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HARMONIC SUPERFIELD ACTION
FOR N = 4 SYM THEORY WITH CENTRAL CHARGE
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We develop a superˇeld formulation of N = 4 supersymmetric YangÄMills theory with the rigid
central charge in USp(4) harmonic superspace. Component formulation of this theory was given by
Sohnius, Stelle, and West [1], but its superˇeld formulation has not been constructed so far. We
construct the superˇeld action, corresponding to this model, and show that it reproduces the component
action from [1].

PACS: 11.30.Pb; 12.60.Jv

INTRODUCTION

Maximally extended N = 4 SYM theory with R-symmetry group SU(4) possesses many
remarkable properties on classical and quantum levels and is widely explored in modern
theoretical and mathematical physics. Field content of this theory involves one vector, six
real scalars and four Majorana spinors [2,3]. By construction, such a model is nonmanifestly
supersymmetric and the supersymmetry transformations are closed only on-shell. In many
cases, especially to study the quantum aspects, it would be preferable to get an off-shell
formulation of N = 4 SYM theory. However, in spite of the considerable efforts, superˇeld
formulation of N = 4 SYM theory in terms of unconstrained N = 4 superˇelds is still
unknown. The best, that has been obtained so far is its formulation in terms of N = 1
superˇelds and N = 2, 3 harmonic superˇelds [4].

We would like to draw attention to another N = 4 supersymmetric model, namely,
USp(4) SYM theory with central charge2. Due to the central charge, the R-symmetry group
of the corresponding superalgebra is a subgroup USp(4) of the group SU(4). The gauge
theory, based on N = 4 superalgebra with the central charge was constructed by Sohnius,
Stelle, and West [1] in component approach. Field content of such a gauge model involves
one real vector, ˇve real scalars, four Majorana spinors and auxiliary ˇelds Å axial vector and
ˇve real scalars. Furthermore, special constraints are imposed on the auxiliary and dynamical
ˇelds. After eliminating the auxiliary ˇelds with the help of an additional scalar ˇeld, the
conventional SU(4), N = 4 SYM theory is restored. In Abelian case, the constraint is
solved for the auxiliary vector ˇeld in terms of an antisymmetric second-rank ˇeld [1]. As

1E-mail: joseph@tspu.edu.ru
2The structure of the extended supersymmetry theories with the central charges is discussed in [5].
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a result, we get the conventional N = 4 SYM theory, where one of the scalars is replaced
by an antisymmetric tensor ˇeld. Therefore, such a model can be treated as some kind of
vectorÄtensor multiplet theory1.

In this paper, we develop a superspace formulation of N = 4 SYM theory with the
rigid central charge [1] in terms of N = 4 superˇelds. Some superspace aspects of the
theory under consideration have been discussed in the earlier papers [8, 9]. In the present
paper, we prove that the constraint for the auxiliary ˇeld, introduced in [1] for non-Abelian
theory, automatically follows from the N = 4 superˇeld constraints stipulated by the Bianchi
identities, obtained in [8]. Also, we develop a USp(4), N = 4 harmonic superspace formalism
and propose a gauge-invariant, N = 4 supersymmetric action, which exactly reproduces the
component action of [1] for non-Abelian theory.

N = 4 SYM Model with Central Charge. N = 4 SYM model with the central charge
has been proposed by Sohnius, Stelle, and West in the component formulation [1]. This
model possesses the USp(4) R-symmetry and is described by the action

S = tr
∫

d4x

(
−1

4
FmnFmn − 1

2
VmV m +

1
2
DmφijD

mφij +
1
2
HijH

ij−

− i

4
λ̄i �Dλi − λ̄i[λj , φij ] +

1
4
[φij , φkl][φij , φkl]

)
. (1)

Here, the vector ˇeld Am, USp(4)-Majorana spinor ˇelds λiα = λ̄jβ(C−1)βαΩji and the
antisymmetric, Ω-traceless scalar ˇelds φij are the propagating ˇelds, whereas the pseudovec-
tor Vm and antisymmetric, Ω-traceless scalar ˇelds Hij are the auxiliary ˇelds2. All ˇelds
take the values in the Lie algebra of gauge group. Dm are the conventional gauge covari-
ant derivatives. The multiplet under consideration contains 16 bosonic and 16 fermionic
components. The supersymmetry transformations are closed off-shell, up to ˇeld-dependent
gauge transformations. The action (1) is invariant under these transformations if the following
additional constraint:

0 = DmVm +
1
2
{λ̄i, γ5λi} − i[φij , H

ij ], (2)

is satisˇed. Moreover, the action (1) is invariant under central charge transformations [1].
It is interesting to point out that in the Abelian theory, the constraint (2) can be resolved

for vector Vm in terms of antisymmetric second-rank tensor ˇeld [1]. This ˇeld describes
a propagating spin-0 mode, which is known as a ®notoph¯. In addition, with respect to
central charge transformations the vector transforms into the dual of the ˇeld strength of the
antisymmetric tensor and the antisymmetric tensor transforms into the dual ˇeld strength of
the vector.

The conventional on-shell SU(4) N = 4 SYM theory is obtained by introducing the scalar
Lagrange multiplier A5 for the constraint and eliminating the auxiliary ˇelds Vm and Hij from
the equations of motion

Vm = −DmA5, Hij = i[A5, φij ]. (3)

1The N = 2 vectorÄtensor multiplet theories are discussed in [6, 7].
2Ω is the invariant metric of the USp(4) group.
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In this case, the scalar ˇeld A5 is uniˇed with ˇve scalar ˇelds φij and, as a result, one gets
six scalar ˇelds of conventional SU(4) N = 4 SYM theory.

The aim of the paper is to develop a formulation of the model under consideration in
terms of N = 4 harmonic superˇelds and present the action in superˇeld form.

1. N = 4 CENTRAL CHARGE SUPERSPACE AND ITS GAUGING

The N = 4 central charge superspace is characterized by the coordinates ZM = {xm, z,
θα

i , θ̄i
α̇} and the supercovariant derivatives DM = (∂m, ∂z, D

i
α, D̄α̇

i ). These derivatives are
used for the deˇnitions of the gauge covariant derivatives ∇M = DM + iΓM with supercon-
nections ΓM and gauge transformations ∇′

M = eiτ∇M e−iτ , where τ is a gauge superˇeld
parameter. Then, one introduces the curvature tensors or superˇeld strengths deˇned on the
USp(4) N = 4 central charge superspace with the help of the algebra

{∇α̂i,∇β̂j} = 2iεα̂β̂Ωij∇z ± 2iεα̂β̂Wij , {∇αi, ∇̄α̇j} = −2iΩij∇αα̇, 1 (4)

where we impose the reality conditions under the internal symmetry:

ΩijWij = 0, (Wij) = W ij = ΩikΩjlWkl = −1
2
εijklWkl. (5)

Here, Ωij is the invariant tensor of the USp(4) group. The other commutators of the gauge
supercovariant derivatives look like

[∇α̂i,∇z] = ±iGα̂i, [∇α̂i,∇m] = ±iFα̂im, [∇m,∇z] = iVm, [∇m,∇n] = iFmn. (6)

In this representation, let Gαi be the USp(4) Majorana spinor with the reality condition
(Gαi) = Ḡi

α̇ = ΩijḠα̇i. As a result, the gauge theory in USp(4), N = 4 central charge su-
perspace is characterized by the superˇelds Wij , Gα̂i, Fα̂im, Vm, Fmn. The superˇeld strengths
satisfy some number of constraints to reduce the number of ˇelds to an irreducible multiplet
stipulated by the Bianchi identities. The solution of these relations determines the ˇeld content
of the theory as well as the transformation laws of the component ˇelds.

One can prove that the Bianchi identities are satisˇed if and only if all superˇeld strengths
are expressed in terms of a single real scalar superˇeld Wij and its spinor derivatives. Here,
we only list the results of [8] in our conventions concerning the solution to the constraints of
dimension from 3/2 to 3:

• Solution to the dim = 3/2 Bianchi identities is Fαim = −σm
αα̇Ḡα̇

i ,

∇α̂kWij = iΩijGα̂k + 2iΩk[iGα̂j], 5iGα̂i = ∇k
α̂Wki, ∇zWij ≡ Hij . (7)

• Solution to the dim = 2 Bianchi identities

∇α̂iGβ̂j = −εα̂β̂Hij ∓
1
2
ΩijFα̂β̂ ±

1
2
εα̂β̂[Wik, W k

j ], ∇̄α̇iGαj = iΩijVαα̇ −∇αα̇Wij . (8)

1Here and below, we use the notation α̂ for the set {α, α̇}. Upper sign here corresponds to α in α̂ and lower
sign corresponds to α̇ in α̂.
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• Solution to the dim = 5/2 Bianchi identities

∇zḠα̇i = ∇αα̇Gα
i + [Wik, Ḡk

α̇], ∇αiVm = σm
αα̇[Wik, Ḡα̇k] + i(σmn)β

α∇nGβi,

(9)∇αiHjk = −iΩjk∇αα̇Ḡα̇
i − 2iΩi[j∇αα̇Ḡα̇

k] − i[Wjk, Gαi]−
− iΩjk[Wil, G

l
α] − 2iΩi[j [Wk]l, G

l
α],

∇α̇iFαβ = 2i∇(αα̇Gβ)i, ∇γiFαβ = −2iεγ(α∇β)α̇Ḡα̇
i . (10)

• Solution to the dim = 3 Bianchi identities

∇mVm = − i

4
[Wik, Hik] +

1
2
{Gαk, Gαk} +

1
2
{Ḡα̇k, Ḡα̇k}, (11)

∇zVm = −σm
αα̇{Gαi, Ḡα̇

i } −
i

4
[Wik,∇mW ik] −∇aFam, (12)

∇zHjk = �Wjk − i

2
Ωjk{Gαi, G

αi} − 2i{Gαj, G
α
k } +

i

2
Ωjk{Ḡα̇i, Ḡ

α̇i}+

+ 2i{Ḡα̇j , Ḡ
α̇
k } +

1
8
Ωjk[Wil[W i

p, W
lp]]. (13)

By analogy with the case of N = 2 [6,7], Eqs. (9), (12), (13) can be called the generalized
Dirac equation, the YangÄMills equation and the KleinÄGordon equation, respectively, with
central charge playing a role of ©ˇfth coordinateª. As a consequence of (7)Ä(13), we can

construct the complete power expansion of the W ij =
∞∑

k=0

W ij
(k)z

k in superspace from the ˇrst

two coefˇcients W ij
(0), W

ij
(1). The set of constraints shows that the component ˇelds in [1] are

completely determined by the lowest orders in the expansion Wij(x, θ, θ̄, z), in z, θ, θ̄. Then,
it is clear that we can completely ˇx the dependence of all quantities under consideration
on the central charge coordinate z, as well as for theories with N = 2 rigid supersymme-
try with the central charge [6, 7]. Using the covariant derivatives and solving the Bianchi
identities, we can immediately write down the supersymmetry transformations of the com-
ponent ˇelds in the form δΦ| = −ε∇Φ|. Rigid central charge transformations are realized
on ∇M and matter superˇelds Φ as δz∇M = [ω∇z,∇M ], and δzΦ = ω∇zΦ, with ω being a
constant real gauge parameter, corresponding to transformation of central charge coordinate
δz = ω.

Now, we clarify how the conditions (3) appear in the superˇeld approach. It is known
from [1] that Eqs. (3) allow us to reduce the N = 4, USp(4) SYM theory to the conventional
N = 4, SU(4) SYM theory. The relations (3) are the solutions of equations of motion for
auxiliary ˇelds Vm, Hij with the help of constraint (2). Therefore, if we want to get the
analogous relation between the above two theories in the superˇeld approach, we also should
use, besides the identities (7)Ä(13), some additional constraints. We take such restrictions in
the form

∂zΓm,z = 0, ∂zWij = 0 (14)

and show that these conditions are equivalent to (3). In this case, the identities (9), (11), (12),
(13) are converted into equations of motion for the conventional N = 4 SYM theory. If we
do not impose the conditions (14), we have the USp(4) superˇeld gauge theory satisfying the
identities (7)Ä(13).
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The constraints (7) allow us to get the important consequences. Specifying concrete values
of the indices i, j, k and using explicit form of the matrix Ω, one gets various constraints for
the superˇeld Wij . For example, ∇α1W12 = 0, ∇α2W12 = 0, and the other analogous
equations. These equations mean the very special dependence of the superˇeld Wij on
anticommuting coordinates

W12(θ3, θ4, θ̄2, θ̄1), W13(θ2, θ4, θ̄3, θ̄1), W24(θ1, θ3, θ̄4, θ̄2), W34(θ1, θ2, θ̄4, θ̄3). (15)

As a result, we see that Wij with different values i, j belong to different subspaces of the
full superspace. More transparent covariant solution of such constraints will take place in the
framework of the harmonic superspace.

2. GAUGE THEORY IN USp(4), N = 4 HARMONIC SUPERSPACE

Following the general scheme of harmonic superspace construction [4]1, we extend the
N = 4 central charge superspace with coordinates ZM = (xm, z, θαi, θ̄

i
α̇) by the eight-

dimensional coset space USp(4)/U(1) × U(1) parameterized by harmonic variables u
(±,0)
i ,

u
(0,±)
i , which are inert under supersymmetry and take the values in the fundamental rep-

resentation of USp(4) [9, 10]. Using the harmonics u
(±,0)
i , u

(0,±)
i , we deˇne the harmonic

derivatives ∂(q1,q2), which are left-invariant vector ˇelds on USp(4), by the rule

∂(±±,0) = u
(±,0)
i

∂

∂u
(∓,0)
i

, ∂(0,±±) = u
(0,±)
i

∂

∂u
(0,∓)
i

,

∂(±,±) = u±,0
i

∂

∂u0,∓
i

+ u0,±
i

∂

∂u∓,0
i

, ∂(±,∓) = u
(±,0)
i

∂

∂u0,±
i

− u
(0,∓)
i

∂

∂u∓,0
i

.

(16)

There is a special involution (special complex conjugation)
˜

u
(±,0)
i = u(0,±)i, ˜u(0,±)i =

−u
(±,0)
i , and so on, allowing one to deˇne a reality condition in harmonic superspace [9,10].

With the help of the harmonics u
(±,0)
i , u

(0,±)
i one can convert the spinor covariant derivatives

into operators ∇(±,0)
α̂ = u

(±,0)
i ∇i

α̂, ∇(0,±)
α̂ = u

(0,±)
i ∇i

α̂, and reformulate the superalgebra (4)
in another, more clear form. Now, we rewrite the constraints (15) as the constraints in
harmonic superspace, where they will have a form of analyticity conditions. In the τ frame,
we have the obvious anticommuting relations

{∇(+,0)
α̂ ,∇(+,0)

β̂
} = 0, {∇(±,0)

α , ∇̄(∓,0)
α̇ } = ∓2i∇αα̇, (17)

1The structure of harmonic variables for N = 2, 3, 4 harmonic superspaces with various R-symmetries is discus-
sed in [10].
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and the other anticommuting relations that deˇne ˇve harmonic projections of the tensor W ij

{∇(+,0)
α̂ ,∇(−,0)

β̂
} = 2iεα̂β̂∇z ± 2iεα̂β̂W (0,0),

{∇(0,+)
α̂ ,∇(0,−)

β̂
} = 2iεα̂β̂∇z ∓ 2iεα̂β̂W (0,0),

{∇(±,0)
α̂ ,∇(0,∓)

β̂
} = ±2iεα̂β̂W (±,∓),

{∇(±,0)
α̂ ,∇(0,±)

β̂
} = ±2iεα̂β̂W (±,±),

(18)

where

u
(+,0)
i u

(−,0)
j W ij = W (0,0),

u
(±,0)
i u

(0,±)
j W ij = W (±,±),

u
(±,0)
i u

(0,∓)
j W ij = W (±,∓).

(19)

These deˇnitions simply mean that W (q1,q2) in τ basis depend linearly on harmonics u
(±,0)
i ,

u
(0,±)
i , and all ˇve harmonic projections of Wij transform through each other under the action

of symmetry generators.

The USp(4), N = 4 harmonic superspace with coordinates {xm, z, θ
(±,0)
α̂ , θ

(0,±),
α̂ , ui}

contains several analytic subspaces of the full superspace with eight anticommuting coordi-
nates. It can be checked that each of the following four superˇelds lives in its own analytic
subspace. For example,

W (+,+)(θ(+,0), θ(0,+), θ̄(+,0), θ̄(0,+)),

∇(+,0)
α W (+,+) = ∇(0,+)

α W (+,+) = ∇̄(+,0)
α̇ W (+,+) = ∇̄(0,+)

α̇ W (+,+) = 0.
(20)

Acting on W (q1,q2) by one, two, three or four spinor derivatives D
(q1,q2)
α̂ , one obtains a

set of relations, which allow one to deˇne the superstrength components. We do not write
down all such relations. The relations that will be needed further have the form

G
(+,0)
α̂ = − i

2
∇(0,−)

α̂ W (+,+), G
(0,+)
α̂ =

i

2
∇(−,0)

α̂ W (+,+),

∇(0,−)
α̂ G

(+,0)

β̂
= εα̂β̂H(+,−) ∓ εα̂β̂ [W (0,0), W (+,−)], ∇̄(0,−)

α̇ G(+,0)
α = ∇αα̇W (+,−).

(21)

Further, we take the superˇeld W (+,+) as the basic superˇeld strength and construct
superˇeld action in its terms. This superˇeld is a function on analytic subspace of the
harmonic superspace parameterized by

{ζM , u} = {xm
A , zA, θ(+,0)

α , θ(0,+)
α , θ̄

(+,0)
α̇ , θ̄

(0,+)
α̇ , u

(±,0)
i , u

(0,±)
i }, (22)

where

xm
A = xm − iθ(−,0)σmθ̄(+,0) − iθ(+,0)σmθ̄(−,0) − iθ(0,−)σmθ̄(0,+) − iθ(0,+)σmθ̄(0,−),

zA = z + iθ(−,0)αθ(+,0)
α + iθ(0,−)αθ(0,+)

α − iθ̄
(+,0)
α̇ θ̄(−,0)α̇ − iθ̄

(0,+)
α̇ θ̄(0,−)α̇.

(23)
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One can prove that the above analytic subspace is closed under the supersymmetry transfor-
mations and is real with respect to ©tildeª-conjugation. Hence, the analytic superˇeld W (+,+)

also can be chosen real. In the λ frame, the covariant spinor derivatives are short

D
(+,0)
α̂ =

∂

∂θ(−,0)α̂
, D

(0,+)
α̂ =

∂

∂θ(0,−)α̂
. (24)

The harmonic derivatives D(q1,q2) in the analytic basis are presented in [9]. The fundamental
property of the operators D(++,0), D(±,∓), and D(0,++) is that if W (+,+) is a covariantly

analytic superˇeld, i.e., if D
(+,0)
α̂ W (+,+) = 0, D

(0,+)
α̂ W (+,+) = 0, then it is also a harmonic

analytic superˇeld, i.e., D(++,0)W (+,+) = 0, D(±,∓)W (+,+) = 0, D(0,++)W (+,+) = 0.
Similarly, we can consider the solution of the Grassmann constraints for other superˇelds

W (q1,q2) by passing to the corresponding analytic coordinates.
Superˇeld Action. Here, we formulate the superˇeld action. We show that such a super-

ˇeld action is written in terms of superˇeld W (+,+) and exactly reproduces the component
action (1). The action under consideration must be gauge-invariant, N = 4 supersymmetric
and invariant under central charge transformation. To ˇnd such an action, one uses a pre-
scription, which was formulated in N = 2 central charge harmonic superspace [7]. We will
see that this prescription perfectly works in USp(4), N = 4 harmonic superspace.

We propose the superˇeld action for USp(4), N = 4 SYM theory in the form

S ∼ tr
∫

dζ(−4,−4) du((θ(+,0))2 − (θ̄(+,0))2)((θ(0,+))2 − (θ̄(0,+))2)L(2,2). (25)

Here, L(2,2) = W (+,+)W (+,+) is an analytic (20) and harmonically ©shortª superˇeld. Ana-
lytic superspace dimensionless integration measure looks like

dζ(−4,−4)du = d4xA d2θ(+,0) d2θ(0,+) d2θ̄(+,0) d2θ̄(0,+) du,

where du denotes the left-right invariant measure of USp(4). The action (25) is obviously
gauge-invariant. Also, this action is N = 4 supersymmetric. The proof of this statement
is analogous to that in N = 2 theory with intrinsic central charges [7]. Though the ac-
tion (25) does not contain integration over z, actually it is z-independent due to the identities
D(++,0)L(2,2) = D(0,++)L(2,2) = 0. Therefore, this action is invariant under central charge
transformation δxm

A = 0, δzA = ω with constant parameter ω. Now, we rewrite the action (25)
in component form. To do that, we should integrate over harmonic and over all anticommut-
ing coordinates. We take into account that on a gauge-invariant quantities D2 = ∇2. Also,
one uses the integration rule∫

dζ(−4,−4)du =
1

256

∫
d4xdu(±,0)du(0,±)(∇(−,0))2(∇̄(−,0))2(∇(0,−))2(∇̄(0,−))2. (26)

After all these integrations, we get

S ∼ − 1
20

tr
∫

d4x(∇α(i∇j)
α − ∇̄(i

α̇ ∇̄α̇j))Lij

∣∣∣∣
θ=0

= tr
∫

d4xL, (27)

where the integrand is as follows: Lij = −1
2
(Gα

i Gαj+Ḡα̇
i Ḡα̇j+

i

2
H k

i Wjk). This expression

contains all the necessary terms corresponding to the component action (1). We can show,
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after some rather cumbersome calculations using the identities (7)Ä(9), that the action (27)
with a coefˇcient 1/4 in the deˇnition (25) is rewritten in the form

L = −1
4
FmnFmn − 1

2
V mVm +

1
8
HijHij +

1
8
∇mWij∇mW ij+

+
1
16

[Wik, W k
j ][W i

l, W
jl] + iGαi∇αα̇Ḡα̇

i +
i

2
[Wik, Gαk]Gi

α +
i

2
[Wik, Ḡk

α̇]Ḡα̇i. (28)

We can see that each term in the action (28) has the corresponding analogous term in the
action (1), that is Eq. (28) coincides with Eq. (1) up to the coefˇcients. As a result, we ˇnally
derive the action (1) from the superˇeld action (25).

3. SUMMARY

We have developed the harmonic superspace formulation of N = 4 SYM theory with the
rigid central charge. Component formulation of this theory was given in [1]. We studied the
gauge theory in USp(4), N = 4 superspace and showed that all the constraints in the compo-
nent theory [1], the supersymmetry transformations and the central charge transformation are
the consequences of the Bianchi identities for the superˇeld strengths. Also, it was proved
that the Lagrange multiple A5 and the expressions of auxiliary ˇelds Vm and Hij in terms
of A5, used in [1], have a natural origin as the conditions of central charge independence of
gauge superconnections Γm,z and superstrength Wij . Gauge-invariant, N = 4 supersymmet-
ric action, invariant under the central charge transformations is proposed and it is proven that
this action reproduces the component action given in [1].
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