt\vbbx3.txt"$

The derivation of the improved algorithm of calculating V (I) started from recalculating
ψ2l−1(t). First we have

ψ2
2l−1 = ψ1

2l−1 + F2l−1(t), l = 1, 2, . . ., ns,

where

F2l−1(t) =
nξ∑

ξ=1

[
B2l−1(ξ) + C1

2l−1(ξ) sin (wt + D1
2l−1(ξ)) + C2

2l−1(ξ) cos (wt + D2
2l−1(ξ))

]
,

l = 1, . . ., ns.

Instead of arriving at the compact formulas (12), we have simply rewritten (11) as

t∫
0

(1 − exp (−β(t − s))) sin (ωs + a)ds =
cos (a)

ω
−

− β(β cos (a) + ω sin (a))
ω(ω2 + β2)

cos (ωt) − β(ω cos (a) − β sin (a))
ω(ω2 + β2)

sin (ωt) + O(e−βt)

and instead of (12) we get at once

ψ2
2l−1 = ψ1

2l−1 + F2l−1(t) = ψ1
2l−1 + A2

2l−1 + cs(2l − 1) cos (wt) + cc(2l − 1) sin (wt) =

= ψ1
2l−1 + A2

2l−1 + C2l−1 sin (wt + D2l−1), l = 1, . . ., ns. (13)

Remark that C2l−1 =
√

cs(2l − 1)2 + cc(2l − 1)2 and D2l−1 = arctan (cs(2l−1)/cc(2l−1)).

We denote at(j) =
ns∑
l=1

dj,2l−1A
1
2l−1, where A1

2l−1 are the free terms of ψ1
2l−1 (see (10)),

and

ft(j) =
ns∑
l=1

dj,2l−1F2l−1, j = 1, . . ., n.

And let pp(2l − 1) be free terms of the trigonometric polynomials

n∑
j=1

dj,2l−1

[
cos (wt + at(j))

(
ft(j) − ft(j)3

6

)
− sin (wt + at(j))

ft(j)2

2

]
, l = 1, . . ., ns.

After integrating we ˇnd

ψ3
2l−1 = ψ2

2l−1 −
pp(2l − 1)

b

(
t − exp (−βλ2l−1Tmin)

β2λ2l−1

)
, l = 1, . . ., ns. (14)

Taking into account (10) and (13), we obtain from (14) the ®asymptotic¯ formulas of
interest

ψ3
2l−1 = (w2l−1 + δ2l−1)t + A3

2l−1 + C2l−1 sin (wt + D2l−1), l = 1, . . ., ns. (15)
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The ®analytical¯ method of IVC calculation means successive calculation of (10), (13),
and (14) by the algorithm described above for every Ik and given initial data. As a result,
the coefˇcients of (15) are determined.

Following (4), we obtain

V (I) =
ns∑
l=1

S2l−1

ψ3
2l−1(Tmax) − ψ3

2l−1(Tmin)
λ2l−1(Tmax − Tmin)

.

The calculations were performed for α = 0.2, β = 0.2 by using the REDUCE 3.8
system [11] with Tmin = 50, Tmax = 1000, and a step h = 0.1 was chosen in the numerical
calculations by means of the fourth-order RungeÄKutta method.

5. RESULTS OF THE CALCULATIONS

Figure 1 depicts the back branch of the hysteresis loop for n = 19. The solid and dotted
lines, which are hardly distinguishable from each other at large I , refer to numerical and
®analytical¯ calculations of the hysteresis loop, respectively. The numerical method of IVC
calculation means that all points (Ik, V (IK)) of the hysteresis loop (the whole right branch
and the whole back branch) are calculated numerically using the fourth-order RungeÄKutta
method. The ®analytical¯ method of IVC calculation means that all points (Ik, V (IK)) of
the hysteresis loop (the right and the back branch) are calculated ®analytically¯ using the
®asymptotic¯ formulas.

In Fig. 2 the solid line is the same as in Fig. 1, while the circles on this line refer to the
calculation performed by the following mixed numerical-analytical method. The whole right
branch of the hysteresis loop, together with the back branch at 1.45 > I > 0.45 = 1.5Ĩb,
has been computed using the ®asymptotic¯ formulas (15). The remaining points of the back

Fig. 1. The solid line refers to the back branch of the hysteresis loop for n = 19, calculated numerically:
all points of the hysteresis loop have been calculated using the fourth-order RungeÄKutta method. The

dotted line refers to the back branch of the hysteresis loop, calculated ®analytically¯: all points of the
hysteresis loop have been calculated using the ®asymptotic¯ formulas (15)
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Fig. 2. The solid line refers to the back branch of the hysteresis loop calculated numerically for n = 19.
The circles on this line refer to calculation performed by the mixed analytical-numerical method: the

whole right branch of the hysteresis loop, together with the back branch at 1.45 > I > 0.45 = 1.5Ĩb,

has been computed using the ®asymptotic¯ formulas (15). The points at 0.45 � I � 0.2 were computed

numerically by using the fourth-order RungeÄKutta method. The point (0.5, 43.561. . .), marked by the

arrow, is the last point of the hysteresis loop calculated ®analytically¯

branch of the hysteresis loop were computed numerically by means of the fourth-order RungeÄ
Kutta method. The point (0.5, 43.561. . . ), marked in Fig. 2 by the arrow, is the last point
of the hysteresis loop calculated ®analytically¯. In spite of its seeming difference from the
point (0.5, 45.998) calculated numerically, the use of the ®analytical¯ value as an input on
the interval [0.45, 0.2] of Fig. 2 results in points staying very close to the numerical curve.
As a consequence, the numerical results of IVC calculation and the results obtained by the
improved mixed numerical-analytical method are in good agreement with each other. It is
worth noting that the shift from the pure RungeÄKutta method to the mixed method decreased
the CPU time almost by an order of magnitude. For instance, the calculation of a single
additional point using the RungeÄKutta method asks for 339640 ms CPU time, while the
®analytical¯ computation of all points of the hysteresis loop takes 75759 ms only. The same
calculations were performed for n = 5, 9, 13, 19, and n = 25. The corresponding outputs
look similar to those in Figs. 1 and 2.

Surprisingly, the same Ĩb = 0.3 was obtained both at n = 9 and at n = 19. To clarify the
problem, we have performed the similarity transform (Ik, V (Ik, 9)V (1.45, 19)/V (1.45, 9))
in Fig. 1 and this conˇdently reproduced the corresponding solid line. Here and below,
(Ik, V (Ik, n)) are points of the back branch of the hysteresis loop for the stack of n intrinsic
Josephson junctions, calculated numerically.

Further we made the hypothesis that all the considered V (Ik, n) can be obtained from
V (Ik, 5). Figure 3 conˇrms this hypothesis. The solid lines in Fig. 3 refer to the back
branches of the hysteresis loops calculated numerically for n = 5, 9, 13, 19, and n = 25, from
bottom to top, respectively.

The bottom graph plots the numerical outputs (Ik, V (Ik, 5)). The points on the second,
third, fourth, and ˇfth graphs are nothing else but (Ik, V (Ik, 5)ss(n)/ss(5)), where ss(n) =
n∑

j=1

Sj(n)2/λj(n).
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Fig. 3. The solid lines refer to back branches of the hysteresis loops, calculated numerically, for
n = 5, 9, 13, 19, 25, from bottom to top, respectively. In all cases the right branch and the back branch

of the hysteresis loops have been calculated numerically. The ˇrst graph plots the outputs (Ik, V (Ik, 5)).

The circles on the other graphs are (Ik, V (Ik, 5)ss(n)/ss(5)), respectively. This conˇrms the possibility
to obtain all the lines by simple similarity transforms of the bottom line

The occurrence of the factors ss(n)/ss(5) can be motivated by the fact that, after the
ˇrst iteration, we get V (I, n) = ss(n)I/β, and 1.45ss(n) is an excellent approximation to
V (1.45, n). We observe the same picture as at the end of [5], but the similarity transform
coefˇcients here are ss(n)/ss(5) instead of n.

CONCLUSIONS

The numerical results of IVC calculation and those obtained by the improved mixed
numerical-analytical method are in good agreement with each other. The latter code is
an order of magnitude faster and is free of computing error accumulation as well. The
technicalities of the new method were described in Sec. 4 above.

Acknowledgements. The author is grateful to Yu.M. Shukrinov for the statement of
the problem and useful discussions. Critical reading of the manuscript by Gh.Adam is
acknowledged. The author is indebted to the referee for valuable critical comments which
helped to clarify some details of the presentation.

REFERENCES

1. Zappe H.H. Minimum Current and Related Topics in Josephson Tunnel Junction Devices // J. Appl.
Phys. 1973. V. 44, No. 3. P. 1371Ä1377.

2. Matsuda Y. et al. Collective Josephson Plasma Resonance in the Vortex State of
Bi2Sr2CaCu2O8+δ // Phys. Rev. Lett. 1995. V. 75, No. 24. P. 4512Ä4515.

3. Shukrinov Yu. M., Mahfousi F., Pedersen N. F. Investigation of the Breakpoint Region in Stacks
with a Finite Number of Intrinsic Josephson Junctions // Phys. Rev. B. 2007. V. 75. P. 104508.



Determination of IVC Breakpoint for Josephson Junction Stack 795

4. Serdyukova S. I. Numerical-Analytical Method for Computing the Current-Voltage Characteristics
for a Stack of Josephson Junctions // Comp. Math. Math. Phys. 2012. V. 52, No. 11. P. 1590Ä1596.

5. Serdyukova S. I. Determination of IVC Breakpoint for Josephson Junction Stack. Periodic and Non-
Periodic with γ = 0 Boundary Conditions // Phys. Part. Nucl. Lett. 2013. V. 10, No. 3. P. 269Ä272.

6. Bakhvalov N. S. et al. Statics and Dynamics of Single-Electron Solitons in Two-Dimensional Arrays
of Ultrasmall Tunnel Junctions // Physica B. 1991. V. 173, No. 3. P. 319Ä328.

7. Bakhvalov N. S. The Numerical Methods. M.: Nauka, 1973 (in Russian).

8. Gantmacher F. R. The Theory of Matrices. N. Y.: Chelsea Publ. Company, 1959.

9. Hardy G.H., Rogosinski W. W. Fourier Series. Cambridge Univ. Press, 1956.

10. Levinson N. Asymptotic Behavior of Solutions of Nonlinear Differential Equations // Studies in
Appl. Math. 1969. V.XLVIII, No. 4.

11. REDUCE User's Guide for Unix Systems. Version 3.8 by Winfried Neun ZIB. 2004.

Received on July 18, 2013.


