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NEWTONÄCARTAN SUPERGRAVITY

E. A. Bergshoeff 1

Centre for Theoretical Physics, University of Groningen, Groningen, the Netherlands

We construct a N = 2 supersymmetric extension of the NewtonÄCartan gravity by gauging a
N = 2 supersymmetric extension of the Bargmann algebra. Due to technical complications, we restrict
the construction to the three-dimensional case. We discuss the gauge-ˇxing of the resulting NewtonÄ
Cartan supergravity theory to a Galilean supergravity that contains the Newton potential. An unusual
feature is that, in order to realize the supersymmetry on the Newton potential, we need to introduce a dual
Newton potential as well. Together, the Newton potential and dual potential, they form a holomorphic
function of the two spatial coordinates. We brie	y discuss the four-dimensional case.

PACS: 04.65.+e

INTRODUCTION

It seems natural that, given the nonrelativistic world we live in and assuming that Nature
makes use of supersymmetry, it is important to study the nonrelativistic aspects of supersym-
metry. So far, in the case of local supersymmetry, basically all efforts have been concentrating
on supergravity, the supersymmetric extension of Einstein's relativistic description of gravity.
It is well known that nonrelativistically, gravity in a frame with constant acceleration is de-
scribed by the Newtonian gravity in terms of a Newton potential Φ(x), which is a function of
the spatial coordinates. Given the above motivation, it is natural to ask the following simple
question:

What is the supersymmetric extension of the Newton potential?
A related question is: what is the Newtino potential, i.e., the supersymmetric partner of

the Newton potential? Given the huge literature on supergravity, it is remarkable that the
answer to the above question cannot be found in the literature.

A second motivation to study supersymmetric nonrelativistic gravity is due to the
AdS/CMT correspondence, where the boundary ˇeld theory exhibits nonrelativistic sym-
metries. So far, nonrelativistic bulk gravity has not played a prominent role in this context,
for an early reference, see [1]. However, it has been argued recently that it does play a role
in describing the boundary geometry [2].

The purpose of this paper is to answer the above question, be it so far in three space-
time dimensions only. At ˇrst sight, one might think that it is enough to simply take the
nonrelativistic limit of supergravity to obtain a nonrelativistic one. However, taking such a
limit is often nontrivial and messy. A more fruitful approach is to make use of the fact that
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supergravity can often be obtained by the gauging of a space-time algebra [3]. It is much easier
to take the nonrelativistic limit of such an algebra. After that we will perform the gauging
of the nonrelativistic space-time algebra1. This is the strategy that we will follow here. We
will ˇrst explain the procedure by showing how the Einstein gravity follows from gauging
the Poincare algebra. Next, we will derive the so-called NewtonÄCartan gravity, which is
valid in any frame, by gauging the Bargmann algebra, which is a central extension of the
Galilean algebra. Furthermore, we will show how gauge-ˇxing of the NewtonÄCartan theory
leads to the Newtonian gravity, which is valid in frames with constant acceleration only, and
the Galilean gravity, which is valid in frames with an arbitrary time-dependent acceleration.
Finally, we will discuss the gauging of the three-dimensional supersymmetric Bargmann
algebra. Upon gauge-ˇxing this will lead us to the desired supersymmetric extension of the
Newton potential.

1. EINSTEIN GRAVITY

The discussion in this section applies to any dimension. One of the noteworthy features of
gravity is the absence of the gravitational force in free-falling frames. In the relativistic case,
free-falling frames are connected by the Poincare symmetries, i.e., the space-time translations
(with parameters ξμ) and Lorentz transformations (with parameters λμ

ν):
• space-time translations: δxμ = ξμ,
• Lorentz transformations: δxμ = λμ

νxν .
In arbitrary, nonfree-falling, frames there is a gravitational force described by a metric

tensor gμν . This ˇeld can be seen as arising from gauging the Poincare symmetries, whose
algebra is given by

[Mab, Pc] = −2ηc[aPb], [Mab, Mcd] = −4M[a
[cδb]

d]. (1)

Here, Pa are the translation generators and Mab are the Lorentz generators.
In gauging this algebra, one associates to each of the generators a gauge ˇeld, whose

transformation rules, with space-time-dependent parameters, are determined by the structure
constants of the algebra. It is straightforward to construct the curvatures that transform
covariantly under these transformations, see Table 1.

Table 1. Symmetries, generators, gauge ˇelds, gauge parameters, and covariant curvatures corre-
sponding to the Poincare algebra given in Eq. (1)

Symmetry Generator Gauge ˇeld Parameter Curvature

Space-time translation Pa eμ
a ζa(xμ) Rμν

a(P )

Lorentz transformation Mab ωμ
ab λab(xμ) Rμν

ab(M)

At this stage, the gauge ˇelds do not yet transform in the correct way under general
coordinate transformations, neither is the Lorentz gauge ˇeld a dependent one as it should be.
To achieve this, we must impose the following so-called conventional constraints:

Rμν
a(P ) ≡ 2∂[μeν]

a − ω[μ
abeν]

b = 0 : conventional constraints.

1It is not a priori clear that the nonrelativistic theory thus obtained can alternatively be obtained by taking the
nonrelativistic limit of a supergravity theory.
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Assuming now that the so-called Vierbein gauge ˇelds are invertable, we can use the above
conventional constraints for two purposes:

• the spin-connection ˇeld ωμ
ab becomes dependent: ωμ

ab → ωμ
ab(e),

• the ©local translationsª, with parameters ζa(xν), become equivalent to general coordinate
transformations with parameters ξμ(xν).

The gauge ˇeld eμ
a can now be identiˇed as the Vierbein ˇeld and the (dependent) gauge

ˇeld ωμ
ab as the spin-connection ˇeld.

It is now straightforward to make the connection to the metric formulation of the Einstein
gravity. A metric is introduced via gμν = eμ

aeν
bηab and the Christoffel symbol is deˇned

via the Vierbein postulate that relates it to the spin connection:

∇μeν
a ≡ ∂μeν

a − ωμ
abeν

b − Γμν
ρeρ

a = 0. (2)

Finally, the Einstein equation of motion is imposed by hand.
This concludes our brief discussion of the relativistic case. We next turn our attention to

the nonrelativistic case, but ˇrst without supersymmetry.

2. NEWTONÄCARTAN GRAVITY

For simplicity, we consider in this section four space-time dimensions only. In the non-
relativistic case, free-falling frames are connected via the Galilean symmetries. These symme-
tries consist of time translations (with parameters ξ∅1), space translations (with parameters ξi

(i = 1, 2, 3)), spatial rotations (with parameters λi
j) and boosts (with parameters λi):

• time translations: δt = ξ∅,
• space translations: δxi = ξi,
• spatial rotations: δxi = λi

jx
j ,

• boosts: δxi = λit.
Depending on which class of frames one wishes to consider, we distinguish three different

cases:
(1) Newtonian gravity. The Newtonian gravity is valid in frames with constant acceleration

(δxi = (1/2)ρit2). The gravitational force is described by a Newton potential Φ(x).
(2) Galilean gravity. The Galilean gravity describes nonrelativistic gravity in frames

with time-dependent acceleration (δxi = ξi(t)). The gravitational force is described by a
time-dependent Newton potential Φ(t,x).

(3) NewtonÄCartan gravity. The NewtonÄCartan (NC) gravity is valid in the most gene-
ral frame. The gravitational force is described by a temporal Vierbein τμ and a spatial
Vierbein eμ

a with projective inverses τμ and eμ
a (μ = ∅, 1, 2, 3; a = 1, 2, 3).

We ˇrst gauge all Galilean symmetries. This will lead us to the most general class of
frames with the NewtonÄCartan gravity. After that we will restrict the class of frames by
gauge-ˇxing and uncover the Galilean gravity. In fact, it turns out that we have to gauge the
centrally extended Galilean symmetries, which form the so-called Bargmann algebra:

[Jab, Pc] = −2δc[aPb], [Jab, Gc] = −2δc[aGb],

[Ga, H ] = −Pa, [Ga, Pb] = −δabZ, a = 1, 2.
(3)

1We use the symbol ∅ to indicate the time component μ = ∅ of a curved index μ.
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Here, H is the time translation, Pa are the translation generators, Ga Å the boost genera-
tors, Jab Å the spatial rotation generators, and Z Å the generator corresponding to the central
charge transformations. The presence of the central extension can be deduced from the fact
that the Lagrangian for a bosonic particle is not invariant under boosts, but transforms with a
total time derivative such that the action is invariant. The central extension generator, which
is absent in the relativistic case, is related to the nonrelativistic particle number conservation.

Following the relativistic case, we introduce for each generator corresponding gauge ˇelds,
gauge parameters and covariant curvatures, see Table 2.

Table 2. Symmetries, generators, gauge ˇelds, gauge parameters, and covariant curvatures corre-
sponding to the Bargmann algebra given in Eq. (3)

Symmetry Generator Gauge ˇeld Parameter Curvature

Time translations H τμ ζ(xν) Rμν(H)

Space translations Pa eμ
a ζa(xν) Rμν

a(P )

Boosts Ga ωμ
a λa(xν) Rμν

a(G)

Spatial rotations Jab ωμ
ab λab(xν) Rμν

ab(J)

Central charge transformations Z mμ σ(xν) Rμν(Z)

Our next task is to impose a set of constraints on the curvatures. We ˇrst assume that
the gauge ˇelds eμ

a and τμ have projective inverses eμ
a and τμ and impose the following

conventional constraints:
Rμν

a(P ) = 0, Rμν(Z) = 0. (4)

These constraints enable us to solve for the spatial rotation gauge ˇelds ωμ
ab and the boost

gauge ˇelds ωμ
a. Note, that this is quite different from the relativistic case, where the

curvature of time translations is set equal to zero. In the nonrelativistic case, we do set the
same curvature equal to zero, but for a rather different reason:

Rμν(H) = ∂[μτν] = 0 → τμ = ∂μτ. (5)

Instead of using the above restriction to solve for a gauge ˇeld, the constraint is used to deˇne
a foliation of the Newtonian space-time. Any choice of the arbitrary function τ(xμ) deˇnes a
time direction. It is customary (but not obligatory) to consider the Newtonian gravity in 	at
space. Following this convention, we impose the additional constraint

Rμν
ab(J) = 0. (6)

Combining the above constraints with the Bianchi identities, we ˇnd that the only nonzero
curvature components at this stage are given by

R0(a,b)(G) �= 0. (7)

So far we only discussed the kinematics. The equations of motion of the NC gravity are
obtained by imposing the following restriction:

R0a
a(G) = 0. (8)

To go from the NC gravity to the Galilean gravity, which is only valid in frames with
arbitrary (time-dependent) acceleration, we need to impose a set of gauge-ˇxing conditions.
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We ˇrst impose the following three gauge conditions, where we have indicated which sym-
metries are gauge-ˇxed:

• τμ(xν) = δμ
∅ → constant time translations: ξ∅(xν) = ξ∅,

• ωμ
ab(xν) = 0 → constant spatial rotations: λab(xν) = λab,

• ei
a(xν) = δi

a → time-dependent spatial translations: ξa(xν) = ξa(t) + . . .
The dots in the third item mean compensating transformations, whose speciˇc form we

do not give here. At this point, the only independent gauge ˇelds left are the central charge
gauge ˇeld mμ and the following components of the Dreibein ˇeld eμ

a:

eμ
a(xν) = (−τa(xν), δi

a). (9)

From now on, we will not distinguish between curved indices i and 	at indices a anymore.
There is one subtlety. We have used the gauge ˇeld ωμ

ab to restrict the spatial rotations.
However, this gauge ˇeld is not independent. Using its explicit solution in the gauge condition
ωμ

ab = 0 leads to the following additional relation:

τi(xν) + mi(xν) = ∂im(xν). (10)

We next continue and impose two further gauge conditions:
• m(xν) = 0 → time-dependent central charge: σ(xν ) = σ(t) + . . .
• τa(xν) = 0 → no boost transformations: λa(xν) = 0 + . . .

Combining this with the relation (10), we deduce that mi(xμ) = 0.
At this point, the only nonzero gauge ˇeld component left is the time component m∅(xμ)

of the central charge gauge ˇeld, which plays the role of the Newton potential Φ(xμ):
m∅(xν) ≡ Φ(xν). Taking all compensating transformations into account, we ˇnd that the
Newton potential transforms under the acceleration extended Galilean symmetries as follows:

δΦ(xν) = ξ∅∂∅Φ(xν) + ξi(t)∂iΦ(xν) − λi
jx

j∂iΦ(xν) + ξ̈k(t)xk + σ̇(t). (11)

One may verify that indeed the acceleration extended Galilean symmetries with these trans-
formation rules form a closed algebra. Using that the only nonzero component of the boost
gauge ˇeld is given by ω∅

a(xν ) = −∂aΦ(xν), the NC equation of motion (8) leads to the
expected Galilean equation of motion for the Newton potential Φ, i.e., ΔΦ = 0.

This ˇnishes our discussion of the bosonic case. We next consider what happens if we
include supersymmetry.

3. NEWTONÄCARTAN SUPERGRAVITY

In this section, we restrict to three space-time dimensions. All spinors are (2-component)
Majorana spinors. To start with, we consider a N = 2 supersymmetric extension of the
Bargmann algebra [4]. The reason that we consider two supersymmetries can be found in
the bosonic discussion of the previous section. Although the NC gravity theory is formally
invariant under local time translations, it is a fake so-called Stueckelberg symmetry. Fixing
the Stueckelberg symmetry leads to an invariance under global time translations only. The
only translations that are truly gauged are the spatial translations. After gauge-ˇxing the
Galilean gravity theory is invariant under the remaining time-dependent spatial translations.
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Since supersymmetry is, roughly speaking, the ©square rootª of a time or space translation,
we expect a similar phenomenon to happen for the supersymmetries. One supersymmetry
squares to a time translation and is only gauged 
a la Stueckelberg. The other symmetry, as
it turns out, squares to a time-dependent central charge transformation and is truly gauged.
Schematically, we have the following situation [5]:

{Q+, Q+} ∼ constant time translations,

{Q+, Q−(t)} ∼ time-dependent spatial translations,

{Q−(t), Q−(t)} ∼ time-dependent central charge transformations.

(12)

Here, Q+ and Q− are the generators of the constant and time-dependent supersymmetry,
respectively.

Since the gauging procedure is very similar, but more involved than the bosonic case,
we will be brief. For more details, we refer to the original paper [6]. In Table 3, we have
indicated all symmetries, generators, gauge ˇelds, parameters, and supercovariant curvatures
(indicated with a hat) like we did in the previous two sections.

Table 3. Symmetries, generators, gauge ˇelds, gauge parameters, and covariant curvatures corre-
sponding to the N = 2 supersymmetric Bargmann algebra, whose schematic form is partly given
in Eq. (12)

Symmetry Generator Gauge ˇeld Parameter Curvature

Time translations H τμ ζ(xν) R̂μν(H)

Space translations Pa eμ
a ζa(xν) R̂μν

a(P )

Boosts Ga ωμ
a λa(xν) R̂μν

a(G)

Spatial rotations Jab ωμ
ab λab(xν) R̂μν

ab(J)

Central charge transformations Z mμ σ(xν) R̂μν(Z)

Two supersymmetries Q± ψμ± ε±(xν) ψ̂μν±

We next impose a number of conventional and additional constraints on the curvatures
and obtain the NC supergravity [6]. One ˇnds that the supersymmetry algebra closes provided
the following restrictions hold:

γμτν ψ̂μν− = 0, eμ
aeν

bψ̂μν− = 0. (13)

The supersymmetry of the ˇrst equation, which can be considered a fermionic equation of
motion, leads to the bosonic NC equation of motion given in Eq. (8). Following the bosonic
case, the gauge-ˇxing to a Galilean supergravity theory is straightforward except for two
subtleties. After gauge-ˇxing the only nonzero fermionic gauge-ˇeld component left is the
time-component of one of the gravitini:

Ψ(xν) ≡ ψ∅−(xν) with γi∂iΨ(xν) = 0, i = 1, 2. (14)

However, it turns out that this ˇeld is not the Newtino potential. The true Newtino potential
is a spinor χ that is related to Ψ as follows:

γiΨ = ∂iχ with γ1∂1χ = γ2∂2χ. (15)
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This is the ˇrst subtlety. The second one is that we ˇnd that the Newtino potential transforms
both to the Newton potential Φ as well as to the dual Newton potential Ξ: ∂iΞ = −εij ∂jΦ.
We thus ˇnd the following supersymmetric extension of the 3D Newton potential:

δΦ =
1
2
ε̄−(t)γ0i ∂iχ +

1
2
ε̄+χ̇, Newton potential,

δΞ =
1
2
ε̄−(t)γi ∂iχ − 1

2
ε̄+γ0χ̇, dual Newton potential,

δχ = xiγiε̇−(t) +
1
2
Ξε+ − 1

2
Φγ0ε+, Newtino potential.

The resulting algebra is a superversion of the algebra of accelerated extended Galilean sym-
metries. For more details, we refer to [6].

CONCLUSIONS

In this paper, we have shown how to obtain a supersymmetric extension of the Newton
potential in three space-time dimensions. We expect that a similar construction is possible
in four space-time dimensions, but for that purpose extra ˇelds are needed, just like in the
relativistic case.

Clearly, much more work remains to be done. A ˇrst goal would be to give a proper
superspace description of the above results and develop a nonrelativistic tensor calculus. We
hope to report about these interesting issues in the nearby future.
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